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A B S T R A C T   

This study examined the factors that determine the adoption of CSA practices in dryland farming systems. The 
study answers the following questions: (i) what are the typologies of CSA practices available to smallholder 
farmers in rural Ghana?, (ii) what is the adoption rate of CSA practices among smallholder farmers? and, (iii) 
what are the socioeconomic predictors of the adoption of CSA practices in rural Ghana? This paper employed 
mixed-method participatory approaches including surveys of 1061 households, and 15 key informant interviews 
supplemented with 2 regional stakeholder workshops. The study used a Principal Component Analysis (PCA) to 
examine the climate smart agriculture typologies adopted among the smallholder farmers. To investigate the 
drivers of adoption, the multinomial ordered probit model was applied. The PCA results suggested that, there 
were seven (7) uncorrelated dimensions involving 23 CSA practices that were generally employed – water smart 
practices, energy smart practices, nutrient smart practices, carbon smart practices, weather smart practices, 
planting smart practices, and knowledge smart practices. These 7 typologies explained 63.91% of the total 
variance. The PCA results indicated that smallholder farmers do not necessarily rely on a single CSA practice to 
cope with climate change; but utilise a combination of practices. The results of the ordered probit model sug-
gested that the factors driving the adoption of CSA practices are mixed nuanced on the adoption typology and 
farmers' location and institutional factors. The paper contributes to an understanding of the different typologies 
for CSA practices and highlights the various socioeconomic factors driving the adoption rates of CSA practices by 
smallholders' farmers. This is crucial for the upscale of CSA practices in the face of climate change in Ghana and 
West Africa more widely.   

1. Introduction 

The West Africa region produces about 30% of the food requirement 
of the African continent and therefore it is important to enhance the 
resilience of food production systems within this region against climate 
change effects (FAO, 2015). Extreme weather events including droughts, 
floods, and windstorms have characterised the region (Sylla et al., 2018; 
Sultan and Gaetani, 2016). 

With Ghana's current population estimated at 30 million, meeting 
the food security needs of this population requires increasing agricul-
tural productivity. Agriculture remains the single most important sector 
of the Ghanaian economy, contributing significantly to the country's 
gross domestic product. The sector is also crucial in attaining the first 
and second goals of the United Nations Sustainable Development Goals 
(SDGs). Yet, the sector is plagued with low productivity and institutional 

weaknesses; resulting in market system failures, trade barriers, poor 
information, checkered sectoral growth, irregular income to actors, and 
poor infrastructural and human development. These challenges are 
compounded by Ghana's over-reliance on rain-fed agricultural systems; 
particularly in northern Ghana, where rainfall patterns are irregular and 
temperatures are high for most parts of the year. Ghana is projected to 
suffer increased temperature, rainfall variability and extreme events 
including droughts and floods (Asante and Amuakwa-Mensah, 2015). 
These will have major implications for agriculture, especially farming 
systems in the Sudan Savannah Zone (SSZ). 

Projected increases in temperatures will lead to increased evapo-
transpiration that can result in significant crop yield loses. This poses 
significant threats to food security and household livelihood sustain-
ability in dry regions where slight changes in rainfall patterns can lead to 
considerable yield and crop loses (Chemura et al., 2020). 
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While these projections seem dire, a growing body of literature 
suggests that Climate Smart Agriculture (CSA) technologies offer pros-
pects for smallholder farmers in dryland farming systems to maintain 
productivity in the face of changing rainfall patterns (Antwi-Agyei et al., 
2021a; Lipper et al., 2014; Campbell et al., 2014; FAO, 2013). CSA is 
used to describe an agricultural system that sustainably increases pro-
ductivity, enhances resilience and reduces greenhouse gases whilst 
facilitating the achievement of national food security (FAO, 2013). 
Thus, CSA revolves around three “pillars” i) sustainably increasing 
agricultural productivity for food and nutrition security, ii) climate 
change adaptation with the view of reducing exposure to short-term 
risks, and address long-term climate changes, iii) reducing and/or 
removing greenhouse gas emissions where possible (Thornton et al., 
2018). By doing this, CSA practices provide a framework to enhance 
synergies and minimize trade-offs between adaptation and mitigation 
(Antwi-Agyei et al., 2023; Steenwerth et al., 2014). In this paper, an 
agricultural practice is defined as climate smart if it can help to achieve 
at least one pillar of CSA (enhancing productivity or building resilience or 
helping to reduce GHG emission). CSA practices aim to transform and re- 
orient agricultural systems, especially for those in dryland farming 
systems, in support of food security within the context of climate change 
(Lipper et al., 2014). The adoption and mainstreaming of climate-smart 
agriculture (CSA) practices could create opportunities for improving 
food and livelihood security, mitigate emissions and enhance the resil-
ience of the food and agricultural systems (Sain et al., 2017; Partey et al., 
2018; Dougill et al., 2021). 

To this end, CSA has gained considerable prominence given the 
adaptation and mitigation challenges confronting humanity (Kurgat 
et al., 2020; FAO, 2013; Lipper et al., 2014). There is a growing interest 
to advance the uptake of sustainable farming practices that will fortify 
agricultural and food systems among farmers, particularly, smallholder 
farmers (Abegunde et al., 2020). International and regional bodies 
including the Global Alliance for Climate Smart Agriculture (GACSA), 
the Africa Climate Smart Agriculture Alliance (ACSAA), and the West 
Africa Climate Smart Agriculture Alliance (WACSAA) plus a range of 
actors including farmers, governments, civil society organizations 
(CSOs), and the private sector have initiated different CSA actions 
(Dinesh, 2016). 

A growing number of studies have also focused on the value of CSA 
practices in addressing the adverse impacts of climate change on live-
lihoods (see Lipper et al., 2014; Partey et al., 2018; Campbell et al., 
2014). For example, Lipper et al. (2014) highlighted the need for urgent 
action from public, private and civil society stakeholders for effective 
implementation of CSA. Totin et al. (2018) employed a systematic 
literature review to explore the institutional aspects of CSA. Antwi-Agyei 
et al. (2021a) highlighted the motivations, barriers and enablers for the 
adoption of CSA practices in Ghana. Thornton et al. (2018) proposed a 
framework for prioritising agricultural research investments on CSA 
across scales. Similarly, Zougmoré et al. (2016) provided a review of 
climate change impacts, adaptation strategies and policy developments 
for the livestock, fishery and crop production sectors. In West Africa, 
Partey et al. (2018) reported that, CSA practices such as soil and water 
conservation technologies, climate information services and agrofor-
estry provided promising options for addressing climate change threats. 
In Kenya, Kangogo et al. (2021) observed that farmer entrepreneurship 
was critical to the adoption decisions of CSA practices of smallholders. 

While these studies document an impressive body of knowledge on 
CSA practices, there remains a dearth of scholarship on the typologies of 
CSA practices and the factors that predict the adoption of CSA practices 
by smallholder farming communities in vulnerability hotspots in 
dryland farming systems. Moreover, many of these studies did not 
consider the lived experiences of farming households and other stake-
holders and how that can affect the choice of CSA practices in farming 
systems. Additionally, it remains unclear under what socioeconomic 
conditions do farming households adopt CSA practices. This critical 
information is lacking in the literature and hampers the design and 

upscaling of context relevant CSA practices to address climate risks in 
dryland farming systems in vulnerability hotspots. This could be 
attributed to the lack of appropriate typology and how this could help 
policy makers in making decisions on relevant local specific CSA prac-
tices. This study addresses these gaps by answering the following 
questions: (i) what are the typologies of CSA practices available to 
smallholder farmers in rural Ghana? (ii) what is the adoption rate of CSA 
practices among smallholder farmers? and, (iii) what are the socioeco-
nomic predictors of adoption of CSA practices in dryland farming sys-
tems in rural Ghana? This paper contributes to the burgeoning literature 
on CSA practices highlighting the key socioeconomic conditions pre-
dicting the adoption of the different typologies of CSA practices. This 
will provide critical insights for policy makers and development prac-
titioners in designing and upscaling appropriate CSA practices in rural 
Ghana. 

2. Research design and methods 

2.1. The study area 

The study was conducted in the Upper East, Northern and the Bono 
East Regions of Ghana. Three local assemblies – Kintampo South district 
(from the Bono East Region), Savelugu district (from the Northern Re-
gion), and the Lambussie district (from the Upper West Region) were 
selected (Fig. 1 and Table 1), based on the levels of climate change and 
livelihoods vulnerability demonstrated by these study districts (Klutse 
et al., 2020). 

The Kintampo South district lies in the transitional ecological zone of 
Ghana characterised by two farming seasons with majority of the people 
in this district employed in agriculture. There is high dependence on 
agro-based livelihoods on a subsistence level with only few farmers 
engaged in plantation and mechanized farming (Ghana Statistical Ser-
vices (GSS), 2014a). The district experiences bi-modal rainfall pattern. 
The major raining season starts in early March and reaches its peak in 
June, and tapers off gradually through July. 

The Savelugu municipal, on the other hand, shares boundaries with 
West Mamprusi to the North, Karaga to the East, Kumbungu to the West 
and Tamale Metropolitan Assembly to the South. It occupies an area of 
1790.70 km2. Agriculture is the predominant source of employment in 
this district; with an estimated 89.3% of households engaged in agri-
culture (GSS, 2014b). The municipality experiences a unimodal rainfall 
pattern. The landscape is mostly flat and gently sloping towards the 
North and characterised by the interior Savannah woodlands vegetation. 

Carved out from the former Jirapa-Lambussie district in the Upper 
West region, the Lambussie district is located in the north-western 
corner of the Upper West Region. The rainy season lasts from June to 
October each year and gives way to the dry season from November to 
May. The district experiences a unimodal rainfall pattern and it is 
characterised by anthropogenic activities including bush burning, tree 
felling for fuel wood, sand and gravel wining, which have led to the 
extensive destruction of the vegetation (GSS, 2014c). Agriculture re-
mains the main economic activity with an estimated 90% of the popu-
lation engaging in agriculture largely on subsistence level. 

Within each local assembly, three study communities were selected 
using non-purposive sampling based on advice from municipal and 
district level agricultural development officers. Hence, we selected 
Ayorya, Apesika and Suamire (from Kintampo South), Diare, Nakpan-
zoo, and Kukobila (from Savelugu Municipal), Karni, Samoa, and Kpari 
(from the Lambussie district). Community engagements were facilitated 
with the help of community gate keepers including agricultural exten-
sion officers, to introduce the research to them and solicit the involve-
ment of the communities. 

2.2. Research methodology 

The data reported in this paper were collected through a fieldwork 
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conducted from October to December 2020 in the 9 study communities 
selected from the three study districts (the Kintampo South district, 
Savelugu municipality and Lambussie district). The fieldwork was con-
ducted in two phases. In phase one, survey questionnaires were 
administered in local dialects with the assistance of local interpreters to 
1061 households with the help of CSPro software (Ponnusamy, 2012). 
Households were randomly selected in the study communities and the 
head of each selected household or his representative in the absence of 
the head was interviewed. Survey questionnaires covered thematic areas 
including the general household characteristics, perception of re-
spondents on climate change and variability, and adoption of CSA 
practices used by farmers. These CSA practices were identified from 
literature and presented to regional and district agricultural develop-
ment officers for confirmation as predominant practices in the study 
districts. Using a 4-point Likert Scale ranging from “0” never used before 
to “3” used every year; the farmers were then asked to score each 
identified adaptation practice from 0 to 3 (see Table 2). Each ques-
tionnaire averagely took between 30 min and 1 h. Respondents to sur-
veys questionnaires were assured of anonymity and made to understand 
that their participation in the research would not be compensated and 
that they could withdraw from the interview at any time. 

Phase two involved 2 district stakeholders workshops held at Jema 
(in the Kintampo South district) and Lambussie (in the Lambussie dis-
trict), in February 2021. The findings of the phase one were presented to 

stakeholders drawn across governmental departments and a cross- 
section of farmers to elicit response on the implications of the findings 
for climate change adaptation in the study districts. Additionally, 15 key 
informant interviews (with 5 interviews in each district) were conducted 
with chiefs, assembly members, chief farmers, extension officers, youth 
leaders and women leaders to triangulate the information obtained from 
the field surveys and stakeholder workshops. The key informants were 
selected based on their longstanding understanding of agriculture and 
environmental issues in the study districts. Responses from key in-
formants were content analysed and relevant themes that emerged were 
identified in light of the study objectives. 

2.3. Data analysis 

To examine the factors that influence the choice of CSA practice, 
first, the Principal Component Analysis (PCA) was employed to sum-
marize the data into a set of uncorrelated dimensions. In line with sta-
tistical practice, the appropriateness of the dataset for principal 
component analysis was tested using the Kaiser-Meyer-Olkin (KMO) 
measure of sampling adequacy and the Bartlett's test of sphericity. The 
estimate of the Bartlett's test of sphericity showed that conducting a PCA 
on the dataset was appropriate [χ2(df) = 8747.184 (406)***]. The 
confirmation of the factorability of the dataset was observed from the 
KMO value of 0.888 which validated the suitability of the data for PCA 

Fig. 1. Northern Ghana showing the study communities  
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analysis (Rojas-Valverde et al., 2020). 
Based on the PCA analysis all components with eigenvalues >1 were 

retained. The PCA was conducted using the Oblimin rotation technique. 
Several authors have used the PCA to categorize scientific phenomenon 
including climate change adaptation in the literature (Greiner and 
Gregg, 2011; Jeon et al., 2006; Bax et al., 2020). As displayed on Table 2, 
the aggregated rating scores for the identified seven common (relevant) 
practices were subsequently converted into percentiles and grouped 
according to four relevant classes (Khatri-Chhetri et al., 2017). 

At the second stage of the analysis, the study used the ordered probit 
model to analyse the factors that influence a farmer's choice of a CSA 
practice. Following Khatri-Chhetri et al., 2017), the specification of the 
multinomial ordered probit model is given as follows: 

∑M

m=1
Pi(m) = F

(
X‘

iβm : θ
)
: m = 1, 2, 3…M − 1 (1)  

Pi(M) = 1 −
∑M− 1

m=1
Pi(m) (2) 

Where Pi(m) gives the probability that a farmer, i, adopts a certain 
typology of climate-smart practice, m. X denotes the vector of explana-
tory variables affecting the probability of adoption. The explanatory 
variables included in this study are household and farmer-specific var-
iables such as gender, educational level, marital status, the percentage of 
household members who are farmers, farming experience, climate 
change perception; institutional and environmental factors such as the 
availability of social support, access to credit, extension services, access 
to climate information, availability of ready markets, and government 
subsidies. 

It was expected that differences in the farming conditions (farmer- 
specific and environmental factors) can also influence adoption. For 
instance, Deressa et al. (2009), Pomp and Burger (1995), Joshi (2005) 
and Bidogeza et al. (2009) suggest that conditions such as the avail-
ability of labour, availability of seeds, crop diversity, land size, and farm 
resource endowment can affect a farmer's motivation to implement a 
CSA practice. Thus, the effect of farming conditions was assessed using 
the landholding size, the number of crops grown (crop diversity), and 
the availability of extension services. Table 3 presents details of the list 
of explanatory variables; and Table 4 presents the descriptive statistics 
of variables. βm is the set of parameters to be estimated. F(.) is the 
probability distribution function from which the probability estimates 
are derived. Eq. (1) suggests that the total probability of adopting CSA 
practices is a function of a set of farmer-specific and environmental 
factors. Eq. (2) indicate that summing up the probabilities will amount 
to 1. The shape of the F(.) is given by θ parameter. From eq. (2), the 
probability that a farmer will adopt a CSA practice conditioned on the 
set of farmer-specific and environmental characteristics can be 
expressed as: 

Pi(Yi = m|Xi) = Φ(β0m − βmXi) − Φ(β0m− 1 − βmXi) (3) 

Where Φ is the cumulative standard normal probability distribution 
function which is estimated using a maximum likelihood estimation 
technique. The seven (7) typologies identified in the principal compo-
nent analysis were used as dependent variables in the ordered probit 
model, which assessed the factors that predict the probability of a farmer 
adopting these unique integrated strategies as suitable climate-smart 
agricultural technology. Thus, seven (7) models were estimated to 
assess the factors that predict a farmer's adoption of plant, nutrient and 
knowledge smart technology (PNSKT), energy, water and carbon smart 
technology (EWCST), knowledge smart technology (KST), energy, plant 
and knowledge smart technology (EPKST), knowledge and plant smart 
technology (KPST), weather smart technology (WST), and water, plant 
and carbon smart technology (WPCST). Table 5 presents a description of 
each technology and the practices involved. The robust standard errors 
clustered at the district level was applied to control for 

Table 1 
Profile of the study area districts.   

Kintampo 
South 
District 

Savelugu 
Municipal 

Lambussie 
District 

Source 

Study Area 1513.34 km2 2022.6 km2 811.9 km2 (GSS, 2014a, 
2014b, 
2014c, 
2014d) 

Study Location 7◦ 52′ N 1◦

45′ W 
9◦ 36′ N 
0◦ 49′ W 

10◦ 39′ N 2◦

34′ W  
Capital Town Jema Savelugu Lambussie  
Agroecological 

Zone 
Wet Semi- 
equatorial/ 
Transitional 
zone 

Northern 
Savanna 

Savanna  

Vegetation Woodland 
Savannah 
Vegetation 

Woodland 
Savannah 
Vegetation 

Savannah 
Vegetation  

Total 
Households 

15,522 138, 221 50, 896 (GSS, 2014a, 
2014b, 
2014c) 

Population 
(Year) 

81, 000 
(2010) 

139, 283 
(2010) 

51, 654 
(2010) 

(GSS, 2014a, 
2014b, 
2014c) 

Gender (Sex 
Ratio) 

Male 
(52.0%); 
Female 
(48.0%) 

Male 
(48.5%); 
Female 
(51.5%) 

Male 
(48.3%); 
Female 
(51.7%) 

(GSS, 2014d) 

Temperature 24 ◦C - 30 ◦C 16 ◦C - 42 ◦C 18 ◦C - 40 ◦C (GSS, 2014d) 
Mean Annual 

Rainfall 
1400 
mm–1800 
mm 

600 
mm–1000 
mm 

900 mm- 
1100 mm 

(GSS, 2014a, 
2014b, 
2014c) 

Relative 
Humidity 

41%–100% 33% 20%- 60% (GSS, 2014d) 

Major crops 
grown 

Yam, maize, 
cassava, 
plantain, 
rice, 
cocoyam, 
pepper, 
garden eggs, 
groundnut, 
mango and 
cashew. 

Rice, 
groundnut, 
yam, 
cassava, 
maize, 
cowpea and 
sorghum 

Shea nut, 
groundnuts, 
yam, cotton, 
millet, rice, 
maize, 
cowpea, 
sorghum, 
bambara 
beans,  

Economic trees Odum, 
mahogany, 
senya, 
apupuo, 
shea, wawa, 
dawadawa. 

Shea trees 
and 
dawadawa 

Cashew, 
shea, mango, 
baobab, 
kapok, 
dawadawa 

(GSS, 2014a, 
2014b, 
2014c) 

Ethnicity Bono, Mo, 
Dagomba 
and Ashanti 

Dagomba, 
Frafra, 
Mampurise, 
Ewe, Gonja 

Gurunshi, 
Sissala, 
Dagaaba, 
Waala, 
Moshi, Wala, 
Fulani, 
Wangara 

(GSS, 2014a, 
2014b,2014c) 

Key livelihood 
activities 

Crop 
farming, tree 
planting, 
livestock 
rearing, fish 
farming. 

Crop 
farming, 
sand 
winning, 
fishing, 
charcoal 
burning. 

Crop 
farming, 
livestock 
rearing.   

Table 2 
Criteria used to define climate smart practice adoption rates.  

Likert Scale Rating Level of preferences Percentile 

0 No adoption 0–25 
1 Low adoption 26–50 
2 Moderate adoption 51–75 
3 High adoption 76–100  
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heteroscedasticity in all the empirical estimations. 

3. Results and discussion 

3.1. Descriptive statistics 

The pooled results show that 68% of the farmers were males 
(Table 4). The average age of household heads was 45 years. A key 
footprint of climate change in agricultural communities is migration. 
This is generally considered a non-farm-related coping strategy, where 
farmers migrate from vulnerable communities to potential climate- 
resilient communities to undertake farming activities. According to 
the descriptive statistics, about 80% of the farmers were natives of the 
resident communities. This implies that farmers rarely migrated to 
neighbouring communities to farm. Social networks have been noted to 
improve information sharing, access to resources, and social support. 
Membership in associations is therefore a component of the farmers' 

climate adaptation mix. For instance, it was detected that about 37% of 
farmers were members of social clubs outside the community. There are 
however significant differences in club membership across the study 
communities. For instance, 94% of farmers in the Savelugu community 
belonged to a social club; compared to 78% and 56% of farmers in the 
Kintampo and the Lambussie communities. Notwithstanding, a total of 
80% of the farmers reported belonging to faith-based institutions or 
associations; however, a significant percentage of such farmers were 
from the Lambussie community (67%). Only 18% of farmers reported 
being beneficiaries of social support. Again, it was identified that 
farmers from the Lambussie community accessed social support (56%) 
compared to those in Kintampo (30%) and Savelugu (28%) commu-
nities. The implication is that the average farmer in the Lambussie 
community is less likely to join a farmers' corporative union relative to a 
religious society whereas the reverse holds for their counterparts in 
Kintampo and Savelugu. With reference to the financial and economic 
capacity of the farmers, the evidence showed that access to credit is low 
with only 15% of farmers having access to credit. In contrast, the ma-
jority of farmers reported they have benefitted from government sub-
sidies (71%). Access to a ready market has also been averagely high; 
with approximately 65% of farmers having access. Approximately, 72% 
of the respondents also indicated that they have access to extension 
services. With respect to farming conditions, Table 4 shows that on 
average each farmer grows four (4) types of crops on each farmland; 
with the average landholding size of 3–6 ha. Meanwhile, Table 4 also 
suggests that the perception of climate change is high and widespread 
among the sampled smallholder farmers. 

3.2. Typologies of climate smart agricultural practices in study 
communities 

Based on the PCA analysis all components with eigenvalues >1 were 
retained. All factor loadings which loaded >0.45 were selected whereas 
items that cross-loaded on more than one component were identified 
and excluded from the PCA. In the first stage, a total of 31 CSA practices 
were used for the PCA analysis, out of which 23 practices were identified 
as the key relevant adaptation options applied to address issues of 
climate change resilience, productivity, and environmental sustain-
ability. Seven (7) uncorrelated dimensions (typologies) involving 23 
climate-smart practices were identified; explaining 63.91% of the total 
variance. Subsequently, the study proceeded to define each component 
based on the set of CSA practices it was strongly correlated with 
(highlighted in bold on Tables 5 and 6). For instance, the first compo-
nent which is positively correlated with the planting of drought-resistant 
and pest-resistant crops, planting of early maturing seeds, and cover 
cropping planting was described as planting, nutrient, and knowledge 
smart technology. Component 1 explains 25.57% of the total variance. 
Analysis of the factor scores shows that knowledge-smart practices 
dominate with planting and nutrient-smart technology used to com-
plement efforts made through the use of knowledge-smart farming ac-
tivities. Component 2, on the other hand, explains 9.76% of the total 
variance and positively associated with tillage by bullock, agroforestry 
and woodlot scheme, earth bunding, and crop-livestock integration or 
mixed farming. These practices are intended to ensure sustainable 
resource management through control of energy consumption and car-
bon emissions. Thus, Component 2 is defined as energy, water, and 
carbon smart technology. Component 3 contributes approximately 
7.33% of the total variance. Component 3 is observed to be charac-
terised by appropriate fertilizer use, early planting, timely harvesting, 
and appropriate land preparation. These practices can only be imple-
mented with strong knowledge about climate change and coping stra-
tegies. Component 3 is therefore defined as knowledge smart 
technology. 

Component 4 accounts for about 6.38% of the variance and is made 
up of practices such as bush fallowing, zero tillage and mixed cropping. 
Component 4 is therefore defined as energy, planting and knowledge 

Table 3 
Description of explanatory variables.   

Descriptive 

Gender Categorical. 0 = Female; 1 = Male 
Educational status Categorical. 0 = None; 1 = Basic; 2 = SSS; 3 = Post 

SSS; 4 = Tertiary; 5 = Others 
Marital status Categorical. 1 = Never married; 2 = Living 

together; 3 = Married; 4 = Divorced; 5 =
Separated; 6 = Widowed 

Age Continuous. 
Extension service Dummy; takes the value of 1 if there is access to 

extension services and 0 otherwise 
Native Dummy; takes the value of 1 if the farmer is a native 

of the village and 0 otherwise 
Reliance on farm income Dummy; takes the value of 1 if the farmer's 

household rely on agriculture as the only source of 
household income and 0 otherwise 

Crop diversity index Continuous. Defined as the number of crops grown 
by the farmer 

Farming experience Categorical. 1 = Below 5 years; 2 = Between 5 and 
10 years; 3 = Above 10 years 

Perception of changes in 
rainfall patterns 

Dummy; takes the value of 1 if a farmer reports 
changes in rainfall patterns and 0 otherwise 

Perception in temperature 
patterns 

Dummy; takes the value of 1 if a farmer reports 
changes in temperature patterns and 0 otherwise 

Access to climate information Dummy; takes the value of 1 if a farmer has access 
to climate information and 0 otherwise 

Information about extreme 
weather events 

Dummy; takes the value of 1 if a farmer receives a 
warning on extreme weather events and 
0 otherwise 

Access to water Continuous. Average time to water source in 
minutes 

Access to social support Dummy; takes the value of 1 if a farmer receives 
social support and 0 otherwise 

Member of a social club 
outside community 

Dummy; takes the value of 1 if a farmer is a member 
of a social club outside the community and 
0 otherwise 

Member of faith-based group Dummy; takes the value of 1 if a farmer is a member 
of a faith-based group and 0 otherwise 

Landholding size Categorical. 1= ≤ 3ha; 2 = 3–6 ha; 3 ≥ 6 ha 
Access to credit Dummy; takes the value of 1 if a farmer has access 

and 0 otherwise 
Regular remittances Dummy; takes the value of 1 if a farmer receives 

remittances and 0 otherwise 
Access to ready market Dummy; takes the value of 1 if a farmer has access 

and 0 otherwise 
Access to communication 

devices 
Dummy; takes the value of 1 if a farmer has access 
and 0 otherwise 

Housing conditions Categorical. 1 = Owning, 2 = Renting = 2, 3 =
Rent-free; 4 = Others (incl. perching, squatting) 

% of household members who 
are farmers 

Continuous. The ratio of farmers to total household 
size 

Government subsidies Dummy; takes the value of 1 if a farmer receives 
subsidies and 0 otherwise 

Access of internet Dummy; takes the value of 1 if a farmer has access 
and 0 otherwise  
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smart technology. Component 5 which is defined as knowledge and 
planting smart technology constituted 5.22% of the total variance; and 
comprised the use of indigenous/traditional agro-ecological knowledge 
and crop diversification. Component 6 accounts for 5.12% of the vari-
ance and is characterised by crop insurance scheme. Therefore, it was 
defined as weather smart technology. About 4.49% of the total variance 
could be attributed to Component 7, which was strongly correlated with 
sprinkler and drip irrigation, crop rotation and no burning of residues 
and subsequently defined as water and carbon smart technology. 

A graphical representation of the PCA component loadings is pre-
sented on Fig. 2 which reveal four quadrants (I, II, III and IV) of potential 
technology combination. The quadrants are interpreted from northeast 
to southwest directions (Owusu Kwateng et al., 2020). Practices that are 
widely combined increases from northeast direction to the southwest. 
Additionally, the horizontal line from east to west shows adoption levels 
and climate smart practice combination typology. Specifically, quadrant 
1 is characterised by water, planting, knowledge and nutrient smart 
practices and is christened as “general climate smart agriculture adop-
tion”. Quadrant 2 is occupied by weather smart practices. Quadrant 3 on 
the other hand shows zero smart technology adoption and therefore is 
described as “no adoption”. The quadrant 4 is populated by practices 
that are based on knowledge smart, water smart and carbon smart 
technology. Again, it can be observed that the use of knowledge smart 
technologies dominates. 

3.3. Adoption rates of climate smart agricultural practices by farmers 

The results indicate that farming households in the sampled com-
munities combined various CSA practices. A combination of energy, 
water, carbon, nutrient, planting, weather and knowledge smart tech-
nologies is observed among the sampled farmers. This finding corrob-
orates the climate change literature (Sonko et al., 2020; Partey et al., 
2018), suggesting that smallholder farmers in sub Saharan Africa inte-
grate a range of adaptation practices to address climate risks. Specif-
ically, seven typologies of CSA practices were identified. 

A descriptive analysis of the climate smart adoption typologies 
identified among the smallholder farmers is subsequently presented on 
Fig. 3. Generally, the results indicate that, the level of adoption of CSA 

practices among the sampled farmers is averagely low; albeit the 
application of knowledge smart technologies is relatively widespread. 
Low adoption rates of CSA practices have been reported across many 
parts of sub-Saharan Africa (see, for example, Kurgat et al., 2020; Partey 
et al., 2018; Westermann et al., 2018). The low adoption could be 
attributed to the resource-intensive nature of some of the CSA practices 
including conservation agriculture (Mairura et al., 2021) and irrigation 
(Danson et al., 2002). Irrigation and crop rotation practices have been 
reported to moderate the effects of climate change and are widely used 
by dryland farming systems (Akinyi et al., 2021). Yet, Danson et al. 
(2002) noted that manual irrigation takes 38% of a farmer's time and 
could dissuade farmers from implementing such practice that has the 
potential to boost yield and build resilience to climate variability. 
Nonetheless, the evidence suggest that knowledge smart technologies 
are widely applied and integrated in the climate smart agricultural 
practices adopted by smallholder farmers in Ghana. 

The analysis also suggests that farmers in communities in the Save-
lugu municipality have a lower level of adoption for all the identified 
technologies compared to their counterparts in other districts whereas 
farmers in the Kintampo district have a higher level of adoption; 
particularly for the integration of plant, nutrient and knowledge smart 
technologies; and the adoption of knowledge smart technology. They 
also perform relatively better in the integration of energy, water and 
carbon smart technologies. 

3.4. Drivers of the adoption of climate smart agricultural practices by 
smallholder farmers 

Given the categorization and subsequent characterization of the CSA 
practice adoption typologies, the key factors that predict the selection of 
CSA are presented in Table 7. 

3.4.1. Plant, nutrient and knowledge smart technology (PNKST) 
Plant, nutrient and knowledge smart technology describes the inte-

gration of nutrient smart, planting smart and knowledge smart tech-
nologies in crop production in an effort to adapt to the effects of climate 
change. The results showed that the availability of extension service 
increases the probability of adoption of this technology (p < 1%) 

Table 4 
Descriptive statistics of smallholder farmers in Ghana.   

Pooled (N = 1052) Kintampo (N = 390) Savelugu (N = 347) Lambussie (N = 315)  

Mean SD Mean SD Mean SD Mean SD 

Gender 0.68 0.47 0.48 0.50 0.88 0.32 0.71 0.46 
Educational status 1.56 0.90 0.48 0.50 0.18 0.39 0.47 0.50 
Marital status 3.18 0.94 0.73 0.44 0.95 0.21 0.86 0.34 
Age of farmer 45.26 14.11 46.15 14.13 44.33 12.76 45.21 15.42 
Extension service 0.72 0.45 0.58 0.49 0.84 0.37 0.77 0.43 
Native of the town 0.80 0.40 0.50 0.50 0.97 0.16 0.99 0.11 
Reliance on farm income 0.36 0.93 0.90 0.29 0.94 0.24 0.90 0.29 
Crop diversity index 4.28 1.55 4.24 1.57 3.88 1.26 4.82 1.62 
Farming experience 2.74 0.56 2.67 0.63 2.79 0.47 2.79 0.53 
Perception of changes in rainfall 0.99 0.92 1.00 0.051 0.98 0.15 1.00 0.00 
Perception in temperature patterns 0.99 0.11 0.99 0.09 0.97 0.16 1.00 0.00 
Access to climate information 0.77 0.42 0.43 0.50 0.46 0.50 0.72 0.45 
Info. about extreme weather events 0.62 0.49 0.62 0.49 0.86 0.34 0.34 0.47 
Access to water 16.08 19.35 6.41 6.31 30.96 24.92 11.68 11.79 
Access to social support 0.18 0.39 0.30 0.46 0.28 0.45 0.56 0.50 
Social club membership 0.37 0.48 0.78 0.42 0.94 0.25 0.56 0.50 
Member of faith-based group 0.80 0.40 0.21 0.40 0.14 0.35 0.67 0.47 
Landholding size 2.27 0.78 2.40 0.83 2.05 0.38 0.21 0.41 
Access to credit 0.15 0.36 0.14 0.35 0.15 0.36 2.05 0.30 
Regular remittances 0.73 0.45 0.11 0.31 0.03 0.18 0.23 0.43 
Access to ready market 0.65 0.48 0.94 0.24 0.52 0.50 0.45 0.50 
Access to communication devices 0.85 0.35 0.78 0.41 0.97 0.17 0.81 0.40 
Housing conditions 1.35 0.80 2.35 1.09 3.20 0.57 2.37 1.00 
% of farmers in the household 44.04 23.79 47.91 22.76 37.14 20.34 46.87 26.78 
Government subsidies 0.71 0.45 0.53 0.50 0.82 0.39 0.81 0.39 
Access of internet 0.11 0.31 0.12 0.32 0.97 0.17 0.13 0.34  
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(Table 7). Analysis also portrayed that gender is a significant factor that 
influences the use of PNKST (p < 1%). Specifically, male farmers are less 
likely to adopt this strategy compared to their female counterparts. 
According to literature, there is a correlation between perceived climate 
risk and climate change technology adoption. Several indicators have 
been advanced in the literature to proxy perceived climate risk including 
perception of rainfall and temperature changes, access to climate in-
formation and warnings of extreme weather events. However, the results 
revealed that while the effect of perceived temperature changes on the 
adoption of PNKST is statistically not different from zero; farmers who 
perceive significant changes in rainfall pattern have a strong probability 
of adopting plant, nutrient and knowledge smart technology (p < 1%). 
On the other hand, while access to climate information reduces the 
probability of adopting PNKST (p < 1%), farmers who are likely to 
receive information about extreme weather events are more likely to 
adopt the PNKST technology than their counterparts who do not (p <
1%). This is instructive, since the analysis also portray that access to the 
internet (p < 1%) and communication devices (p < 1%) increases the 
probability of adopting the PNKST technology. According to Bez-
grebelna et al. (2021) and Natarajan et al. (2019) climate adaptation 
strategy may come at a huge cost which the smallholder farmer may not 
have the capacity to invest. The availability and access to finance is 
therefore an important element that can influence the adoption of 

climate smart practice. Focusing on access to credit, remittances, gov-
ernment subsidy, and ready market; the ordered probit regression re-
sults suggest that averagely, financial capacity influences the adoption 
of PNSK (p < 1%). However, access to government subsidy is likely to 
increase PNSK adoption whereas access to credit, remittances and ready 
market significantly reduce the probability of PNSK adoption among 
farmers in the study communities. In terms of farm-related factors, the 
results suggest that the probability of PNSK adoption increases with land 
size (p < 1%), famer's experience and among households whose prime 
occupation is farming (p < 1%). 

3.4.2. Energy, water and carbon smart technology (EWCST) 
This technology describes the integration of activities considered as 

identities of energy smart, water smart, and carbon smart technology by 
farmers. While the rate of adoption is relatively low (0.73%), Table 7 
suggests that its level of adoption is influenced, to a large extent, by the 
farmer's financial capacity. Among the existing typologies, EWCST 
adoption may require a relatively large investment; therefore, access to 
financial resources play a critical role in its application. For instance, the 
results showed that reliance on agricultural income increases the prob-
ability of EWCST adoption (p < 1%). The results suggest that there is a 
limited number of farming-related factors influencing the adoption of 
EWCST including access to extension services (p < 1%) and land size (p 

Table 5 
Climate smart agriculture technology matrix and adoption rate.   

Pooled Kintampo Savelugu Lambussie Description 

Practices Mean SD Mean SD Mean SD Mean SD 

Water Smart Practices         Activities geared towards improving water 
efficiency  

- Sprinkler and drip irrigation 0.27 0.64 0.21 0.55 0.29 0.55 0.31 0.80 Minimizes water loss  
- Water management and water harvesting 1.16 1.02 0.81 0.94 1.43 1.03 1.30 0.96 Creative ways to store rainwater and reducing water loss  
- Cover crop method 1.42 1.03 1.68 0.91 0.78 0.82 1.81 1.04 Growing cover crops to maintain soil moisture 
Energy Smart Practices         Activities towards ensuring energy efficiency  
- Zero tillage/Minimum tillage 1.26 1.06 1.77 0.87 0.44 0.64 1.53 1.12 Reduces energy use in land preparation  
- Tillage by bullock 0.23 0.63 0.04 0.23 0.18 0.39 0.52 0.98 Using bullock for tillage practice  
- Conservation agriculture 1.23 0.86 1.28 0.77 0.81 0.74 1.62 0.89 Using appropriate methods to ensure sustainability  
- Earth bunding 0.34 0.63 0.11 0.42 0.50 0.61 0.45 0.78 Ridge of compacted earth constructed to control soil 

erosion  
- Stone bunding 0.13 0.40 0.07 0.29 0.17 0.40 0.17 0.50 Stone bunds form a barrier to slow down water runoff. 
Nutrient Smart practices         Practices geared towards nutrient use efficiency  
- Inter cropping with legumes 1.52 1.04 1.58 1.00 0.86 0.82 2.18 0.84 Planting of legumes among crops to raise nitrogen supply  
- Composting 0.47 0.74 0.39 0.65 0.38 0.57 0.68 0.94 Using decomposed plant materials as soil amendments  
- Crop residue mulching 1.27 1.10 1.67 0.97 0.65 0.79 1.45 1.25 Covering the soil to make it favourable for plant growth  
- Crop-livestock integration 0.90 0.98 0.64 0.86 0.52 0.73 1.65 0.95 Mixed farming to ensure supply of biomass and feed  
- Bush fallowing 1.38 1.05 2.06 0.85 0.60 0.68 1.41 1.03 Land use efficiency to allow soil nutrient recovery 
Carbon Smart         Practices geared towards reducing pollution in all 

forms  
- Agro forestry and woodlot schemes 0.51 0.77 0.34 0.68 0.40 0.56 0.84 0.95 Interaction of agriculture and trees  
- Appropriate and timely weed and pest control 1.99 0.83 1.93 0.85 1.71 0.79 2.36 0.71 Good pest management practice to lower use of chemicals  
- No burning of residues biomass on farms 1.31 0.96 1.24 0.79 1.10 1.00 1.63 1.03 Reduce pollution 
Weather Smart         Practices geared towards ensuring earning 

security  
- Crop insurance schemes 0.29 0.57 0.28 0.59 0.29 0.51 0.29 0.62 Purchase of crop insurance to reduce income risk  
- Use of climate information services 1.20 0.83 1.14 0.80 1.41 0.73 1.06 0.91 Use of reports to guide planting and harvesting activities 
Knowledge Smart         Use of science and experience to reduce risk of loss  
- Use drought tolerant crop varieties 1.24 0.97 1.28 0.96 0.94 0.87 1.53 0.99 Planting of crops that can withstand long droughts  
- Use pest resistant plant varieties 1.21 0.76 1.25 1.02 0.74 0.76 1.70 1.01 Planting of crops that can withstand pest attacks  
- Planting early maturing varieties of crop 1.63 0.96 1.57 0.98 1.29 0.95 2.08 0.76 Planting of crop varieties that grow early in the season  
- Appropriate fertilizer use 1.86 0.89 1.70 0.90 1.81 0.80 2.13 0.91 To reduce chemical use  
- Seed and fodder banks 2.05 0.92 2.16 0.89 1.51 0.87 2.50 0.66 Storing of seeds for next season  
- Early planting 1.87 0.84 1.96 0.77 1.68 0.76 1.97 0.97 Planting early to avoid loss due to short season  
- Appropriate land preparation devoid of slash and 

burn 
1.41 0.94 1.21 0.79 1.26 0.93 1.84 0.98 Land preparation practices that sustain soil quality  

- Use of indigenous agro ecological knowledge 1.46 0.96 1.70 0.94 1.27 0.89 1.40 1.00 Use of local knowledge for adaptation purposes  
- Timely harvesting of produce and storage 2.08 0.76 2.20 0.67 1.76 0.81 2.27 0.71 Proper harvesting and storage practices 
Planting Smart         Practices that maximize yield and quality produce  
- Appropriate planting method (spacing) 1.82 0.80 1.82 0.77 1.49 0.76 2.18 0.74 Good spacing methods for crops  
- Crop rotation 2.02 0.91 2.10 0.65 1.60 1.06 2.39 0.82 Alternating planting to maximize soil nutrient use  
- Crop diversification 1.25 0.86 1.61 0.78 1.04 0.78 1.20 0.90 Planting different varieties of crops  
- Mixed cropping 1.62 1.01 2.00 0.77 0.80 0.83 2.04 0.90 Plants different types of crops together 

Means signify adoption Levels: 0 = No adoption; 1 = Low adoption; 2 = Moderate adoption; 3 = High adoption. 
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Table 6 
Principal Component Analysis of climate smart agricultural practices.   

1 2 3 4 5 6 7 

. Using Drought Tolerant Crop Varieties 0.806 − 0.023 0.086 − 0.061 0.012 − 0.078 0.063 
Use Pest Resistant Plant Varieties 0.802 0.040 0.153 0.082 − 0.219 − 0.027 − 0.142 
Planting Early Maturing Varieties of Crop 0.797 − 0.049 0.010 − 0.112 0.171 − 0.011 0.068 
Cover Cropping Planting Cover Crops to Maintain Soil Moisture 0.625 − 0.072 0.086 0.229 0.115 − 0.014 0.084 
Planting Legumes Among Crops 0.583 0.163 − 0.007 0.239 0.163 − 0.003 0.099 
Tillage by Bullock 0.037 0.694 − 0.048 0.012 0.187 − 0.025 0.046 
Agroforestry and Woodlot Schemes 0.094 0.673 − 0.117 0.081 − 0.209 0.378 − 0.184 
Crop Livestock Integration Mixed Farming 0.350 0.642 − 0.107 0.091 − 0.012 0.129 − 0.002 
Earth Bunding − 0.320 0.618 0.074 − 0.042 0.237 − 0.259 0.063 
Water Management and Water Harvesting − 0.146 0.562 0.170 − 0.057 − 0.119 − 0.161 − 0.017 
. Appropriate Fertilizer Use Right Quantity and Right Time 0.102 − 0.116 0.774 0.100 0.032 0.093 − 0.099 
. Early Planting 0.085 0.067 0.733 − 0.133 0.135 0.026 0.036 
Timely Harvesting of Produce and Storage 0.006 − 0.031 0.685 0.316 − 0.107 0.192 0.054 
Appropriate Land Preparation Devoid of Slash and Burn 0.223 0.214 0.494 − 0.081 − 0.132 − 0.200 0.352 
Bush Fallowing 0.104 0.035 − 0.181 0.784 − 0.077 0.106 0.037 
. Zero Tillage / Minimum Tillage − 0.020 − 0.008 0.239 0.731 0.182 − 0.001 − 0.081 
. Mixed Cropping: Planting Different Type of Crops Together 0.132 0.012 − 0.218 0.612 − 0.113 0.165 − 0.113 
. Use of indigenous/traditional agro-ecological knowledge − 0.093 − 0.018 − 0.006 0.081 0.779 − 0.166 0.186 
Crop Diversification 0.034 0.012 0.116 0.054 0.765 − 0.076 − 0.234 
Crop Insurance Schemes 0.191 0.064 0.041 0.158 0.162 ¡0.861 0.012 
Sprinkler and Drip Irrigation 0.152 0.207 0.194 − 0.040 0.145 − 0.258 0.623 
Crop Rotation 0.229 0.086 0.231 − 0.019 0.118 − 0.124 0.585 
No Burning of Residues Biomass on Farms 0.239 0.069 0.054 0.285 0.043 0.188 0.477 
Total extraction 5.88 2.25 1.69 1.47 1.20 1.19 1.03 
Percentage of variance 25.57 9.76 7.33 6.38 5.22 5.16 4.49 
Cumulative percentage 25.57 35.33 42.66 49.04 54.26 59.42 63.91 

KMO = 0.888; Bartlett's test of sphericity (df) = 8747.184 (406) ***. 
1 = Knowledge, water and nutrient smart technology; 2 = energy, water and carbon smart technology; 3 = knowledge smart technology; 4 = energy, planting and knowledge smart technology; 5 = knowledge and planting 
smart technology; 6 = weather smart technology; 7 = water, planting and carbon smart technology. 
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< 1%) which positively affects the probability of adoption. Again, the 
evidence suggests that access to regular remittances (p < 1%), govern-
ment subsidies (p < 1%) and credit facilities (p < 1%) increase the 
likelihood of a farmer adopting this technology. Access to credit is 
critical for farming households in dryland farming systems in northern 
Ghana where poverty levels are relatively high (Ghana Statistical 

Services, 2021), making it difficult for farmers to implement CSA 
practices. Again, it is also difficult for farming households to obtain 
credit facilities from the banking institutions because of the high 
perceived risk of rain-fed agricultural systems predominant in these 
study areas. Access to extension services is crucial in dryland farming 
systems where access to climate information can help farming 

Fig. 3. Climate smart adoption levels by smallholder farmers.  

Fig. 2. PCA plot of climate smart practices identified.  
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Table 7 
Ordered probit regression estimate of determinants of climate smart adoption.   

Model 1: PNKST Model 2: EWCST Model 3: KST Model 4: EPKST Model 5: KPST Model 6: WST Model 7: WPCST 

Age 0.002 [0.003] − 0.005 [0.004] 0.006 [0.003]* − 0.011 [0.004]*** − 0.003 [0.003] 0.006 [0.003]* 0.002 [0.003] 
Gender − 0.185 [0.084]** 0.074 [0.114] − 0.149 [0.083]* − 0.148 [0.102] 0.241 [0.083]*** 0.107 [0.118] 0.102 [0.085] 
Educational status − 0.030 [0.085] 0.065 [0.109] 0.010 [0.085] − 0.170 [0.104] 0.066 [0.081] 0.095 [0.110] 0.036 [0.088] 
Native 0.255 [0.119]** 0.236 [0.182] 0.060 [0.116] − 0.074 [0.137] 0.082 [0.104] 0.461 [0.158]*** 0.091 [0.117] 
Reliance on Agric Income 0.031 [0.120] 0.377 [0.173]** − 0.255 [0.114]** − 0.182 [0.151] − 0.139 [0.122] − 0.154 [0.138] − 0.153 [0.147] 
Extension service 0.267 [0.094]*** − 0.388 [0.112]*** 0.193 [0.095]** − 0.021 [0.110] − 0.142 [0.077]* − 0.529 [0.103]*** 0.178 [0.093]* 
Crop diversity index 0.039 [0.026] 0.095 [0.034]*** − 0.048 [0.025]* 0.011 [0.030] 0.102 [0.024]*** − 0.062 [0.032]* 0.057 [0.026]** 
Farming experience [Base Category: Below 5 years]        
1. Between 5 and 10 years 0.136 [0.185] 0.296 [0.281] − 0.024 [0.173] 0.563 [0.226]** 0.024 [0.167] − 0.253 [0.202] 0.097 [0.180]  
2. Above 10 years 0.307 [0.170]* 0.313 [0.259] 0.081 [0.164] 0.571 [0.213]*** 0.194 [0.156] − 0.415 [0.187]** 0.088 [0.160] 
Climate change perception [Rainfall] 1.198 [0.534]** − 0.303 [0.377] 0.317 [0.523] − 0.123 [0.393] 0.746 [0.380]** − 0.661 [0.308]** 0.998 [0.524]* 
Climate change perception [Temperature] 0.411 [0.343] 0.319 [0.443] − 0.554 [0.502] − 0.744 [0.358]* 0.483 [0.250]* − 0.348 [0.284] 0.537 [0.341] 
Access to climate information − 0.439 [0.129]*** 0.149 [0.155] − 0.379 [0.122]*** 0.050 [0.141] 0.295 [0.119]** − 0.001 [0.176] − 0.193 [0.123] 
Receiving warning about extreme weather events 0.546 [0.110]*** 0.043 [0.133] 0.298 [0.104]*** 0.313 [0.130]** − 0.312 [0.104]*** 0.478 [0.143]*** − 0.153 [0.115] 
Member of a social club outside community 0.230 [0.098]** − 0.097 [0.117] 0.013 [0.091] − 0.330 [0.119]*** 0.022 [0.100] 0.231 [0.120]* 0.172 [0.097]* 
Member of faith-based group 0.117 [0.098] − 0.114 [0.118] 0.355 [0.094]*** 0.025 [0.113] 0.727 [0.094]*** 0.154 [0.146] 0.150 [0.099] 
Social support 0.158 [0.104] 0.513 [0.127]*** 0.059 [0.099] 0.306 [0.124]** − 0.113 [0.105] − 0.170 [0.143] − 0.074 [0.108] 
Land size [Base category: Below 3 ha]        
1. Between 3 and 6 ha 0.282 [0.107]*** 0.409 [0.150]*** 0.189 [0.104]* − 0.012 [0.121] 0.102 [0.097] − 0.048 [0.130] − 0.160 [0.108]  
2. Above 6 ha 0.402 [0.111]*** 0.622 [0.159]*** 0.193 [0.112]* 0.182 [0.133] 0.101 [0.104] − 0.095 [0.140] − 0.320 [0.117]*** 
Access to credit − 0.483 [0.110]*** 0.368 [0.126]*** − 0.406 [0.114]*** 0.006 [0.142] 0.083 [0.103] 0.374 [0.126]*** − 0.237 [0.113]** 
Regular remittances − 0.275 [0.098]** 0.435 [0.151]*** − 0.339 [0.118]*** − 0.052 [0.132] − 0.166 [0.120] − 0.150 [0.172] − 0.222 [0.125]* 
Government subsidies 0.782 [0.105]*** − 0.111 [0.117] 0.483 [0.100]*** − 0.143 [0.110] 0.132 [0.092] − 0.322 [0.105]*** 0.427 [0.097]*** 
Access to ready markets − 0.158 [0.099] 0.121 [0.112] − 0.290 [0.094]*** 0.231 [0.131]* − 0.017 [0.095] 0.755 [0.131]*** − 0.180 [0.103]* 
Communication devices 0.335 [0.115]*** − 0.037 [0.148] 0.584 [0.110]*** 0.283 [0.130]** 0.108 [0.107] − 0.042 [0.149] 0.433 [0.106]*** 
Access to internet 0.468 [0.126]*** 0.292 [0.169]* 0.313 [0.122]*** − 0.106 [0.151] − 0.028 [0.118] 0.131 [0.153] 0.352 [0.131]*** 
Housing conditions [Base category: Owning]        
1. Renting 0.138 [0.215] − 0.316 [0.329] 0.008 [0.182] − 0.002 [0.224] − 0.211 [0.117]* 0.619 [0.265]** − 0.211 [0.184]  
2. Rent-free 0.160 [0.122] − 1.610 [0.257]*** − 1.323 [0.161]*** − 0.093 [0.234] − 0.405 [0.115]*** 0.116 [0.149] − 0.421 [0.158]***  
3. Others [Squatting, Perching and so on] − 1.299 [0.272]*** − 5.357 [0.160]*** − 1.322 [0.183]*** − 4.838 [0.364]*** − 1.494 [0.280]*** − 1.086 [0.389]*** − 0.414 [0.204]** 
Percentage of farmers in HH 0.717 [0.173]*** − 0.599 [0.201]*** 0.432 [0.186]** 0.180 [0.185] 0.180 [0.185]*** − 0.027 [0.177] 0.259 [0.163] 
Community [Reference category: Apesika]        
1. Suamire − 0.226 [0.154] − 0.148 [0.231] − 0.302 [0.129]** − 0.385 [0.161]** − 0.385 [0.161]*** 0.271 [0.198] 0.052 [0.139]  
2. Ayorya 0.282 [0.143]** − 0.353 [0.231] − 0.074 [0.166] 0.070 [0.166] 0.070 [0.166]*** 0.346 [0.191]** 0.076 [0.146]  
3. Diara − 1.106 [0.174]*** 0.631 [0.240]*** − 0.306 [0.175]* − 3.112 [0.431]*** − 3.112 [0.431]*** 0.551 [0.199]*** − 0.469 [0.184]**  
4. Kukuobila − 1.610 [0.211]*** 1.372 [0.273]*** − 0.219 [0.217] − 2.222 [0.373]*** − 2.222 [0.373]*** 0.744 [0.233]*** − 0.466 [0.229]**  
5. Nakpanzoo − 1.352 [0.200]*** 0.219 [0.289] − 0.974 [0.205]*** − 5.727 [0.194]*** − 5.727 [0.194]*** − 0.056 [0.282] − 1.041 [0.204]***  
6. Kami 0.007 [0.179] 1.542 [0.259]*** 0.008 [0.186] − 0.039 [0.204] − 0.039 [0.204]*** − 0.031 [0.267] − 0.120 [0.188]  
7. Kpare 0.937 [0.186]*** 0.790 [0.243]*** 0.826 [0.182]*** − 0.033 [0.214] − 0.033 [0.214]*** 1.183 [0.222]*** 0.369 [0.184]**  
8. Samao 0.081 [0.174] 0.719 [0.241]*** − 0.083 [0.180] − 0.209 [0.228] − 0.209 [0.228]*** 0.705 [0.219]*** − 0.141 [0.177] 
Observations 1052 1052 1052 1052 1052 1052 1052 
Adoption Percentage 16.65 0.73 26.07 25.68 20.82 2.48 7.56 
Wald Test of robustness (p -value) 509.9 (0.000) 4365.2 (0.000) 365.29 (0.000) 7720.96 (0.000) 501.95 (0.000) 210.17 (0.000) 217.43 (0.000) 
Log Pseudolikelihood − 970.251 − 523.193 − 1060.14 − 547.709 − 1156.96 − 608.840 − 837.909 
Pseudo R-square 0.228 0.274 0.163 0.294 0.137 0.149 0.122 

Standard errors in parentheses have been corrected for heteroscedasticity. *p = 0.1, **p = 0.05, ***p = 0.001 (statistically significant). 
PNKST = Plant, Nutrient and Knowledge Smart Technology; EWCST = Energy, Water and Carbon Smart Technology; KST = Knowledge Smart Technology; EPKST = Energy, Planting and Knowledge Smart Technology; 
KPST = Knowledge and Planting Smart Technology; WST = Weather Smart Technology; WPCST = Water, Planting and Carbon Smart Technology. 
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households in important crop and farm management decisions. 
The analysis further suggest that the percentage of household 

members who are farmers (p < 1%) and the crop diversity index (p <
1%) reduces the likelihood of adopting EWCST. Meanwhile, farmers 
who occupy rent-free houses or either perching or squatting are less 
likely to adopt this strategy compared to those who live in their own 
houses (p < 1%). In terms of external effects, the ordered probit 
regression results indicate that access to social support (p < 1%), and the 
location of the farmer (p < 1%) are the institutional and locational 
factors predicting the adoption of energy, water and carbon smart 
agriculture typology among farmers. For instance, farmers in commu-
nities within Savelugu municipality (Kami, Kpare and Samao) and 
Lambussie district (Diara, Kukuobila and Nakpanzoo) demonstrate a 
higher probability of adopting this smart technology compared to their 
counterparts in communities within the Kintampo district. 

3.4.3. Knowledge smart technology (KST) 
The evidence shows that there is a large number of farmers who 

prefer the use of knowledge-smart technology (26.07%). Farmer-specific 
and household characteristics that predict the adoption of this tech-
nology include the farmer's age, farmer’s gender, reliance on agricul-
tural income, receipt of regular remittances, percentage of farmers in the 
household as well as housing residency characteristics. For example, 
older farmers have a strong probability of adopting this technology 
compared to young farmers. There is also an indication that female 
farmers are more likely to adopt this technology than male farmers. 
Meanwhile, the higher the percentage of farmers in a household, the 
higher the probability of adoption. It is also evident that farmers who 
own their houses have a higher probability of choosing this technology 
than those who live in rent-free houses or squat. 

Focusing on the effect of location and institutional factors, it is 
observed that membership in a faith-based institution, access to infor-
mation on extreme weather events, and availability of government 
subsidies positively influence the probability of adopting this technol-
ogy. On the other hand, the farmer's accessibility to credit, ready mar-
kets, and climate information system have a negative effect on the 
probability of KST adoption. With reference to farming conditions, 
Table 7 indicates that the probability of adopting knowledge smart 
technology is significantly predicted by the crop diversity, availability of 
extension services, and land size. Results further show that land size and 
crop diversity have a positive effect on the probability of adopting 
knowledge smart technology. 

3.4.4. Energy, planting and knowledge smart technology (EPKST) 
This technology describes the integration of energy-smart, planting 

smart and knowledge-smart technologies by farmers. Table 7 shows that 
farmers in the Kintampo and Lambussie districts mostly adopt this smart 
technology. The results show that adoption level is also influenced by 
household factors such as the age of the farmer, farming experience, and 
access to communication devices. For instance, the probability of 
adoption is found to be higher for young farmers, farmers with more 
experience, and those who have access to communication devices. Other 
factors which influence decisions to adopt this technology include 
perception of temperature patterns, access to information on extreme 
weather events, membership of a social group outside the community, 
and access to social support. Group membership provides safety nets and 
informal social support systems to farmers. It also greatly influences 
farmer-to-farmer peer learning through the sharing of information on 
good farming practices. Farmer's decisions to adopt certain CSA prac-
tices is greatly influenced by the social and behavioural interactions and 
engagements within the social groups (Atta-Aidoo et al., 2022). Studies 
elsewhere have suggested that group membership is critical for the 
adoption of CSA practices (Mango et al., 2017; Diouf et al., 2019; 
Macharia et al., 2020). In Nepal, Dhakal and Rai (2020) observed that 
the adoption of agroforestry practice was greatly influenced by mem-
bership of groups. 

3.4.5. Knowledge and planting smart technology (KPST) 
It is also evident that there is a proportion of farmers who combine 

knowledge-smart with planting-smart technology. Analysis shows that 
approximately 20.82% of sampled farmers practice this technology. 
Findings suggest that adoption is influenced by predominantly farming 
conditions and some household factors (Table 7). The key factors that 
influence adoption are the perception of climate change, access to 
climate information and weather reports, and the level of crop diversity. 
For example, we observed a positive relationship between the percep-
tion of rainfall and temperature changes and KPST adoption level. This is 
important as farmers will only initiate climate change adaptation actions 
if they can perceive significant changes in climatic variables that influ-
ence farm management decisions (see Mairura et al., 2021). In Ghana, 
previous studies suggest that smallholder pineapple farmers who had a 
strong perception of the changing weather patterns were more likely to 
adopt climate change adaptation measures (Antwi-Agyei et al., 2021b). 
The implication is that farmers who have a strong perception of climate 
variations in rainfall and temperature patterns have a greater proba-
bility of adopting this technology. Moreover, increased access to climate 
information systems was revealed to have a positive correlation with 
farmers' choice for this technology. Results further showed that farmers 
who live in their own residences have a higher probability of adopting 
this technology than those living in rented or rent-free residences. Ed-
ucation was found to be a key determinant of CSA practices particularly 
those related to knowledge and planting smart technology (Table 7). 
Farmers with a higher level of education have a stronger probability of 
KPST adoption. This is related to the fact that better-educated farmers 
are able to access information that may be relevant for climate change 
adaptation. This is consistent with previous studies (see Mwinkom et al., 
2021; Antwi-Agyei et al., 2021c) indicating that household heads with 
more education are more likely to adopt CSA practices including the 
planting of drought-resistant varieties. 

In addition, the availability of extension services has a significant 
effect on the probability of adopting knowledge and planting smart 
technology. Access to climate information through extension services 
plays a critical role in the probability of adoption for smallholder 
farmers in dryland farming systems. For instance, in Ghana and Kenya, 
Antwi-Agyei et al. (2021c) and Muema et al. (2018), respectively, re-
ported that access to climate information enabled farmers to make key 
farm management decisions. 

3.4.6. Weather smart technology (WST) 
The evidence suggests that the level of adoption of weather smart 

technology through the patronage of crop insurance schemes is low 
among the farmers. Analysis shows that roughly 2.48% of sampled 
farmers use weather-smart technology. Nonetheless, household factors 
such as gender, reliance on farm income, and being a member of a social 
group outside the community influenced the probability of adoption of 
weather-smart technology. The ordered probit model results show that 
the probability of adoption is lower for women than men. Again, the 
higher the reliance on agriculture income, the higher the probability of 
the adoption of weather-smart technology. Again, the probability of 
adoption of weather-smart technology is also found to be influenced by 
locational factors. Results suggest that less experienced farmers are 
more likely to adopt weather-smart technology compared with more 
experienced farmers [above 10 years]. This is plausible due to the fact 
that farmers with greater experiential capital may expect to rely on their 
experiences to resolve any shortfalls in income or agriculture output; but 
the less experienced farmers may see the opportunity to transfer risk, as 
a result of the insurance scheme, as a better alternative than relying on 
their low experience. Older farmers tend to rely more on the traditional 
indigenous knowledge acquired over several years of farming. This 
finding compares favourably with other studies suggesting that older 
farmers are less likely to adopt new agricultural interventions (Antwi- 
Agyei et al., 2020; Muema et al., 2018). 
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3.4.7. Water, planting and carbon smart technology (WPCST) 
Results in Table 7 indicate that water, planting, and carbon smart 

technology is predicted by mainly institutional factors and household 
factors such as access to credit, ownership of communication devices, 
and access to the internet. The evidence also suggests that access to 
government subsidies, receipt of regular remittance, and access to ready 
market are also significant predictors of the adoption of water, planting 
and carbon smart technology. The landholding size of the farm was also 
found to be a significant predictor of the adoption of water, planting, 
and carbon-smart technology. Our findings are in sync with evidence by 
Amadu et al. (2020), suggesting that various farm and farmer charac-
teristics have been found to influence the adoption of CSA by farmers. 
Land and crop management farm decision are made by male farmers and 
this often constrain the ability of female farmers to initiate CSA prac-
tices. This is consistent with the findings of Ferdous and Mallick (2019); 
suggesting that female and migrant farmers are constrained by insecure 
tenure systems that compromise their overall resilience to climate risks 
in dryland farming systems. Patriarchal norms in most of these societies 
often preclude female farmers from land ownership, limiting their 
adaptation options. CSA, however, could play a significant role in 
reducing the gender gap in labour burden for women in agriculture 
(Khatri-Chhetri et al., 2017). Developing gender-responsive targeted 
approaches that focus on the particular needs, priorities, and realities of 
men and women in the design and application of CSA could foster an 
equal alignment of the differentiated needs of both genders (Lipper 
et al., 2014; Huyer et al., 2015; Khatri-Chhetri et al., 2017). 

4. Conclusion 

The paper examined the typologies and key factors driving the 
adoption of climate-smart agriculture practices in rural Ghana; with a 
particular focus on farmers in the Savelugu municipality, Kintampo 
South and Lambussie districts. Results revealed that seven (7) uncorre-
lated typologies involving twenty-three (23) CSA practices were 
generally employed by smallholder farmers in the study districts. These 
typologies include: water-smart practices, energy-smart practices, 
nutrient-smart practices, carbon-smart practices, weather-smart prac-
tice, planting-smart practices, and knowledge-smart practices. Such ty-
pologies have value for policy in the design and implementation of 
appropriate policy options for the adoption of CSA practices. Policy-
makers often develop one-size fit all climate change adaptation policies; 
hence, an understanding of these typologies provide opportunity for 
policy makers to design locally relevant and context-specific adaptation 
policies. This will invariably improve the upscaling of CSA adoption in 
dryland farming systems in Ghana and West Africa more widely. 

Findings further showed that the smallholder farmer combines a 
multiplicity of CSA practices; albeit the level of adoption of climate- 
smart agriculture is low. Among the mix of technologies, the results 
suggested that only knowledge-smart technology and weather-smart 
technology are implemented singularly. However, while it is also com-
mon to combine knowledge-smart technology with other smart tech-
nologies, weather-smart technology is strictly used exclusively. Thus, 
farmers who use weather-smart technology are not likely to adopt other 
technologies to complement the gains obtained in the use of the 
technology. 

A key result of this research is that the decision to adopt a CSA 
practice (whether an integrated technology or a single technology) is 
motivated by several factors including education, access to climate in-
formation, the supply of credit facilities, access to information on 
extreme weather events, membership of a social group outside the 
community and access to government subsidies, group membership. The 
multiple adoption of CSA practices is explained by institutional and 
farming factors that pertain within the locality. However, the results 
suggested a contingency approach in policy efforts addressing the use of 
CSA practices in the district. For example, whilst the adoption of 
knowledge smart technologies will be widespread, the findings suggest 

that combinations with some planting, energy, and nutrient-smart 
technologies will be widely accepted. However, farmers with greater 
access to institutional resources such as access to climate information, 
extension services, and government subsidies may be more engaging. 

The findings also highlighted the relevance of social support systems, 
perception of climate change and to ready markets. However, small-
holder farmers with more access to climate information may be more 
reluctant in choosing a set of practices that place emphasis on planting, 
nutrient, and knowledge-smart technology or just knowledge-smart 
technology. Access to extreme weather information, credit, and mem-
bership of social groups increases the adoption of weather-smart tech-
nologies; plausibly because these indicators or factors highlight 
impending threats and the farmer being aware may have been consid-
ering alternative extant remedies or coping strategies. The availability of 
a crop insurance scheme may be considered an optimal strategy to 
transfer risks. It might also not be wrong to assume that the predictors 
may fall in line with a risk-averse farmer. Similarly, it was observed that 
farmers who have limited access to credit, remittances, and government 
subsidies have a superior likelihood of adopting integrated water, 
planting, energy, and carbon-smart technologies. These context-specific 
local factors driving the adoption of CSA practices should be clearly 
considered in efforts at promoting the adoption and upscale of CSA 
practices in northern Ghana. 

Our results underscore the need for policymakers and development 
practitioners to consider context-specific factors in the design and 
implementation of CSA practices aimed at addressing climate risks. Our 
analysis suggests that CSA practices that are more likely to need sub-
stantially greater capital inputs are less likely to be used in rural Ghana, 
underscoring the stark discrepancy between the use of knowledge-smart 
and weather-smart technologies. Future studies should consider simu-
lating what kinds of CSA practices might be employed by farming 
households and the possible outcomes associated with such 
interventions. 
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