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Abstract

In this work, we investigate the dynamical behavior of a fractional order cholera model.

Here, we developed interest in the use of the deterministic model proposed by Codeco in

2001. The fractional order cholera model is converted to a system of ordinary di�erential

equations of integer order by using Atanackovic and Stankovic numerical method and is

then solved numerically by using the fourth order well-known Runge-Kutta method. All

the feasible equilibria for the system are obtained and the conditions for the existence

of interior equilibrium are determined. Local stability analysis of the cholera model is

studied by using the fractional Routh-Hurwitz stability conditions. The �ndings reveal

that, the disease dies out at the disease free equilibrium state but will persist at the

endemic state and that the concentration of toxigenic vibrio cholerae in water largely

depends on (i) the rate of exposure to contaminated water (parameter a) and (ii) the

contribution of each e�ected person to the aquatic environment (parameter e).
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Chapter 1

Introduction

1.1 Background

Cholera is an acute intestinal infection caused by ingestion of food or water contaminated

with the bacterium Vibrio cholerae. It has a short incubation period, from less than one

day to �ve days, and produces an enterotoxin that causes copious, painless, watery

diarrhoea that can quickly lead to severe dehydration and death if treatment is not

promptly given. Vomiting also occurs in most patients. Cholera is an extremely ancient

and virulent disease that continues to cause epidemic and pandemic infection despite

ongoing e�orts to limit its spread. It a�ects both children and adults and can kill within

hours. About 75% of people infected with Vibrio cholerae do not develop any symptoms,

although the bacteria are present in their faeces for 7-14 days after infection and are shed

back into the environment, potentially infecting other people.

If left untreated, cholera can be fatal in a matter of hours, even in previously healthy

people. Most people exposed to the cholera bacterium do not become ill and never know

they have been infected. Yet because they shed vibrio cholerae in their stool for 7 to

14 days, they can still infect others through contaminated water. Only about 1 in 10

infected people develop the typical signs and symptoms of cholera, usually within a few

days of infection.

� Diarrhoea: Cholera-related diarrhoea comes on suddenly and may quickly cause

dangerous �uid loss � as much as a quart (about 1 liter) an hour. Diarrhoea due

to cholera often has a pale, milky appearance that resembles water in which rice

has been rinsed (rice-water stool).

� Nausea and vomiting: Occurring especially in the early stages of cholera,

1



vomiting may persist for hours at a time.

� Dehydration: Dehydration can develop within hours after the onset of cholera

symptoms. Depending on how many body �uids have been lost, dehydration can

range from mild to severe. A loss of 10 percent or more of total body weight

indicates severe dehydration.

Signs and symptoms of cholera dehydration include irritability, lethargy, sunken

eyes, a dry mouth, and extreme thirst, dry and shriveled skin that's slow to bounce

back when pinched into a fold, little or no urine output, low blood pressure, and an

irregular heartbeat (arrhythmia). Dehydration may lead to a rapid loss of minerals in

your blood (electrolytes) that maintain the balance of �uids in your body. This is called

an electrolyte imbalance. Modern sewage and water treatment has virtually eliminated

cholera in industrialized countries but cholera is still present in Africa, Southeast Asia,

Haiti and central Mexico. The risk of cholera epidemic is highest when poverty, war or

natural disasters force people to live in crowded conditions without adequate sanitation.

Cholera is easily treated and death results from severe dehydration that can be prevented

with a simple and inexpensive rehydration solution.

Historically, six out of the seven cholera pandemics have swept the globe since 1816. Most

recently, the seventh pandemic started from Indonesia in 1961, spread into Europe, South

Paci�c and Japan in the late 1970s, reached South America in 1990s, and has continued

to the present. The last few years have witnessed many cholera outbreaks in developing

countries, including Liberia (2002), Mali (2003), Senegal and Chad (2004), West Africa

(2005), Angola and Sudan (2006), India (2007), Iraq and Congo (2008), Zimbabwe (2008

and 2009), Vietnam (2009), Nigeria, Central Africa, Pakistan and Haiti (2010), Sierra

Leone (2012) and Ghana (2014). Every year there are an estimated 3 to 5 million cholera

cases and 100 000 to 120 000 deaths and that is the reason why cholera represents a

signi�cant public health burden to developing countries in recent years.

In the last decades, attention to cholera epidemiology increased, as cholera epidemics

became a worldwide health problem. Detailed investigation of V. cholerae interactions

with its host and with other organisms in the environment suggests that cholera dynamics
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is much more complex than previously thought. Though many mathematical models have

been proposed to investigate the complex epidemic and endemic behavior of cholera in

the past, notable example among these is the deterministic model proposed by Codeco

in 2001 which, in the �rst time, explicitly incorporated the environmental component,

i.e. the V.cholerae concentration in the water supply (denoted by B), into a regular

SIR system to form a combined human-environment (SI-B) epidemiological model.

This model enables a careful study on the complex interaction between human hosts

and environmental pathogen towards better understanding the cholera transmission

mechanism, and, as such, it has motivated the development of several other cholera

models.

Fractional-order di�erentiation is regarded as the generalization of classical integer-order

di�erentiation to real or complex orders. Fractional di�erential equations have gained

considerable importance due to their application in various sciences, such as physics,

mechanics, chemistry, and engineering. In the recent years, the dynamic behaviors of

fractional-order di�erential systems have received increasing attention. The existence

of solutions of initial value problems for fractional order di�erential equations will be

discussed in this work. Here, we will introduce a fractional order Codeco cholera model.

The researcher will discuss an e�cient numerical method to converting the system of

fractional di�erential equations to system of ordinary di�erential equations. Finally,

numerical simulations are presented to illustrate the obtained results.

Just when it is assumed that cholera outbreak has been brought under check, the Ghana

Health Service (GHS) reported cholera outbreak in Ghana has hit a record over 28,000

cases with over 243 deaths. The last time Ghana su�ered such a staggering number

of cholera cases was in 1982. A report published by the World Health Organisation

(WHO) says by the end of 2011 a total number of 589,854 cholera cases had been

reported globally, out of which 7,816 deaths were recorded.

This �gure represents an increase of 85% in the number of cases reported in 2010 and a

16% increase in the number of countries. However, a total of 188,678 cases were reported

from Africa only, representing an increase of 64% compared with the 2010 �gure of
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115,106 cases. The rest of the total �gure was taken up by Asia˘38, 298;Oceania˘1, 514;

and Europe˘71. The Americas, however, took the largest chunk of 361,266, owing to the

epidemic that hit Haiti as a result of the earthquake that struck on January 12, 2010.

Haiti alone reported 340,311 cases, which resulted in 2,869 deaths during the period.

For Africa, countries that had reported cases during the period were Somalia, Nigeria,

Democratic Republic of Congo, Cameroon, Niger, Angola, Benin, Burkina Faso, Ghana,

and Central African Republic.

The rest were Chad, Congo, Cote d'Ivoire, Djibouti, Guinea, Kenya, Liberia, Mali,

Mauritania, Malawi, Mozambique, Senegal, Somalia, Togo, Tanzania, Zambia, and

Zimbabwe.The chunk of cases recorded on the African continent was taken by �ve

countries, with Somalia's 77,636 reported cases, 1,130 deaths and 1.46% case fatality

rate (CFR) topping the African chart.

Nigeria followed at a great distance with 23,377 reported cases, 742 deaths and a rather

high CFR of 3.17%. On its heels was Cameroon with 22,433 reported cases, but with a

larger number of deaths � 783 � and, not surprising, the highest CFR of 3.49% for the

period. The Democratic Republic of Congo placed fourth with 21,700 cases, 584 deaths

and a CFR of 2.69% while Ghana came �fth, having reported a total of 10,628 cases by

the close of 2011 and a total of 105 deaths with a CFR of 0.99%.

Four countries from Central Africa, the Great Lakes region, and the Horn of Africa

accounted for 145,164 cases (Cameroon, Democratic Republic of Congo, Nigeria and

Somalia), or 77% of cases reported from the continent. There was a sharp increase in

cases reported from the Horn of Africa, with 127 cases (and one death) reported from

Djibouti. No cases were reported from Ethiopia, Sudan or Uganda. A total of 2,295 cases

were, however, reported from Kenya (74), Mozambique (1,279) and Tanzania (942). In

southern Africa the number of reported cases declined to levels never previously reported

during the current millennium, with 2,949 cases reported: Malawi (120), Mozambique

(1,279), Zambia (330) and Zimbabwe (1,220).

In West Africa, reported cases increased to the levels of 2006 to 2008 with a total of

16,088 cases compared with 3,074 in 2010. Ghana's 10,628 cases accounted for 66%
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of cases reported from West Africa. Increasing numbers of cases were reported from

Côte d'Ivoire (1261), Mali (2220), and Niger (2324). Cases were also reported from

Benin (755), Burkina Faso (20), Guinea (3), Liberia (1,146), Mauritania (46), Senegal

(�ve), and Togo (four). The CFRs were high for Burkina Faso (10%), Mali (4.3%), and

Mauritania (6.5%).

1.1.1 Problem Statement

Just when it was assumed that cholera outbreak had been brought under check, the

Ghana Health Service (GHS) has reported that cholera outbreak has hit a record of over

28,000 cases with over 243 deaths from June 2014 to April 2015. The last time Ghana

su�ered such a staggering number of cholera cases was in 1982.

Since this report, the world health Organisation (WHO) and others have provided several

technical supports to �ght cholera outbreak in the country. However, cholera as a disease

is beyond the health sector alone and there is a need for multi-sectorial approach involving

ministry of water and resources, work and housing, department of environmental health

and last but not the least the research institutions to help investigate and educate the

public on cholera outbreak.

Though many mathematical models have been proposed to investigate the complex

epidemic and endemic behavior of cholera in the past, most of these researches has

focused only on the human-human transmission of the disease using SIR cholera model.

On this note, the researchers developed interest in the use of the deterministic model

proposed by Codeco in 2001 which, for the �rst time, explicitly incorporated the

environmental component, i.e. the V.cholerae concentration in the water supply (denoted

by B), into a regular SIR system to form a combined human-environment (SI-B)

epidemiological model. This model enables a careful study of the complex interaction

between human hosts and environmental pathogen towards better understanding the

cholera transmission mechanism. There is also the need to investigate the use of fractional

order di�erential equations instead of an ordinary di�erential equations model especially

because an epidemic like cholera must have memory.
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1.1.2 Objectives

The objectives of the study are;

1. To formulate the dynamics of fractional-order Codeco cholera model

2. To solve a fractional-order Codeco cholera model by means of Atanackovic and

Stankovic numerical method and Runge-Kutta fourth order method.

3. To use simulations to study the behavior of cholera at the disease free equilibrium

state compared to the endemic state as well as under various scenarios.

1.1.3 Methodology

In the study, the researcher intends to investigate a fractional-order Codeco cholera model

by means of an e�cient (Atanackovic and Stankovic) numerical method, based on an

idea of transforming the proposed model to a system of ordinary di�erential equations

with initial conditions by using the well-known Runge-Kutta method of fourth order.

All the feasible equilibria for the system will be discussed.

Also, local stability analysis of the cholera model will be carried out by applying the

fractional Routh-Hurwitz criterion. To facilitate the interpretation of the mathematical

results developed for the model; this is investigated by numerical simulations.

Matlab will be involved in the �nal stages to simulate the results. Information is obtained

both from the internet and the library for the purpose of this work.

1.1.4 Fractional-order Codeco model

This model explicitly incorporated the environmental component, i.e. the V.cholerae

concentration in the water supply (denoted by B), into a regular SIR system to form a

combined human-environment (SI-B) epidemiological model.
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1.1.5 Justi�cation

The study investigates the complex epidemic and endemic behavior of cholera on the

fact that cholera outbreak recurs yearly in Africa killing thousands and sickening many

more. Cholera has become a signi�cant public health burden in Africa but this has been

eliminated from industrialized countries by water and sewage treatment over a century

ago. A �erce cholera epidemic has hit Ghana in 2014, killing over 243 people despite all

e�orts to curb it. The last time Ghana su�ered such a staggering number was in 1982.

Recently, there has been a call from the government of Ghana that the public should

engage in regular clean-up exercises all in an e�ort to control the current cholera

outbreak in this country. Also, several organizations, such as Actionaid, World Health

Organisation (WHO), China Red Cross (CRC), Mind Development Foundation (MDF)

and many others have o�ered both �nancial and technical support in an e�ort to

eradicate, prevent and treat cholera.

However, it is obvious that solutions to outbreaks of communicable disease like cholera

go beyond poor environmental attitude and poor eating habits. Cholera is beyond health

sector alone and there is a need for multi-sectorial approach involving ministry of water

and resources, work and housing, department of environmental health and last but not

the least the research institutions to help investigate and educate the public on cholera

outbreak. With early detection and the timely and e�ective management of cholera cases,

health education and researches on cholera epidemiology will prevent the re-emergence

of cholera in highly endemic settings.

Though, great progress has been made in mathematical models on cholera transmission

dynamics in recent years, little interest has been made on models that incorporate the

environmental component of cholera infection. On this basis, the study will investigate

the cholera dynamics using model developed by Codeco which employed both the

environment-human and human-human infection routes.

Cholera is a global threat to public health and one of the key indicators of social

development, and with the consequent increase in the reporting of cholera cases in yearly,

almost every developing country is facing either an outbreak or the threat of an epidemic.
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Cholera outbreaks bring fear and anxiety in populations and this may have adverse e�ects

on the social and economic structure of communities, thereby blocking developmental

growth in many sectors of a country, (WHO, 2010). In the implementation of

national economic development, aspects of the environment, climate, culture, medical

management, political intention and individual behavioral patterns, as well as researches

on cholera must be considered because they are related. Nevertheless, cholera

will continue thriving in endemic regions, survived by its strong links to maritime

environment, alongside social determinants of poor sanitary conditions, if the situation is

not addressed with much urgency. Also, the use of Atanackovic and Stankovic numerical

method is an e�cient method for solving the fractional-order cholera model equations

and this will bring analytically to the �oor level better understanding cholera outbreak

and its dynamics.

1.1.6 Thesis Organisation

This thesis is made up of �ve (5) chapters; chapter one deals with the introduction of the

study. Here, detailed explanations and discussions on cholera is given, key words in the

title of the thesis are all well explained. This chapter also talks about the purpose and

justi�cation of the study. In chapter two is the relevant literature review of the study,

this section review relevant previous studies done by others in the past either published

or not. Come next is chapter three which contains the methodology of this work, here,

Codeco cholera model and an e�cient numerical (Atanackovic and Stankovic) method is

well discussed. Finally in this section the well-known Runge-Kutta of order fourth is used

to solve the obtained ordinary di�erential equations. Next is the chapter four where the

given model is studied numerically and results, �ndings and discussions are presented.

And the �fth and last chapter of this work talks about conclusion and recommendation.

That is, whether or not the topic is properly dealt with and the outlined objectives

achieved.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we reviewed the work of other researchers related to the topic.

2.2 Literature Relevant to this thesis

Most mathematical modeling of infectious diseases has been restricted to the use of a

system of integer-order ordinary di�erential equations. But of late, fractional calculus has

been widely applied in many �elds, for instance many mathematicians and researchers

have tried to use fractional calculus to model real life process.

2.3 Literature on Mathematical models

According to Das and De (2000), diseases like cholera (+ve) and non-choleric diarrhoea

break out regularly in greater Calcutta and occasionally in epidemic form. It is

interesting to note that in the classical susceptible-infected removal (SIR) models for

infectious diseases, the epidemic can persists only if the susceptibles are being supplied

steadily; for example, through birth and immigration. Such are the cases which occur

in this part of west Bengal, the city areas of Calcutta and its neighborhood. Therefore,

it is an obvious reason to study epidemic disease for this with such a mathematical

model. Within this framework of SIR epidemic model with time-dependent recovery rate,

the time-behaviour of infectives for cholera (+ve) and non-choleric diarrhoea has been

studied. Here, the population of greater Calcutta has been considered. The infectivity

curves for these diseases as computed from this model have been �tted with the data
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available up to 1991 and have been extrapolated up to 2000 years. The steady number

of infectives for the forthcoming year is being predicted here.

Leah (2006) studied the patterns of infection of cholera in a human population and

understood what factors in�uence transmission of the disease as well as the dynamics of

the bacteria in their aquatic environment. In this dissertation, he explore the dynamics

of cholera on three scales. First, Leah introduced a fairly simple model for cholera

in a human population coupled to an environmental reservoir of bacteria. This model

demonstrates the need to understand more fully how V. cholerae survives and evolves in

the aquatic environment. Next, Leah explored the life histories of bacteria, in particular

how aging and environmental factors in�uence bacterial �tness. Finally Leah examined

the implications of various types of inter-cellular interactions during surface colonization

for the structure and composition of bacterial communities using an individual based

model, as well as examining under what conditions living in communities of various sizes

would be optial.

Mark et al, (2006) researched on the epidemiological and environmental observations of

a cholera outbreak in Dhaka, Bangladesh, suggest that lytic bacteriophage speci�c for

V. cholerae may limit the severity of cholera outbreaks by killing bacteria present in

the reservoir and in infected individuals. To quantify this idea and generate testable

hypotheses, they analyzed a mathematical model that combines the epidemiology of

cholera with the population dynamics of the bacteria and phage. Under biologically

reasonable conditions, they found that vibrio phage can ameliorate cholera outbreaks.

If phage predation limits bacterial density before an outbreak, a transient reduction in

phage density can disrupt that limitation, and subsequent bacterial growth can initiate

a cholera outbreak. Our analysis also suggests that either bacteria in the environmental

reservoir are hyper infectious or most victims ingest bacteria ampli�ed in food or drinking

water contaminated by environmental water carrying few viable V. cholerae. Their

theoretical results make a number of empirically testable predictions.

Richard et al, (2008) reported that there are numerous examples of human pathogens

which persist in environmental reservoirs while infectious outbreaks remain rare. In this
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manuscript, they consider the dynamics of infectious diseases for which the primary

mode of transmission is indirect and mediated by contact with a contaminated reservoir.

they evaluate the realistic scenario in which the number of ingested pathogens must be

above a critical threshold to cause infection in susceptible individuals. This minimal

infectious dose is a consequence of the clearance e�ect of the innate immune system.

Infected individuals shed pathogens back into the aquatic reservoir, indirectly increasing

the transmutability of the pathogen to the susceptible. They devised two new measures

of how likely it is that an environmentally persistent pathogen will cause an outbreak:

(i) the minimum fraction of infected individuals; and (ii) the minimum �uctuation size

of in-reservoir pathogens. They also �nd an additional control parameter involving the

shedding rate of infected individuals, which they term the pathogen enhancement ratio,

which determines whether outbreaks lead to epidemics or endemic disease states. Their

model predicts that in the case of waterborne diseases, suppressing the pathogen density

in aquatic reservoirs may be more e�ective than minimizing the number of infected

individuals.

According to Yibeltal(2009),Since 2005, the reoccurrence of cholera is linked with the

ever-increasing size of the population living in unsanitary conditions. For instance, from

August 2008 to February 2009, more than 79,000 cases and 3,700 deaths were reported

from a single country Zimbabwe. Regardless of the advancement of medical science

and health care service, cholera remains a global threat to public health and one of the

key indicators of social development. While the disease is not an issue in the developed

nations where minimum hygiene standards are met, it still remains a threat in developing

countries. In this essay, a new mathematical model for cholera transmission dynamics

was developed and rigorously analysed. Historical pandemics of the disease, transmission

means and global impact of the disease and control mechanisms of cholera disease were

brie�y discussed. Since the survival rate of the vibrio cholerae is often a function of time

delay, the researcher incorporated a time delay in the V. cholerae population. He found

a threshold condition, Ro, in terms of the parameters of the model. It is shown that the

disease free equilibrium is locally and globally stable for no time delay. Furthermore, for
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the case with time delay τ > 0, it was shown that a disease free equilibrium is globally

asymptotically stable if Ro < 1. The model has an endemic equilibrium when Ro > 1 .

Bertuzzo et al, (2009) generalized a recently proposed model for cholera epidemics

that accounts for local communities of susceptibles and infectives in a spatially explicit

arrangement of nodes linked by networks having di�erent topologies. The mathematical

tools used are borrowed from general schemes of reactive transport on river networks

acting as the environmental matrix for the circulation and mixing of waterborne

pathogens. Using the di�usion approximation, they analytically derived the speed of

propagation for travelling fronts of epidemics on regular lattices (either one-dimensional

or two-dimensional) endowed with uniform population density. Power laws are found

that relate the propagation speed to the di�usion coe�cient and the basic reproduction

number. they numerically obtained the related, slower speed of epidemic spreading for

more complex, yet realistic river structures such as Peano networks and optimal channel

networks. The relevance of their results lie in the major di�erences potentially arising

between the predictions of spatially explicit models and traditional compartmental

models of the susceptible infected recovered (SIR) like type. This suggest that in many

cases of real-life epidemiological interest, time scales of disease dynamics may trigger

outbreaks that signi�cantly depart from the predictions of compartmental models.

Jianjun et al, (2010) reported that recent years have seen a strong trend of cholera

outbreaks in developing countries, including, among others, those in Kenya (2010),

Vietnam (2009), Zimbabwe (2008/2009), Iraq (2008), Congo (2008) and India (2007).

According to the World Health Organization (WHO), �there are an estimated 3 - 5

million cholera cases and 100,000 - 120,000 deaths due to cholera every year�, among

which only a small portion were o�cially reported because of poor surveillance and

incomplete records. Due to its huge impacts on public health and social and economic

development, cholera has been a subject of extensive studies in clinical, experimental and

theoretical �elds .Here, Conducted rigorous stability analysis for the well-known cholera

model proposed by Codeco using theory of monotone dynamical systems, they proved

that the endemic equilibrium, when it exists, of the model is globally asymptotically
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stable, implying the persistence of the disease in the absence of interventions. They

then modi�ed Codeco's model by incorporating various control strategies, and study the

subsequent dynamics. Jianjun et al found that with strong control measures, the basic

reproduction number will be reduced below one (1) so that the disease-free equilibrium is

globally asymptotically stable. With weak controls, instead, a unique and globally stable

endemic equilibrium would still occur, though at a lower infection level. The analytical

predictions were con�rmed by numerical simulation results.

Andrews and Badu (2011) O�cial projections of the cholera epidemic in Haiti have

not incorporated existing disease trends or patterns of transmission, and proposed

interventions have been debated without comparative estimates of their e�ect. They used

a mathematical model of the epidemic to provide projections of future morbidity and

mortality, and to produce comparative estimates of the e�ects of proposed interventions.

They designed mathematical models of cholera transmission based on existing models

and �tted them to incidence data reported in Haiti for each province from Oct 31,2010,

to Jan 24,2011. They then simulated future epidemic trajectories from March 1 to

Nov 30,2011, to estimate the e�ect of clean water, vaccination, and enhanced antibiotic

distribution programmes. They also projected 779,000 cases of cholera in Haiti and

11,100 deaths between March 1 and Nov 30,2011. The researchers expected that a 1%

per week reduction in consumption of contaminated water would avert 105,000 cases

and 1,500 deaths. They predicted that the vaccination of 10% of the population, from

March 1, will avert 63000 cases and 900 deaths. The proposed extension of the use of

antibiotics to all patients with severe dehydration and half of patients with moderate

dehydration is expected to avert 9,000 cases and 1,300 deaths.

Wang et al, (2011) researched that Cholera is a severe water-borne infectious

disease caused by the bacterium Vibrio cholerae. The dynamics of cholera involve

multiple interactions between the human host, the pathogen, and the environment

which contribute to both direct human-to-human and indirect environment-to-human

transmission pathways. In an e�ort to gain deeper understanding of the complex

dynamics of cholera, several mathematical models have been published. In this paper,
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they presented and analyzed a cholera epidemiological model with control measures

incorporated. This model is extended from the one proposed by Mukandavire et al in

2008/2009 and included the e�ects of vaccination, therapeutic treatment, and water

sanitation. Equilibrium analysis is conducted in the case with constant controls for both

epidemic and endemic dynamics. Optimal control theory is applied to seek cost-e�ective

solution of multiple time-dependent intervention strategies against cholera outbreaks.

The results in this study showed that the vaccination cost is kept the same as before.They

again conducted simulations for the optimal strategy of the three controls combined

and that for vaccination only. The results are presented with the reduced costs for

therapeutic treatment. Finally it was observed that both the strength and e�ective

period of the optimal vaccination rate are decreased. And the optimal treatment rate

shows a signi�cant increase to achieve the optimal balance between controls.

According to Mukandavire et al, (2011), beginning in August 2008, a major cholera

epidemic occurred in Zimbabwe, with 98,585 reported cases and 4,287 deaths. The

dynamics of such outbreaks, particularly in non-estuarine regions, are not well

understood. They explored the utility of mathematical models in understanding

transmission dynamics of cholera and in assessing the magnitude of interventions

necessary to control epidemic disease. Weekly data on reported cholera cases were

obtained from the Zimbabwe Ministry of Health and Child Welfare (MoHCW) for the

period from November 13, 2008 to July 31, 2009. A mathematical model was formulated

and �tted to cumulative cholera cases to estimate the basic reproductive numbers and

the partial reproductive numbers from all 10 provinces for the 2008/2009 Zimbabwe

cholera epidemics. Estimated basic reproductive numbers were highly heterogeneous,

ranging from a low value of just above unity to 2.72. Partial reproductive numbers were

also highly heterogeneous, suggesting that the transmission routes varied by province;

human-to-human transmission accounted for 41-95% of all transmission. Their models

suggest that the underlying patterns of cholera transmission varied widely from province

to province, with a corresponding variation in the amenability of outbreaks in di�erent

provinces to control measures such as immunization.
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According to Tuite et al, (2011), Haiti is the poorest country in the Western Hemisphere

, is in the midst of a cholera epidemic that has reportedly killed more than 4,000

people and infected about 217,000 (as of 30 January 2011). Approximately one half

of those infected have been hospitalized and case-fatality rates in both community and

hospital settings have been approximately 2%. With respect to epidemic spread as a

function of population mass and distance. They used a gravity model to accurately

predict the sequence and timing of regional cholera epidemics in Haiti by using publicly

available data. They also used a model based on the best available data and calibrated

to reproduce the initial reported epidemic curve for Haiti and then evaluate the probable

time course of Haiti's cholera epidemic in the absence of e�ective intervention and explore

the potential e�ects of competing and complementary control strategies, including

vaccine distribution and provision of clean water. The model projects that the epidemic

is likely to last well into 2011 and suggest that adaptive strategies for vaccination may

provide a modest reduction in morbidity and mortality in the economically challenged

country.

Saeed et al, (2011) reported that Lytic bacteriophages are hypothesized to contribute

to the seasonality and duration of cholera epidemics in Bangladesh. In this study, they

isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera

patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Their results

indicated that a single novel bacteriophage type, designated ICP1 (for the International

Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all

stool samples from cholera patients, while two other bacteriophage types, one novel

(ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae

family and has a 126-kilobase genome comprising 230 open reading frames. Comparative

sequence analysis of ICP1 and related isolates from this time period indicated a high

level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients

and the �nding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1

receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic

V. cholerae O1.
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According to Manju et al, (2012), Epidemic models have been studied by several

researchers [Anderson et al. (1979), Bailey (1975) and Hsu et al. (2004)]. The e�ects

of the presence of bacteria and carriers in the environment on the spread of infectious

disease have not been studied using mathematical models [Gonzalez-Guzmem (1989)].

Hethcote (1976) discussed an epidemic model in which the carrier population is assumed

to be constant. Although, Codeco et al. (2006) have discussed �Trends in Cholera

Epidemiology� and Ghose et al. (2005) and Shukla et al. (2006) have studied the spread

of infectious diseases with bacteria in the environment they have ignored the role of

carriers present in the environment. In this paper, a nonlinear delayed mathematical

model with immigration for the spread of infectious disease cholera with carriers in the

environment was proposed and analyzed. The model is analyzed by stability theory of

di�erential equations and computer simulation. This study shows that the spread of

the infectious disease cholera increases due to growth of carriers in the environment and

disease becomes more endemic due to immigration.

Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial

goals of public health policies, but pose challenging problems because infection patterns

are in�uenced by spatial structure and temporal asynchrony.According to Marino et

al, (2012), Networked connectivity models, describing the interplay between hydrology,

epidemiology, and social behavior sustaining human mobility, thus prove to be key tools

for emergency management of waterborne infections. Here we show that the requirement

that all the local reproduction numbers R0 be larger than unity is neither necessary nor

su�cient for outbreaks to occur when local settlements are connected by networks of

primary and secondary infection mechanisms. They showed that geographical outbreak

patterns in complex environments are linked to the dominant eigenvector and to spectral

properties of G0. Tests against data and computations for the 2010 Haiti and 2000

KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation

networks, demonstrate that eigenvectors of G0 provide a synthetic and e�ective tool for

predicting the disease course in space and time.

Hailegiorgis and Andrew (2012) wrote that the displacement of people in times of crises
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represents a challenge for humanitarian agencies. This challenge is especially acute within

developing countries, which home the majority of displaced people. Within this paper,

they demonstrated a spatially explicit agent based model that explores the spread of

cholera in the Dadaab refugee camps. Poor sanitation and housing conditions contribute

to frequent incidents of cholera outbreaks. They modeled the spread of cholera by

explicitly representing the interaction between humans (host) and their environment, and

the spread of the epidemic using Susceptible-Exposed-Infected-Recovered (SEIR) model.

Infected agents spread cholera bacteria through excretion of faeces to the environment

and this can then be spread throughout the system. Results from the model showed that

the spread of cholera grows radially from contaminated water sources. This modeling

e�ort also highlights the potential of agent based modeling to explore the spread of

cholera in a humanitarian context and its impact on service provision.

According to Cheng and Xiuxiang,(2012),Over the last decade, quite a few mathematical

models have been published to investigate the transmission dynamics of cholera.

For example, Codeco in 2001 proposed a model that explicitly accounted for the

environmental component, i.e. the V. cholerae concentration in the water supply, into

a regular SIR epidemiological model. In this paper, They conducted a careful global

stability analysis for a generalized cholera epidemiological model. Cholera is a water

and food-borne infectious disease whose dynamics are complicated by the multiple

interactions between the human host, the pathogen, and the environment. Using

the geometric approach, they rigorously proved the endemic global stability for the

cholera model in three-dimensional (when the pathogen component is a scalar) and

four-dimensional (when the pathogen component is a vector) systems. This work uni�es

the study of global dynamics for several existing deterministic cholera models.

In 2005,131,943 cases including 2,272 deaths have noti�ed from 52 countries. Liman et

al,( 2012) said the year was marked by a particular signi�cant series of outbreaks in West

Africa, which a�ected 14 countries and accounted for 58% of all cholera cases world-wide

(WHO 2006). In the same year Nigeria had 4,477 cases and 174 deaths. There was

reported case of cholera in 2008 in Nigeria in which 429 death out of 6,330 cases. In this
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essay, a new mathematical model (S, I, R and B) for cholera transmission dynamics is

developed and analyzed. Transmission means, global impact of the disease and control

mechanisms of cholera disease are brief discussed. They established the existence of

equilibrium states and analyzed the disease free equilibrium state for stability using

linearization theorem. The disease died out when the rate at which people are exposed

to contaminated water and food, and the contribution of those infected with cholera to

concentration of V.cholerae are checked. i.e T < 0 and D > 0 had given disease- free

state to be asymptotically stable.

Motassem et al, (2013) wrote in their paper that recent years have seen a strong trend

of cholera outbreaks in developing countries, including Haiti (2010/2011), Cameroon

(2010/2011), Kenya (2010), Vietnam (2009), Zimbabwe (2008/2009), Iraq (2008), the

Democratic Republic of Congo (2008) and India (2007). Due to its huge impact on

public health, and social and economic development, cholera has been the subject of

extensive studies in clinical, experimental and theoretical �eld. Haiti o�ers the most

recent example of the tragedy that can befall a country and its people where cholera

striked. While cholera has been a recognized disease for two centuries, there is no

strategy for its e�ective control. They formulated and analyzed a mathematical model

that includes two essential and a�ordable control measures: water chlorination and

education. They calculated the basic reproduction number and determine the global

stability of the disease-free equilibrium for the model without chlorination. They used

Latin Hypercube Sampling to demonstrate that the model is most sensitive to education.

The researchers also derived the minimal e�ective chlorination period required to control

the disease for both �xed and variable chlorination. Numerical simulations suggest that

education is more e�ective than chlorination in decreasing bacteria and the number of

cholera cases.

Many mathematical models have been proposed to investigate the complex epidemic and

endemic behavior of cholera. The earliest mathematical model was proposed by Capasso

and Paveri-Fontana to study a cholera epidemic occurred in the Mediterranean in 1973.

Codeco in 2001 extended the work in and explicitly accounted for the role of the aquatic
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reservoir in cholera dynamics. In this work, Javidi and Ahmed (2013) investigated the

dynamical behavior of a fractional order cholera model. All the feasible equilibria for

the system were obtained and the conditions for the existence of interior equilibrium

were all determined. Local stability analysis of the cholera model was studied by using

the fractional Routh-Hurwitz stability conditions. Results in this study indicate the

potential of fractional-order cholera models to cope with modern epidemics.

Cholera is said to be the epidemic that urge health education in the early nineteenth

century, due to its contagious nature which if allow deteriorating, it has no respect to class

of people, and it is still maintaining this threatening gesture. Mathematical modeling

being the main stay of epidemiological theory is crucial to apply in studying cholera

dynamics because ability to model disease dynamics can be used to forecast the danger of

a major epidemic. Outbreaks of cholera occur suddenly, if not controlled, can spread like

wild bush �re. In this work,Sani et al, (2013) formulated a deterministic mathematical

model of cholera from some modi�cations of previous cholera models. Analysis was

performed on the Jacobian matrix assuming zero Vibrio Cholerae environments. The

basic reproduction number R0 was obtained as k(γ+τ)(g−l+ω)
εα

and the critical number or

threshold S0 was also obtained as εαp
k(γ+τ)(g−l+ω)

. These two values are used to predict

occurrence of cholera outbreak in a community. Zero equilibrium state is stable when

R0 < 1 and unstable when R0 > 1 .

Ochoche (2013) researched that Cholera is generally a disease of the poor, a�ecting

regions that lack a heightened sense of hygiene and access to safe drinking water. In

this research, a mathematical model for the control of cholera transmission dynamics

using water treatment as a control strategy is proposed. The model is designed by

dividing the system into compartments leading to corresponding di�erential equations.

The model is built on the assumption that cholera is contracted only through the

ingestion of contaminated water. Conditions are derived for the existence of the

disease free and endemic equilibria. They proved that the disease free equilibrium is

locally asymptotically stable under prescribed conditions on the given parameters. This

means that cholera can be eradicated under such conditions in �nite time. Numerical
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simulations are carried out using parameter values from published data to investigate the

e�ect of transmission parameters on the dynamics of the infection. They simulated cases

with no control, weak and strong control. Their results showed that water treatment

is an e�ective method of controlling cholera however cholera cases will continue to be

present in the population if the contribution of the each infected person to the aquatic

environment and the contact rate with contaminated water is high.

Cholera remains a public health threat in many countries around the world where

outbreaks occur sporadically and punctuate periods of disease extinction or fade-out.

This epidemic behaviour is characterized by dramatic variation in the size of individual

outbreaks including large intermittent and unpredictable events. According to Manojit

et al,(2013), Cholera is on the rise globally, especially epidemic cholera which is

characterized by intermittent and unpredictable outbreaks that punctuate periods of

regional disease fade-out. These epidemic dynamics remain however poorly understood.

Here, they examined records for epidemic cholera over both contemporary and historical

time lines, from Africa (1990/2006) and former British India (1882/1939). They found

that the frequency distribution of outbreak size is fat-tailed, scaling approximately as

a power-law. This pattern which shows strong parallels with wild�res is incompatible

with existing cholera models developed for endemic regions, as it implies a fundamental

role for stochastic transmission and local depletion of susceptible hosts. Application

of a recently developed forest-�re model indicates that epidemic cholera dynamics are

located above a critical phase transition and propagate in similar ways to aggressive

wild�res. These �ndings have implications for the e�ectiveness of control measures and

the mechanisms that ultimately limit the size of outbreaks.

Finger et al, (2014) wrote that Mathematical models of cholera dynamics can

not only help in identifying environmental drivers and processes that in�uence

disease transmission, but may also represent valuable tools for the prediction of the

epidemiological patterns in time and space as well as for the allocation of health care

resources. Cholera outbreaks have been reported in the Democratic Republic of the

Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east
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of the country repeatedly during the last decades. Here they employed a spatially

explicit, inhomogeneous Markov chain model to describe cholera incidence in eight

health zones on the shore of the lake. The e�ect of human mobility is also modeled

mechanistically. The researchers tested several models on a multiyear data set of reported

cholera cases. The best fourteen models, accounting for di�erent environmental drivers,

and selected using the Akaike information criterion, are formally compared via proper

cross validation. Among these, the one accounting for seasonality, El Niño Southern

Oscillation, precipitation and human mobility outperforms the others in cross validation.

Some drivers (such as human mobility and rainfall) are retained only by a few models,

possibly indicating that the mechanisms through which they in�uence cholera dynamics

in the area will have to be investigated further.

Crooks and Atesmachew (2014) in their paper reported that Cholera is an intestinal

disease and is characterized by diarrhea and severe dehydration. While cholera has

mainly been eliminated in regions that can provide clean water, adequate hygiene and

proper sanitation; it remains a constant threat in many parts of Africa and Asia. Within

this paper, they developed an agent-based model that explores the spread of cholera in

the Dadaab refugee camp in Kenya, Poor sanitation and housing conditions contributed

to frequent incidents of cholera outbreaks within this camp. For example, 10,000

Rwandan refugees died from cholera in 1994 (Waldor and Chairat,2010). They modeled

the spread of cholera by explicitly representing the interaction between humans and

their environment, and the spread of the epidemic using Susceptible-Exposed-Infected-

Recovered model. Results from the model show that the spread of cholera grows radially

from contaminated water sources and seasonal rains can cause the emergence of cholera

outbreaks. This modeling e�ort highlights the potential of agent-based modeling to

explore the spread of cholera in a humanitarian context .

According to Sani et al,(2014), in recent years, cholera outbreaks have been on increase,

there are more than 250,000 cases of cholera each year worldwide. Factors that in�uence

cholera outbreak include �ood, draught and river height. Codeco (2001) `'Flooding

and draught are likely to a�ect cholera dynamic in a complex way. Flooding washes
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contaminated faeces and sewage into the river. It can also disrupt water distribution

service and aggravate hygiene conditions. Draught on the other hand shortens the

availability of potable water, aggravates hygiene condition, by increasing the number of

people sharing the same water supply and may increase per capita water contamination�.

The dynamics of cholera is analysed using a system of four di�erential equations

with two control measures τ and ω, which are; therapeutic treatment and sanitary

measures respectively. A zero Vibrio Cholerae bacteria environment was �rst assumed

and analysed establishing disease free equilibrium state (DFE), which is interpreted

as R0 < 1. Epidemic equilibrium state assumed as R0 > 1 was then obtained after

analysing the non-zeroVibrio Cholerae bacteria environment. This established the fact

that; measures aimed at reducing Vibrio Cholerae bacteria in the environment will in

turn reduce or control cholera.

Limited access to safe water and sanitation resources is common in developing countries,

leaving them vulnerable to cholera outbreaks.Posny and Wang (2014) wrote that Cholera

is an intestinal infection caused by ingesting food or water contaminated with the

bacterium Vibrio cholerae. If left untreated, an infected individual may become severely

dehydrated and die within several days. Besides the transmission route based on

environment�human interaction, the human-to-human direct transmission is also found

important in shaping a cholera epidemic. A recent cholera outbreak in Zimbabwe, a

land-locked country in Africa, during 2008/2009 underscores such a direct transmission

pathway. They proposed a deterministic compartmental model for cholera dynamics

in periodic environments. The model incorporates seasonal variation into a general

formulation for the incidence (or, force of infection) and the pathogen concentration.

The basic reproduction number of the periodic model is derived, based on which a careful

analysis is conducted on the epidemic and endemic dynamics of cholera. Several speci�c

examples are presented to demonstrate this general model, and numerical simulation

results are used to validate the analytical prediction.

In Nigeria, outbreaks of the disease have been occurring with increasing frequency since

the �rst outbreak in modern times in 1970 (Epstein, 1993 Osemwenkhae et al, 2009).
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Since then, cholera has continued to cause high mortality in humans, in Nigeria. The

year 1999 saw the highest number of reported cases (WHO, 2009). Since then, cholera

cases have been persistent in the country. Recently, in Kano, on September 22nd 2008,

the United Nations o�ce for the coordination of Humanitarian A�airs unit reported that

cholera outbreak killed 97 persons in Kano. In this work two mathematical models that

described the dynamics of cholera in Nigeria were presented. The �rst model examined

the bacteria population using a logistic de�nition for its growth in the expected habitat

and their interaction with the susceptible population. The second model is an optimal

control model that includes two time- dependent control functions with one minimizing

the contact between the susceptible and the bacteria and the other, the population of the

bacteria in the water. The results from the numerical solutions of the models presented

showed that increasing the susceptible pool and the infected population above some

threshold values were responsible for epidemic cholera. It also showed that the di�erence

between the growth rate (r) and the loss rate (n) of the bacteria plays a huge role in the

outbreak as well as the severity of the disease according to Isere et al,(2014).

In 2005, Nigeria had 4,477 cases and 174 deaths. In 2008, Nigeria recorded 429 deaths

out of 6,330 cases. Furthermore, in 2009, Nigeria reported 13,691 cases and 431 deaths

(WHO, 2012). In summary, the United Nation (UN) unit, reports: �despite Nigeria's

oil wealth, more than 70% of the country's 126 million people live below the poverty

line and cholera outbreaks are common in poor urban areas which lack proper sanitation

and clean drinking water� (UN O�ce for the Coordination of Humanitarian A�airs

Integrated Regional Information Networks (IFIN), 2005). In this research, Sulayman

et al,(2014) presented and analyzed a mathematical model for the control of cholera

in Nigeria with modi�cations as compared to previous cholera models. Their model

incorporates treatment, water hygiene and environmental sanitation in curtailing the

disease. A system of ordinary di�erential equations is used. Numerical simulation of

the full model using maple shows that improvement in treatment, water hygiene and the

environmental sanitation o�ered to about �fty percent is e�ective to eradicate cholera

epidemic.
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2.4 Literature on Statistical models

Erin et al, (2002) reported that recently, the role of the environment and climate in

disease dynamics has become a subject of increasing interest to scientists. Much of the

interest has been stimulated by the growing problems of antibiotic resistance among

pathogens, emergence and/or reemergence of infectious diseases worldwide. First, the

disease has a historical context linking it to speci�c seasons and biogeographical zones.

In addition, the population dynamics of V. cholerae in the environment are strongly

controlled by environmental factors, such as water temperature, salinity, and the presence

of copepods, which are, in turn, controlled by larger-scale climate variability. In this

review, the association between plankton and V. cholerae that has been documented over

the last 20 years is discussed in support of the hypothesis that cholera shares properties

of a vector-borne disease. In addition, a model for environmental transmission of cholera

to humans in the context of climate variability is presented. The cholera model provides

a template for future research on climate-sensitive diseases, allowing de�nition of critical

parameters and o�ering a means of developing more sophisticated methods for prediction

of disease outbreaks.

Chingayipe (2008) wrote that in Malawi, outbreaks of varying intensities have occurred

each year especially during rainy season. Like other districts in the country, Chiradzulu

has been experiencing cholera outbreaks notably since 2001/2002 rainy season with

high case fatality rates of 4.5%. Despite the e�orts to control cholera it has caused

unnecessary panicking among the communities and health workers whenever it strikes

which has led to loss of lives. This was a cross sectional study using both qualitative

and quantitative methodologies. A total of 150 households were sampled in four

villages from two traditional authorities. The traditional authorities (TAs) were selected

randomly depending on their distances from the main hospital. The study suggests

that about 70% of the respondents had knowledge on cholera. In villages where cholera

occurred frequently people were more knowledgeable than where it seldom occurred.

Inadequate and mistimed messages due to lack of commitment of health workers to guide
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communities and cultural beliefs were the factors which contributed to poor detection of

the disease.

According to Said (2006), Cholera made an unforeseen appearance on the eastern coast of

South Africa in the province of KwaZulu-Natal (KZN) in August 2000. Having started

from the more urban centres of the coastal region of the province, cholera proceeded

unabated to the interior of the province where no community was spared from the

scourge. Despite prompt medical intervention, health education and media awareness

campaigns, cholera continued to spread throughout KZN. Thus GIS was used as a

research tool to facilitate the comparison of the disease trends and risk factors on a spatial

level in order to determine the possible role(s) played by the di�erent environmental and

socio-economic drivers. At the spatial level, the characteristics of the epidemic as revealed

by the GIS maps and spatial modeling highlighted possible relationships between the

incidence of cholera and the various socio-economic and climatic variables. The results

give an altogether holistic portrayal of the cholera epidemic from all perspectives and

also supported the hypothesis that cholera is a function of social and environmental

factors. Spatial modeling o�ered more insight that the statistically supported climatic

and socio-economic aspects were indeed important factors in guiding cholera outbreak

predictions in the future.

In Zimbabwe, gradual economic collapse over the last 10 years culminated in the creation

of a complex humanitarian emergency state in 2008, with massive loss of health and

water infrastructure. This situation put the country at risk for one of the largest and

most severe cholera outbreaks in the past 10 years. Missing data was an issue in the

analysis, and imputation methods were compared and contrasted in the development of

�nal logistic and multiple linear regression models. Despite the limited availability of

timely point-of-use water treatment in the Zimbabwean cholera outbreak, a characteristic

inherent to many response e�orts, there was suggestive but inconclusive evidence that

water quality at the source may reduce cholera morbidity by itself.Here, David (2009)

paper has important implications not only for �eld outbreak data methodology, but for

water and sanitation promotion as well. While simple imputation methods seem to be
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the norm in outbreaks in the �eld, there was value in multiple imputation methods for

improving the validity and precision of the model estimates.

The cholera epidemic has been a huge burden in the world in recent times, with

the disease still thriving with much energy in Asia, Africa and South America. The

occurrence and severity of cholera outbreaks in endemic areas is greatly enhanced by

human behaviour with regards to the practice of healthy hygiene, sanitation and health

education. However, information �ow in the delivery of health education on the practice

of healthy hygiene and sanitation in cholera endemic regions, during or prior to cholera

outbreaks has been a great handicap in the prevention and control of cholera. In this

regard, a study protocol has been designed to determine the barriers to the practice

of healthy hygiene and sanitation by residents in Douala, a cholera-endemic region in

Cameroon. The proposed study was done in two phases. The �rst phase was knowledge,

attitude and practice (KAP) study to measure the knowledge, attitudes and practices

of the residents in response to health education on cholera prevention and control.

The second phase was qualitative study to explore unclear concepts or phenomenon

to understand particular aspects of actions and behaviour, while paying attention to

the social mechanisms in the population that lead to risk behaviour. The KAP study

will provide �rst-hand information about possible disease determinants, leading to the

formulation of a hypothesis that can be tested using an analytical study design. The

results of this study will be useful for planning health care interventions on cholera

prevention and control according to Njol (2010).

A recent study on cholera reveals that local environmental parameters are intensely

associated with cholera dynamics. In particular, increase in ocean chlorophyll

concentration; sea surface temperature and river height play a signi�cant role on the

occurrence of cholera and the magnitude of the epidemic. Cholera, a man-environment

disease is transmitted through drinking water which is contaminated from improper

treatment of sewage. Further, it may be noted that if the degree of infectivity increases,

sociological or other mechanisms which tend to saturate the e�ect that a large number

of infectives may have often come into play. Therefore they are interested in exploring

26



the e�ects of environmental �uctuations by considering the saturation incidence term.

The study focuses on randomly �uctuating phenomena of cholera deterministic model

by incorporating white noise stochastic perturbation. For the deterministic model,

stability of the equilibria and persistent aspects of population are discussed. Variances

of population are evaluated for the model system at the endemic equilibrium. They

concluded from the study that the inclusion of environmental �uctuation does not change

substantially the dynamical behaviour of the system although it induces some initial

random oscillations according to Gazi et al, (2010).

Global cholera incidence is increasing, particularly in sub-Saharan Africa. Reyburn

et al, (2011) examined the impact of climate and ocean environmental variability on

cholera outbreaks, and developed a forecasting model for outbreaks in Zanzibar. Routine

cholera surveillance reports between 1997 and 2006 were correlated with remotely and

locally sensed environmental data. A seasonal autoregressive integrated moving average

(SARIMA) model determined the impact of climate and environmental variability on

cholera. The SARIMA model shows temporal clustering of cholera. A 10C increase

in temperature at 4 months lag resulted in a 2-fold increase of cholera cases, and an

increase of 200 mm of rainfall at 2 months lag resulted in a 1.6-fold increase of cholera

cases. Temperature and rainfall interaction yielded a signi�cantly positive association

(P < 0.04) with cholera at a 1-month lag. These results may be applied to forecast

cholera outbreaks, and guide public health resources in controlling cholera in Zanzibar.

Started in late October 2010, cholera epidemic peaked during January 2011, with

more than 344,000 reported cases and about 5,400 deaths within the period of three

months. Mari et al, (2011) investigated the role of human mobility as a driver for long-

range spreading of cholera infections, which primarily propagate through hydrologically

controlled ecological corridors. They build a spatially explicit model of a disease

epidemic, which is relevant to both social and scienti�c issues. They presented a two-

layer network model that accounts for the interplay between epidemiological dynamics,

hydrological transport and long-distance dissemination of the pathogen Vibrio cholerae

owing to host movement, described here by means of a gravity-model approach. The
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researchers also tested their model against epidemiological data recorded during the

extensive cholera outbreak occurred in the KwaZulu-Natal province of South Africa

during 2000/2001. They showed that long-range human movement is fundamental in

quantifying otherwise unexplained inter-catchment transport of V. cholerae, thus playing

a key role in the formation of regional patterns of cholera epidemics. They also showed

quantitatively how heterogeneously distributed drinking water supplies and sanitation

conditions may a�ect large-scale cholera transmission.

Heidi,(2012) researched that many communities in the Dominican Republic have little

or no access to safe drinking water or sanitation. The recent introduction of cholera

from Haiti further highlights these limitations and their impact on human health.

This research focused on two communities; a rural mountainous village and a peri-

urban batey, which is a settlement community constructed by sugar cane companies

to house primarily Haitian immigrant laborers. Research methods included community

observations, household interviews, and interviews with local leaders. The results showed

two dramatically di�erent types of water access and sanitation. The mountainous village

had regular access to local springs, consistent piped water, functioning latrines, and low

population density. Community members voiced no dissatisfaction with their water

system or waste disposal and reported no diarrheal disease. In contrast, the batey

reported chronic diarrhea disease, high population density, and inconsistent access to safe

water or latrines. Residents in the batey voiced frustration with the water infrastructure,

with their inability to mobilize as a community, and with government run water services.

In 2005, there were 31,719 cholera cases, with 458 deaths in the Republic of Senegal.

Guillaume et al,(2012) retrospectively investigated the climate origin of the devastating

�oods in mid-August 2005, in the Dakar Region of Senegal and the subsequent outbreak

of cholera along with the pattern of cholera outbreaks in three other regions of that

country. They compared rainfall patterns between 2002 and 2005 and the relationship

between the sea surface temperature (SST) gradient in the tropical Atlantic Ocean

and precipitation over Senegal for 2005. Results showed a speci�c pattern of rainfall

throughout the Dakar region during August, 2005, and the associated rainfall anomaly
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coincided with an exacerbation of the cholera epidemic. Comparison of rainfall and

epidemiological patterns revealed that the temporal dynamics of precipitation, which

was abrupt and heavy, was presumably the determining factor. Analysis of the SST

gradient showed that the Atlantic Ocean SST variability in 2005 di�ered from that of

2002 to 2004, a result of a prominent Atlantic meridional mode. Thus, high resolution

rainfall forecasts at sub seasonal time scales should provide a way forward for an early

warning system in Africa for cholera and, thereby, trigger epidemic preparedness.

The growing number and increased frequency of major cholera outbreaks, especially

in African countries, have heightened concerns about the disease in particular about

its spatial and temporal characteristics and their underlying risk factors.According to

Osei (2010), Cholera is transmitted mainly through contaminated water and food;

however, demographic and geographic factors can predispose inhabitants to infection.

Socioeconomic and environmental factors like environmental sanitation can in�uence

the vulnerability of a population to cholera infection. Here, a steepest downhill path

analysis using a 3D elevation model and refuse dumps location to delineate potential

cholera reservoirs. Using proximity to the potential cholera reservoir as explanatory

variables, statistical models are developed and implemented to assess the e�ects of surface

water pollution on cholera. Finally the results show that the distribution exhibits a

distinct spatial and temporal variation. Such variation is in�uenced by demographic

risk factors like urbanization, overcrowding, migration, sanitation and use of drinking

water. Open space refuse dumps and surface water pollution on cholera are important

environmental risk factors for cholera transmission. Cholera outbreaks can start from

multiple geographical locations that actually have no spatial connection.

Sara et al, (2010) reported an increase in temperatures and changes in patterns of rainfall

as a result of climate change are widely recognized to entail serious consequences for

human health, including the risk of diarrheal diseases. Indeed, there is strong evidence

that temperature and rainfall patterns a�ect the disease pattern. This paper presents

the �rst study that links the incidence of cholera to environmental and socioeconomic

factors and uses that relationship to predict how climate change will a�ect the incidence
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of cholera. Speci�cally, the paper integrates historical data on temperature and rainfall

with the burden of disease from cholera in Tanzania, and uses socioeconomic data to

control the impacts of general development on the risk of cholera. Based on these results

they estimated the number and costs of additional cholera cases and deaths that can be

attributed to climate change by year 2030 in Tanzania. The result shows a signi�cant

relationship between cholera cases and temperature and predicts an increase in the initial

risk ratio for cholera in Tanzania in the range of 23 to 51 percent for a 1 degree Celsius

increase in annual mean temperature.

Since the initial transmission mechanism of Cholera was revealed by John Snow in

1854, the cause and spread of this disease has been under continuous research. Snow's

study showed how disease incidences can be linked to a source based on the spatial

distribution of the patients. However, Snow's work did not address the question of

di�usion mechanisms. The predominant transmission mechanism of Cholera is via the

fecal-oral route but in recent years several scientists have pointed toward a number of

other transmission mechanisms that might contribute to the prevalence of the disease.

The model presented in this research is a geographically explicit agent-based Cholera

simulation. It is a micro scale, hydrology-driven model that di�ers from already existing

ones in that it consists of four di�erent sub-models: (i) a hydrological model for the

transport of the V. cholerae pathogen (ii) an epidemic model (iii) a house �y model for

modeling �ies as disease carriers (iv) a human interaction model. In the study, Ellen-

Wien et al, (2011) presented the conceptual design and the initial �ndings of the model.

Findings here include the comparison of di�erent transmission mechanisms.

2.5 Literature on Biological models

During spring and late summer in Bangladesh, phytoplankton blooms occur, followed

by zooplankton, with heaviest blooms occurring in September and October. Each year,

the seasonal zooplankton blooms, in turn, are followed by cholera outbreaks. It has

been determined that a During spring and late summer in Bangladesh, phytoplankton

blooms occur, followed by zooplankton, with heaviest blooms occurring in September
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and October. Each year, the seasonal zooplankton blooms, in turn, are followed by

cholera outbreaks. It has been determined that a single copepod, depending on species

and size, can carry up to 104 cells of V. cholerae. Thus, a copepod bloom can result

in the number of V. cholerae per ml of water comprising an infective Thus, a copepod

bloom can result in the number of V. cholerae per ml of water comprising an infective

dose, showing that ≈ 104 to 106 V. cholerae O1 can produce clinical cholera. Patchiness

in copepod distribution, often species speci�c in the aquatic environment, can result

in signi�cant variability in the number of copepods in water taken directly from a

pond or river for drinking. Based on results of ecological studies demonstrating that

Vibrio cholerae, the etiological agent of epidemic cholera, is commensal to zooplankton,

notably copepods, a simple �ltration procedure was developed whereby zooplankton,

most phytoplankton, and particulates > 20µm were removed from water before use.

E�ective deployment of this �ltration procedure, from September 1999 through July

2002 in 65 villages of rural Bangladesh, of which the total population for the entire

study comprised ≈ 133, 000 individuals, yielded a 48% reduction in cholera (P < 0.005)

compared with the control according to Colwell et al,(2003).

Roseman et al, (2003) wrote that Chitin, an insoluble polymer of GlcNAc, is an abundant

source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression

pro�ling and mutational studies of Vibrio cholerae growing on a natural chitin surface,

or with the soluble chitin oligosaccharides (GlcNAc)2−6, GlcNAc, or the glucosamine

dimer (GlcN)2 identi�ed three sets of di�erentially regulated genes. They showed that

(i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)2−6 gene set,

including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and

a PilA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers

a signi�cant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the

coordinate expression of genes involved with chitin chemotaxis and adherence and with

the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the

transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively

expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface
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chemistry. Collectively, these results provide a global portrait of a complex, multistage

V. cholerae program for the e�cient utilization of chitin. V. cholerae Expression

Pro�ling Studies Identify Three Classes of Chitin-Regulated Genes.

Bacteriophage VP4 is a lytic phage of the Vibro cholerae serogroup O1, and it is used in

phage subtyping of V. cholerae biotype El Tor. Studies of phage infection mechanisms

promoted the understanding of the basis of phage subtyping as well as the genetic

di�erences between sensitive and resistant strains. In this study, they investigated

the receptor that phage VP4 uses to bind to El Tor strains of V. cholerae and found

that it infects strains through adsorbing the O antigen of V. cholerae O1. In some

natural isolates that are resistant to VP4 infection, mutations were identi�ed in the

wb∗ cluster (O-antigen gene cluster), which is responsible for the biosynthesis of O

antigen. Mutations in the manB, wbeE, and wbeU genes caused failure of adsorption

of VP4 to these strains, whereas the observed amino acid residue mutations within

wbeW and manC have no e�ect on VP4 infection. Although mutations in two resistant

strains were found only in manB and wbeW, complementing both genes did not restore

sensitivity to VP4 infection, suggesting that other resistance mechanisms may exist.

Therefore, the mechanism of VP4 infection may provide a basis for subtyping the phage.

Elaborate mutations of the O antigen may imbue V. cholerae strains with resistance to

phage infection according to Jialiang et al, (2013).

The ever increasing challenge of pathogenic bacteria becoming resistant to multiple

antibiotics has spawned the search for new antibacterial drugs and new targets for

antibacterial drugs.Henrik (2009) reported that Virulence factors could be such new

drug targets. Here he presented an in vivo model of the infectious disease cholera

using the bacteria grazing nematode Caenorhabditis elegans. He showed that the

non-pathogenic (CTX-) Vibrio choleraeO1 El Tor strain 2740-80 is ingested by C.

elegans and establishes a lethal infection in the intestinal tract of the worm. The study

found out that the virulence of V. cholerae, determined as its ability to kill C. elegans,

was induced by growth of the bacteria under anaerobic conditions. A library of an

estimated 14,000 clones was constructed, each clone expressing a di�erent peptide. In
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order to test the individual clones a killing/rescue assay in liquid medium was set up in

96-well microtiter plates. This simple system was used to screen 350 clones/peptides.

None of the clones promoted survival of the worms, but he atributed this to the

low number of clones tested. Despite the lack of a positive outcome, the experiments

indicate that this assay could be used to screen for peptides that target bacterial virulence
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Chapter 3

Methodology

3.1 Introduction

In this chapter, we recall some de�nitions and a model for cholera transmission is

formulated in respect of the dynamics of the disease and an e�cient numerical method

used to solve the fractional-order nonlinear system.

3.2 Basic Concepts and De�nitions

Fractional-order di�erentiation is regarded as the generalization of classical integer-order

di�erentiation to real or complex orders. There has been much interest in developing

the theoretical analysis and numerical methods for fractional di�erential equations

as fractional calculus is found to be a valuable tool in various �elds of science and

engineering. Indeed, we can �nd numerous applications in polymer rheology, regular

variation in thermodynamics, biophysics, blood �ow phenomena, aerodynamics, electro-

dynamics of complex medium, viscoelasticity, Bode analysis of feedback ampli�ers,

capacitor theory, electrical circuits, electro-analytical chemistry, biology, control theory,

�tting of experimental data, etc. It has been mainly due to the reason that fractional-

order equations are naturally related to systems with memory which exists in most

biological systems. Also they are closely related to fractals which are abundant in

biological systems.

3.2.1 The Gamma Function

This function is basically tied to fractional calculus by de�nition. Its explanation is

simply the generality of the factorial for all real numbers. The de�nition of the gamma
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function is given by

Γ(z) =

∫ ∞
0

e−uuz−1du, ∀z ∈ R

This function is the only one of its kind in that the value for any quantity is, by

consequence of the form of the integral, equivalent to that quantity z minus one times

the gamma of the quantity minus one.

Γ(z + 1) = zΓ(z), also when z ∈ N+, then γ(z) = (z − 1)!

. This can be shown through a simple integration by parts.

3.2.2 Riemann-Liouville De�nition

Dα
t f(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

a

f(s)ds

(t− s)α−n+1
, n− 1 ≤ α < n

3.2.3 Fractional integral according to Riemann-Liouville

According to Riemann-Liouville the notion of fractional integral of order α(α > 0) for a

function f (t), is a natural consequence of the well-known formula (Cauchy-Dirichlet ),

that reduces the calculation of the n-fold primitive of a function f (t) to a single integral

of convolution type

Jna+f(t) :=
1

(n− 1)!

∫ t

a

(t− s)n−1f(s)ds, n ∈ N

Vanishing at t = a with its derivatives of order 1, 2, . . . , n− 1. Require f(t) and Jαt f(t)

to be causal functions, that is, vanishing for t < 0

Extend to any positive real value by using the Gamma function,(n− 1)! = Γn

Fractional integral of order α > 0 (right sided)

Jna+f(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α ∈ N
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De�ne J0
a+f(t) := I, J0

a+f(t) := f(t)

Alternatively

Jαb−f(t) =
1

Γ(α)
(
d

dt
)n
∫ t

b

(s− t)α−1f(s)ds, α ∈ R

(a = 0, b = +∞) Riemann

(a = −∞, b = +∞) Liouville

3.2.4 Caputo fractional derivative

There is another option for computing fractional derivatives; the Caputo fractional

derivative. It was introduced by M. Caputo in his 1967 paper. In contrast to

the Riemann Liouville fractional derivative, when solving di�erential equations using

Caputo's de�nition, it is not necessary to de�ne the fractional order initial conditions.

Caputo's de�nition is illustrated as follows.

Dα
tof(t) =

1

Γ(1− α)

∫ t

a

f (n)(s)

(t− s)α+1−nds, 0 < α < 1

3.3 Components of mathematical models

Mathematical model: is a set of formulas and or equations based on a quantitative

description of real phenomena and created in the hope that the behavior it predicts will

resemble the real behavior on which it is based.

Mathematical quantities in models can be classi�ed as variables, constants, parameters

and input functions. An independent variable is a quantity that takes on a range of

values. Usually, independent variables are measures of time or position. The set of all

possible values of the independent variable is the domain of the problem. A dependent

variable is a quantity that changes during a given problem, depending on the value(s) of

the independent variable(s).

A constant is a quantity that has a single �xed value. And a parameter is a quantity

whose value is �xed throughout the domain of the model but can be varied to a family
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of related problems.

3.3.1 Purposes of Epidemiological Modeling

The following are some purposes of epidemiological modeling

1. The model formulation process clari�es assumptions, variables and parameters.

2. The behavior of precise mathematical models can be analyzed using mathematical

methods and computer simulations.

3. Modeling provides concepts such as a threshold, reproduction number, etc.

4. Modeling is an experimental tool for testing theories and assessing quantitative

conjectures.

5. Modeling can be used to estimate key parameters by �tting data.

6. Models can be used in comparing diseases of di�erent types or at di�erent times

or in di�erent populations.

7. Models can be used to theoretically evaluate, compare or optimize various

detection, prevention, therapy and control programs.

8. Model can suggest crucial data which needs to be collected.

3.3.2 Limitations of Epidemiological Modeling

The following are some of the limitations of epidemiological modeling.

1. An epidemiological modeling is not reality; it is an extreme simpli�cation of reality.

2. Deterministic models do not re�ect the role of chance in disease spread and do not

provide con�dence interval on results.

Before we start with our Codeco cholera model, let us analyze some of the shortcomings

of SIR model as we are aware that a model should simulate the spread of the disease as

accurate as possible, which means that the resulting graph of the model should �t the
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empirical data. Above all, an accurate prediction of the disease dynamics will allow us

to evaluate the e�ectiveness of the control measures.

3.4 SIR Model

Almost all epidemiological models start from this same basic model. The SIR model is

used for modeling general epidemics and to know how the spread of a disease is in a

particular population and some possible ways of controlling such a disease.

38



3.4.1 Some SIR Model Assumptions

Here the population is divided into three compartments, namely Susceptible, Infectious

and Recovered population as represented below .

Figure 3.1: A diagram showing Susceptible, Infectious and Recovered group

The above model has a few assumptions:

1. It is assumed that if the infected person did not die from the disease, then he/she

becomes immune upon recovery.

2. In addition, the model assumes that the population is mixing homogenously. ie

there is an interaction within the population.

3. The total population at any time is assumed to be constant.

4. It is also assumed that, at any given day a �xed fraction of the infected group

will recover. For example, if the average duration of infection (infectious period) is

four days, then, on average, one-fourth of the currently infected population recovers

each day.
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3.4.2 Equations for SIR Model

In this model the total population is divided into three distinct groups. We �rst have

the Susceptible(S), Infected (I) and the Recovered (R). The total population is assumed

to be constant. That is, S + I +R = N

Assuming the disease spreads into a population that is totally susceptible, the susceptible

individuals have never come into contact with the disease and are able to catch the

disease, after which they move into the infectious class. Infectious individuals spread the

disease to the susceptible, and remain in the infectious class for a given period of time

(the infectious period) before moving into the recovered/removed class.

This description of the SIR model was made more mathematical by a formulated

di�erential equation for the proportion of individuals in each class.

Table 3.1: Variables and de�nitions of sub-populations of Sir Model
Variables De�nitions
S(t) The number of susceptible individuals at time, t
I(t) The number of infected individuals at time, t
R(t) The number of recovered individuals at time, t

Table 3.2: Parameters and their de�nitions of Sir Model
Parameters De�nitions
Λ Rate of infection per unit time
A The rate at which an infectious individual recovered per unit time

3.4.3 Di�erential Equations

The di�erential equations for the SIR model are given by the following

dS

dt
= −λS(t)I(t)

dI

dt
= λS(t)I(t)− αI(t)

dR

dt
= αI(t)

Where, S stands for Susceptible (those who can contract the disease), I stands for

Infectious (those who have the disease and can infect others) and R represents Recovered
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or Removed. The parameters λ and α characterize the propagation of the disease and

can also be used as control parameters in order to stop the epidemic.

3.4.4 Limitations of the SIR Model

Even though the SIR model provides a general framework to understand the spread of

a disease, it may be too simple to accurately model a real epidemic like the outbreak of

cholera worldwide. There are various limitations or shortcomings in this model, which

are explained as follows:

� There should be an environmental component, i.e. the vibrio cholerae

concentration in the water supply. In fact, this is the case for cholera outbreak. A

cholera patient becomes infectious or develops the symptoms only after being in

contact with contaminated water supply.

Therefore, the limitations and �aws in the SIR model can be modi�ed and extended to

the Codeco model.

3.5 Codeco model

This model explicitly incorporated the environmental component, i.e. the V.cholerae

concentration in the water supply (denoted by B), into a regular SIR system to form a

combined human-environment (SI-B) epidemiological model.

41



Figure 3.2: the deterministic Codeco cholera model diagram

3.5.1 Assumptions of the Codeco Cholera Model

� The only route for infection is the injection of contaminated water from non-treated

sources.

� individuals in the population H are born susceptible

� Susceptible people(S) become infected as they are exposed to contaminated water

� Infected individuals recover at the rate r

� Recovered individuals are not explicitly included but its size can be estimated as

H-I-S.

� Infected individuals contribute to the enhancement of bacteria population through

excretion.

� Bacteria population in the aquatic reservoir (B) may also grow in the water at a

rate determined by environmental factors
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3.5.2 Model Formulation

The assumptions of the model lead to the following system of di�erential equations

dS

dt
= n(H − S)− a BS

K +B
dI

dt
= a

BS

K +B
− rI

dB

dt
= B(nb−mb) + eI, nb > mb

By fractionalizing the system above, where DαS, DαI and DαB are the derivatives of S

(t), I (t) and B (t) respectively, of arbitrary order α in the sense of caputo and 0 < α < 1,

then the system leads to fractional di�erential equations given by,

DαS = n(H − S)− a BS

K +B
(3.1)

DαI = a
BS

K +B
− rI (3.2)

DαB = B(nb−mb) + eI, nb > mb (3.3)

S(0) = S0, I(0) = I0 > 0, B(0) = B0 > 0

The reason for considering a fractional order system instead of its integer order matching

part is that fractional order di�erential equations are generalization of integer order

di�erential equations. Also, using fractional order di�erential equations can help us

to decrease the errors arising from the neglected parameters in modeling real life

phenomena.

Table 3.3: Variables and de�nitions of Codeco model
SYMBOL DESCRIPTION
State variables
S number of susceptible individuals
I number of infected individuals
B Concentration of toxigenic V. cholerae in water (cells/ml)
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Table 3.4: Parameters and de�nitions of Codeco model
SYMBOL DESCRIPTION
Parameters
H total human population
n human birth and death rates (day−1)
a rate of exposure to contaminated water (day−1)
K concentration of V.cholerae in water that yields 50% of catching cholera (cells/ml)
r rate at which people recover from cholera (day−1)
nb−mb di�erence between the growth and loss rates of V.cholerae in the aquatic environment
e contribution of each infected people to the population of V.cholerae in the aquatic

3.5.3 Basic Reproductive Number (R0) of the Model

A fundamental concept in epidemiology is the basic reproduction number, which

measures the average number of secondary infections that occur when one infective

is introduced into a completely susceptible host population. The basic reproduction

number R0 is de�ned as the average number of Secondary cases generated by a typical

infective (patience) within a population with no immunity to the disease, in the absence

of interventions produced by a single infected individual introduced into a population of

N susceptible. It is denoted by R0 (Kermack and McKendrick, 1927).

If R0 < 1, then there is no epidemics, that is the disease dies out. If R0 > 1,

then it implies that the disease spreads in the susceptible population. Following the

standard next-generation matrix (NGM) theory, the disease-free equilibrium is given by

E0 = (S0, I0, B0) = (H, 0, 0). From the next generation matrix theory;

F =

 0 aH
k

0 0


And

V =

 r o

−e nb−mb


NGM = FV −1

But

V −1 =
1

r(nb−mb)

 nb−mb 0

e r
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⇒ V −1 =

 1
r

0

e
r(nb−mb)

1
nb−mb



FV −1 =

 0 aH
k

0 0


 1

r
0

e
r(nb−mb)

1
nb−mb



Hence FV −1 =

 eaH
rK(nb−mb)

aH
K(nb−mb)

0 0



Hence the Next Generational Matrix (NGM) is

 eaH
rK(nb−mb)

aH
K(nb−mb)

0 0


And since Ro is the most dominant eigenvalue of the NGM, then this implies that

Ro =
eaH

rK(nb−mb)

3.5.4 Equilibrium point and Stability

To determine the stability analysis of the model, we �rst evaluate the equilibrium point(s)

or steady states of the system of fractional di�erential equations (1), (2), and (3). The

equilibrium points involved determine the disease-free (where I = 0) and endemic (where

I 6= 0) Consider the initial value problem (1)-(3) with 0 ≤ α ≤ 1.To evaluate the

equilibrium points of (1)-(3),

DαS = 0, DαI = 0, DαB = 0

3.5.5 Existence of the Disease Free Equilibrium State

Here, we discuss the existence and stability of the equilibrium state of the model. At

the equilibrium state DαS,DαIandDαB, all vanish. Therefore, equating the right hand
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sides of the model equations (1), (2) and (3) to zero, we have

n(H − S)− a SB

B +K
= 0 (3.4)

a
SB

B +K
− Ir = 0 (3.5)

B(nb−mb) + Ie = 0 (3.6)

(3.7)

At the disease Free State (DFE), there are no infections, that is I = 0. Substituting this

into (3.6), we have

B(nb−mb) = 0

Therefore B = 0 provided (nb−mb) 6= 0. Putting B = 0 into (3.4)

n(H − S) = 0

⇒ n = 0 and S = H

Hence, there exists a disease free equilibrium state given by Eo(H, 0, 0).

3.5.6 Stability of the Disease Free Equilibrium State

To investigate the local behavior of the system about each of the equilibrium points,

the Jacobian matrix J of the equilibrium point E = (S, I, B) is computed using Routh-

Hurwitz criteria as illustrated below.

J(E0) =


−n− aB

K+B
0 −aSK

(K+B)2

aB
K+B

−r aSK
(K+B)2

0 e (nb−mb)


Now we consider the asymptotically stability of the system at the equilibrium point E0.

The equilibrium point E0 is asymptotically stable if R0 < 1.
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At the disease Free State (DFE),

When S = H, I = 0 and B = 0

J(E0) =


−n 0 −aH

K

0 −r aH
K

0 e −(nb−mb)


The equilibrium point is asymptotically stable if one of the following conditions holds

for polynomial P and it's determinant.

1. determinant P (x) > 0, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0 and b1b2 > b3, (Routh-Hurwitz

conditions )

2. determinant P (x) > 0, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0 and a < 2
3

But P |J(Eo)− λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣
−n− λ 0 −aH

K

0 −r − λ aH
K

0 e mb− nb− λ

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (−n− λ)

∣∣∣∣∣∣∣
−r − λ aH

K

e mb− nb− λ

∣∣∣∣∣∣∣− 0

∣∣∣∣∣∣∣
0 aH

K

0 mb− nb− λ

∣∣∣∣∣∣∣−
aH

K

∣∣∣∣∣∣∣
0 −r − λ

0 e

∣∣∣∣∣∣∣ = 0

⇒ (−n− λ)

∣∣∣∣∣∣∣
−r − λ aH

K

e mb− nb− λ

∣∣∣∣∣∣∣ = 0

⇒ (−n− λ)[(−r − λ)(mb− nb− λ)− eaH

K
] = 0

⇒ (−n− λ)(−rnb+ rmb+ rλ− nbλ+mbλ+ λ2 − eaH

K
) = 0
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By factorization,

λ3 + (nb−mb+ r + n)λ2 + ((mb− nb)(n+ r) + nr − eaH

k
)λ− eaH

K
+ nr(mb− nb) = 0

With the characteristic equation as; p(λ) = λ3+b1λ
2+b2λ+b3 = 0, using Routh-Hurwitz

criteria

Where b1 = mb− nb+ n+ r

b2 = (mb− nb)(n+ r) + nr − eaH

k

= n(mb− nb+ r) + r(mb− nb)(1−R0),

b3 =
−eaH
K

+ nr(mb− nb)

= rn(mb− nb)(1−R0)

b1b2 − b3 = n(mb− nb+ n+ r)(mb− nb+ r) + (mb− nb+ r)r(mb− nb)(1−R0)

Therefore the eigenvalues corresponding to the equilibrium E0 are

λ1 = −n

λ2,3 =
−(mb− nb+ r)

√
(mb− nb+ r)2 + 4 eaH

K

2

Thus if R0 < 1 then all the roots are negative and given that R0 < 1, the disease free

equilibrium state (DFE) of the model is asymptotically stable.

3.5.7 Existence of the Endemic Equilibrium State

For this stage, thus an endemic equilibrium solution, we consider the case where there

is infection.

From equation (3.6)

I =
B(nb−mb)

e
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Substitute I into equation (3.5) to �nd S, then we have

a
SB

B +K
= Ir

⇒ a
SB

B +K
= r

B(nb−mb)
e

⇒ a
S

B +K
= r

(nb−mb)
e

⇒ aS = r
(nb−mb)(B +K)

e

Hence

S = r
(nb−mb)(B +K)

ae

Substituting S = r (nb−mb)(B+K)
ae

into equation (3.4) gives

B =
n(aeH − rK)(nb−mb)

er(n+ a)

Let R0 = aeH
rk(nb−mb) be the basic reproduction number.

Hence, substituting R0 into the above equations gives

S =
H(a+R0)

R0(a+ n)

B =
nK(nb−mb)(R0 − 1)

e(n+ a)

I =
nK(nb−mb)2(R0 − 1)

e2(n+ a)

Hence at endemic equilibrium we have the point,

(S∗, I∗, B∗) =
H(a+R0)

R0(a+ n)
,
nK(nb−mb)2(R0 − 1)

e2(n+ a)
,
nK(nb−mb)(R0 − 1)

e(n+ a)

3.5.8 Stability Analysis of Endemic Equilibrium Point

The system has an endemic infection because of the introduction of those with secondary

infections. To determine this, we linearized the Jacobian matrix J evaluated at the
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endemic equilibrium point. The Jacobian matrix of the system is,

J(E1) =


−n− aB∗

K+B∗ 0 −r(nb−mb)
e

K
K+B∗

aB∗
K+B∗ −r

r(nb−mb)
e

K
K+B∗

0 e −(nb−mb)


The equilibrium point is asymptotically stable if one of the following conditions holds

for polynomial P and its determinant.

1. determinant P (x) > 0, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0 and b1b2 > b3, (Routh-Hurwitz

conditions )

2. determinant P (x) > 0, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0 and a < 2
3

But P |J(E1)− λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣
−n− aB∗

K+B∗ − λ 0 −r(nb−mb)
e

K
K+B∗

aB∗

K+B∗ −r − λ r(nb−mb)
e

K
K+B∗

0 e mb− nb− λ

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (−n− aB∗

K +B∗
λ)

∣∣∣∣∣∣∣
−r − λ r(nb−mb)

e
K

K+B∗

e mb− nb− λ

∣∣∣∣∣∣∣− 0

∣∣∣∣∣∣∣
aB∗

K+B∗
r(nb−mb)

e
K

K+B∗

0 mb− nb− λ

∣∣∣∣∣∣∣−

(
r(nb−mb)

e

K

K +B∗
)

∣∣∣∣∣∣∣
aB∗

K+B∗ −r − λ

0 e

∣∣∣∣∣∣∣ = 0

⇒ (−n− aB∗

K +B∗
λ)[(−r−λ)(mb−nb−λ)−r(nb−mb)

e

K

K +B∗
]−(

r(nb−mb)
e

K

K +B∗
)(

aB∗

K +B∗
e) = 0

By factorization,

λ3+(nb−mb+r+n+
aB∗

K +B∗
)λ2+(r(n+

aB∗

K +B∗
))+(nb−mb)(r+n+

aB∗

K +B∗
)−(

rK(nb−mb)
K +B∗

)λ+
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(r(nb−mb)− r(nb−mb)K
K +B∗

) + (
r(nb−mb)K
K +B∗

) +
r(nb−mb)KaB∗

K +B∗
= 0

With the characteristic equation, P (λ) = λ3 + b1λ
2 + b2λ+ b3 = 0, using Routh-Hurwitz

criteria, Where

b1 = mb− nb+ n+ r +
aB∗

K +B∗

b2 =
r(nb−mb)K
K +B∗

+ (nb−mb)(r + n+
aB∗

K +B∗
)− rK(nb−mb)

K +B∗

b3 = (r(nb−mb)− r(nb−mb)K
K +B∗

(n+
aB∗

K +B∗
) +

r(nb−mb)KaB∗

K +B∗

From observation, it is obvious that b1 > 0. Therefore b2, b3 > 0. Hence the equilibrium

point E1 is asymptotically stable.

3.6 Method of solution

The Riemann-Liouville fractional integral operator of order α > 0, of function f ∈

L1(R+) is de�ned as

Iαo f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

where Γ(.) is the Euler gamma function.

Also, the Riemann-Liouville and Caputo fractional derivative of order α > 0, n − 1 <

α < n, n ∈ N for a given continuous function f are de�ned by

Dα
t f(t) =

1

Γ(n− α)
(
dy

dx
)n

∫ t

t0

(t− s)n−α−1f(s)ds (3.8)

Dα
tof(t) =

1

Γ(1− α)
=

∫ t

a

(t− s)−αf 1(s)ds (3.9)

Where f (1) denote the �rst derivative of f(s)

Now from (3.7), by using integration by parts, we obtain

Dαf(t) =
1

Γ(2− α)
[
f (1)(0)

tα−1
+

∫ t

0

(t− s)1−αf(s)(2)ds] (3.10)
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From (3.8), by using binomial formula, we have

(t− s)1−α = t1−α(1− s

t
)1−α

= t1−α
∞∑
0

(1− α)(−1)p(
s

t
)p

= t1−α
∞∑
p=0

Γ(p− 1 + α)

Γ(α− 1)p!
(
s

t
)p, |s

t
| < 1

Substituting into (3.9), we obtain

Dαf(t) =
1

Γ(2− α)
[
f (1)(0)

tα−1
+

1

tα−1

∫ t

0

∞∑
p=0

Γ(p− 1 + α)

Γ(α− 1)p!
(
s

t
)pf (2)(s)ds] (3.11)

Rewrite (3.10) as follows

Dαf(t) =
1

Γ(2− α)
[
f (1)(0)

tα−1
+

1

tα−1

∞∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!tp

∫ t

0

spf (2)(s)ds] (3.12)

Using integration by part, we get

∫ t

0

spf (2)(s)ds = tpf (1)(t)−p
∫ t

0

sp−1f (1)(s)ds = tpf (1)(t)−ptp−1f(t)+p(p−1)

∫ t

0

sp−2f(s)ds, p ≥ 2

(3.13)

By substituting (3.12) into (3.11), we obtain

Dαf(t) = {f
(1)(t)

tα−1
[1+

∞∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!tp
]−[

α− 1

tα
f(t)+

∞∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)
(
f(t)

tα
+
Vp(t)

tp−1+α
)]}

(3.14)

Where

Vpf(t) = −(p− 1)

∫ t

0

τ p−2f(τ)dτ, p = 2, 3, . . . (3.15)

d

dt
Vpf(t) = −(p− 1)tp−2f(t), p = 2, 3, . . . (3.16)
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We can approximate Dαf(t) by using M terms in sums appearing in (3.13) as follows

Dαf(t) ≈ {f
(1)(t)

tα−1
[1+

M∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!tp
]−[

α− 1

tα
f(t)+

M∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)
(
f(t)

tα
+
Vp(t)

tp−1+α
)]}

(3.17)

We can rewrite (3.16) as

Dαf(t) ≈ (α, t,M)f (1)t+ Φ(α, t,M)f (t) +
∞∑
p=2

A(α, t, p)
Vp(f)(t)

tp−1+α

Where

Ω(α, t,M) =
1 +

∑M
p=1

Γ(p−1+α)
Γ(α−1)p!tp

Γ(2− α)tα−1

Φ(α, t,M) = R(α, t) +
∞∑
p=2

A(α, t, p)

tα

A(α, t, p) = − Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)p!

R(α, t, ) =
1− α

tαΓ(2− α)

We set

Θ1(t) = S(t),Θp(t) = Vp(S)(t), For p = 2, 3, . . . ,M

ΘM+1(t) = I(t),ΘM+p(t) = Vp(I)(t), For p = 2, 3, . . . ,M

Θ2M+1(t) = B(t),Θ2M+p(t) = Vp(B)(t), For p = 2, 3, . . . ,M

We can rewrite system (3.1), (3.2) and (3.3) in the following form

Ω(α, t,M)Θl
1(t)+Φ(α, t,M)Θ1(t)+

∞∑
p=2

A(α, t, p)
Θp(t)

tp−1+α
= n(H−Θ1(t))−Θ1(t)Θ2M+1(t)

k + Θ2M+1(t)

Ω(α, t,M)Θl
M+1(t)+Φ(α, t,M)ΘM+1(t)+

∞∑
p=2

A(α, t, p)
ΘM+p(t)

tp−1+α
= a

Θ1(t)Θ2M+1(t)

k + Θ2M+1(t)
−rΘM+1(t)

(3.18)

Ω(α, t,M)Θl
2M+1(t)+Φ(α, t,M)Θ2M+1(t)+

∞∑
p=2

A(α, t, p)
Θ2M+p(t)

tp−1+α
= (nb−mb)Θ2M+1+eΘM+1(t)
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Where

Θp(t) = −(p− 1)

∫ t

0

τ p−2Θ1(τ)dτ

ΘM+p(t) = −(p− 1)

∫ t

0

τ p−2ΘM+1(τ)dτ

Θ2M+p(t) = −(p− 1)

∫ t

0

τ p−2Θ2M+1(τ)dτ (3.19)

Finally (3.17) and (3.18) can be written as

Θ′1 =
1

Ω(α, t,M)
(n(H−Θ1(t))−aΘ1(t)Θ2M+1(t)

k + Θ2M+1(t)
)−Φ(α, t,M)Θ1(t)−

∞∑
p=2

A(α, t, p)
Θp(t)

tp−1+α

Θ′1(t) = −(p− 1)tp−2Θ1(t), p = 2, 3, . . . ,M

Θ′2M+1(t) =
1

Ω(α, t,M)
(a

Θ1(t)Θ2M+1(t)

k + Θ2M+1(t)
−rΘM+1(t)−Φ(α, t,M)ΘM+1(t)−

∞∑
p=2

A(α, t, p)
ΘM+p(t)

tp−1+α
)

(3.20)

Θ′M+p(t) = −(p− 1)tp−2ΘM+1(t), p = 2, 3, . . . ,M

Θ′2M+1(t) =
1

Ω(α, t,M)
((nb−mb)Θ2M+1+eΘM+1(t)−Φ(α, t,M)Θ2M+1(t)−

∞∑
p=2

A(α, t, p)
Θ2M+p(t)

tp−1+α
)

Θ′2M+p(t) = −(p− 1)tp−2Θ2M+1(t), p = 2, 3, . . . ,M

With the following initial conditions

Θ1(δ) = So,

Θp(δ) = −p− 2

2
∆tt−1So, p = 2, 3, . . . ,M

ΘM+1(δ) = Io,

ΘM+p(δ) = −p− 2

2
∆tt−1Io, p = 2, 3, . . . ,M

Θ2M+1(δ) = Bo,

Θ2M+p(δ) = −p− 2

2
∆tt−1Bo, p = 2, 3, . . . ,M (3.21)
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We solve the system (3.19) with the initial conditions (3.20) by using the well-known

Runge-Kutta of order fourth.

3.6.1 Runge �Kutta method

Runge-Kutta methods are one of the fundamental techniques in scienti�c computing.

They are used to compute numerical solutions in a step-by-step fashion for ordinary

di�erential equations (ODEs). Runge-Kutta methods are a class of numerical solutions

to the initial value problem (IVP) consisting of the ordinary di�erential equation (ODE)

U ′ = F (t, U(t))

And the initial conditions

U(t0) = U0

The formula for the fourth order Runge-Kutta method (RK4) is given below. De�ne h

to be the time step size and ti = to + ih. then the following formula

wo = α

K1 = hf(ti, wi)

K2 = hf(ti +
h

2
, wi +

K1

2
)

K3 = hf(ti +
h

2
, wi +

K2

2
)

K4 = hf(ti + h,wi +K3)

w(i+1) = wi +
1

6
(K1 + 2K2 + 2K3 +K4)
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Chapter 4

Data Collection and Analysis

This chapter deals with the analysis and numerical simulation of the model. Here,

simulation analysis as well as graphical representation of the system of fractional order

at di�erent values of α are illustrated.

Table 4.1: Cholera Cases in Ghana by Region by Week, 2014
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We attempt to �nd numerical solution for a general class of fractional order SI-B

deterministic model of the disease below:

DαS = n(H − S)− a BS

K +B
(4.1)

DαI = a
SB

K +B
− rI (4.2)

DαB = B(nb−mb) + eI, nb > mb (4.3)

Let S(0) = 6500, I(0) = 5 > 0, B(0) = 60 > 0 be initial conditions as per the data. Also

we have 0 < α ≤ 1

At Disease free equilibrium state,

H = 6500, a = 0.1, r = 0.4, nb−mb = 0.4, K = 6500, e = 1, n = 0

Where

R0 =
aeH

rk(nb−mb)

R0 =
0.1x1x1000

0.4x1000x0.4

⇒ R0 =0.625

HenceR0 =0.625 < 1

But at the disease Free State (DFE), there are no infections, that is I = 0,

B(nb−mb) = 0

Therefore B=0 provided (nb − mb) 6= 0, ⇒ n = 0 and S = H = 6500. Hence, there

exists a disease free equilibrium state given by E0(6500, 0, 0).

At the Endemic Equilibrium State,

H = 6500, a = 0.6, r = 0.4, nb−mb = 0.02, K = 6500, e = 1, n = 0.2

57



ButR0 =
aeH

rK(nb−mb

R0 =
0.6Ö1Ö6500

0.4Ö6500Ö0.02

⇒ R0 =75

HenceR0 =75 > 1

ButS =
H(a+R0)

R0(a+ n)

S =
6500(0.6 + 75)

75(0.6 + 0.01)

S =
292500

45.75

S =6393.44

Also, B =
nK(nb−mb)(R0 − 1)

e(n+ a)

B =
0.01x6500(0.02)(75− 1)

1(0.01 + 0.6)

B =1374.29

I =
nK(nb−mb)2(R0 − 1)

e2(n+ a)

I =
0.01x6500(0.02)2(75− 1)

(0.01 + 0.6)

I =27.49

Hence at endemic equilibrium we have the point,

(S∗, I∗, B∗) = (6393.44, 27.49, 1374.29)

4.0.2 Numerical Results and Discussion

To facilitate the interpretation of our mathematical results developed from the model,

we solve the system numerically by using Atanackovic and Stankovic numerical method.
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In all numerical runs, the solution has been approximated at;

δ = ∆t = 0.01

M = 5

P = 2, 3 . . . ,M.

In this section, we studied the behavior of cholera at the disease free equilibrium state

and at the endemic state described by the fractional order Codeço SI-B model using

Runge-Kutta of fourth order.

From the results in the presented �gures, it is obvious that cholera behave di�erently at

di�erent values of R0 , where R0 is the basic reproduction number which is estimated as

R0 =
aeH

rK(nb−mb)
, nb−mb 6= 0

If R0 < 1, what this mean is that, the disease free equilibrium state is asymptotically

stable. To further explain this, it implies that the disease could be eradicated under this

condition in �nite time.

Let's consider the �rst scenario where;

H = 6500, K = 6500, a = 0.1, r = 0.4, nb−mb = 0.4 and e = 1,

R0 = 0.625 < 1

That is, R0 = 0.625 < 1, implies that the disease free equilibrium state is locally

asymptotically stable. Hence the disease will die out in the population whereas the

size of the susceptible population decreases (See �g 4.3) and that of the infectious also

decreases (See �g 4.4).

Also the concentration of toxigenic vibrio cholerae in water (state variable B) will remain

constant. That is, its concentration will not increase for the time period since the rate

of exposure to contaminated water (parameter a) is small. (See �g 4.5)
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In the second scenario, where

H = 6500, K = 6500, a = 0.6, r = 0.4, nb−mb = 0.02 and e = 1,

R0 = 75 > 1,

That is, R0 = 75 > 1 implies that the disease at the endemic state is locally

asymptotically stable. Hence, the disease will persist in the population (See �g 4.6)

and (See �g 4.7).

Additionally, the concentration of toxigenic vibrio cholerae in water (state variable B)

increases and this is because the rate of exposure to contaminated water is relatively

high (See �g 4.8).

Also, some plots of the numerical solution are used to investigate which of the

environmental factors parameters contribute largely to the fast spread of cholera in

Ghana; rate of exposure to contaminated water (a) and the rate of contribution of each

infected person (e) to the aquatic environment.

Here, the research �ndings reveal that the concentration of vibrio cholerae in water

depends hugely on the contribution of each infected person (e) to the aquatic

environment. This has been illustrated in �g4.9, �g 4.10, �g4.11, �g4.12 and �g4.13.

In �g 4.9, high rate of exposure to contaminated water and high rate of contribution of

each infected person to the aquatic environment produces large amount of concentration

of toxigenic vibrio cholerae in water. The same result is obtained even when the exposure

rate to contaminated water is average (0.5) and the rate of contribution is high (See

�g4.10)

This further explains the fact that the rate of contribution of each e�ected person to the

aquatic environment contribute largely to the persistent of cholera in the population.

This paper also reveals that even when the rate of exposure to contaminated water

is high or average but the rate of contribution of each infected person to the aquatic

environment is low, then the concentration of pathogen in water will be relatively low

(See �g4.11 and �g 4.12)
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Finally, the concentration of pathogen in water will be relatively average if the rate of

exposure to contaminated water is high and the rate of contribution of each e�ected

person to the aquatic reservoir is average (See �g.4.13)

Hence the �ndings illustrated that, the concentration of toxigenic vibrio cholerae in

water (State Variable B) as in the system of equation (1), (2), (3) largely depend on

the rate of contribution of each e�ected person (parameter e) to the aquatic reservoir or

environment.

This paper goes to con�rm several reports on Environmental Assessment conducted

by NGO's and Research Institutions which reveal that there were generally poor

environmental sanitation and inadequate water supply at all the communities where

cholera cases reside especially in Greater Accra Region. This explicitly explains why

Greater Accra recorded the highest cases of cholera in the country (See �gure 4.2).
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4.1 Simulations

The plots below illustrate the graphical representations of the numerical solutions and

the behavior of cholera at di�erent values of α.

Figure 4.1: Phase diagram at the endemic state showing the size of the infectious
population against the susceptible at di�erent values of α
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Figure 4.2: Size of the susceptible class over time for the system with di�erent values of
alpha at the disease free state where R0 < 1
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Figure 4.3: Size of the infectious class over time for the system with di�erent values of
alpha at the disease free state where R0 < 1
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Figure 4.4: Concentration of toxigenic vibrio-cholerae in water over time for the system
with di�erent values of alpha at the disease free state where R0 < 1
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Figure 4.5: Size of the susceptible class over time for the system with di�erent values of
alpha at the endemic state where R0 > 1
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Figure 4.6: Size of the infectious class over time for the system with di�erent values of
alpha at the endemic state where R0 > 1
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Figure 4.7: Concentration of toxigenic vibrio-cholerae in water over time for the system
with di�erent values of alpha at the endemic state where R0 > 1
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Figure 4.8: Graph of Concentration of toxigenic vibrio-cholerae in water against time
with a case of high exposure (α = 0.80) to contaminated water and high contribution of
each infected person (e = 0.90) to the aquatic environment at di�erent values of α.
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Figure 4.9: Graph of Concentration of toxigenic vibrio-cholerae in water against time
with a case of average exposure (α = 0.5)to contaminated water and high contribution
of each infected person (e = 0.90) to the aquatic environment at di�erent values of α.
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Figure 4.10: Graph of Concentration of toxigenic vibrio-cholerae in water against time
with a case of high exposure (α = 0.8) to contaminated water and low contribution of
each infected person (e = 0.10) to the aquatic environment at di�erent values of α.
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Figure 4.11: Graph of Concentration of toxigenic vibrio-cholerae in water against time
with a case of average exposure (α = 0.5) to contaminated water and low contribution
of each infected person (e = 0.10) to the aquatic environment at di�erent values of α.
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Figure 4.12: Graph of Concentration of toxigenic vibrio-cholerae in water against
time with a case of average exposure (α = 0.8) to contaminated water and average
contribution of each infected person (e = 0.50) to the aquatic environment at di�erent
values of α.
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Chapter 5

Conclusion, and Recommendation

5.1 Conclusion

In this work, we have studied several features of a fractional order Codeço cholera

model. We started this work by formulating the SIR-B Codeço model. Here, we

present criteria for the existence of disease free equilibrium state and that of the endemic

state. Furthermore, the stability of the equilibrium for the system of fractional order

Codeço cholera model has been discussed in terms of the basic reproduction number

R0 = αεH
rK(nb−mb)

Precisely, we have established the following facts:

If R0 < 1, then the diseases free equilibrium state (E0) is locally asymptotically stable

for all 0 < α < 1. Hence, the disease could be eradicated in �nite time.

If R0 > 1, the equilibrium at the endemic state (E1) is locally asymptotically stable for

all 0 < α < 1. Hence, the disease will persist. Also, the stability analysis for the system

is carried out by applying the fractional Routh-Hurwitz criterion.

Going forward, the fractional order Codeço cholera model is converted to a system

of ordinary di�erential equations of integer order by using Atanackovic and Stankovic

numerical method and is then solved numerically by using the fourth order well-known

Runge-Kutta method.

Also, the graphical numerical solutions are presented to analyze the behavior of the

system of equations at each R0 value. That is, at the diseases free equilibrium state

where R0 < 1, the susceptible population and the infectious population decreases while

the concentration of toxigenic vibrio cholerae in water remain low since the contribution

of the infected person to the aquatic environment or reservoir (parameter e) is small.

At R0 > 1, the disease persist in the susceptible and infectious population whiles the
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concentration of toxigenic vibrio cholerae in water increases in the population because

the contribution of the each infected person to the aquatic environment or reservoir

(parameter e) is large.

Finally, the research �ndings reveal that the concentration of vibrio cholerae in water

depends largely on the rate of exposure to contaminated water (parameter a) and

on the contribution of each infected person (parameter e) to the aquatic reservoir or

environment.

5.2 Recommendations

Based on our �ndings, we recommend that proper education and sensitization be given

to the public by relevant authorities and NGO's of the dangers of open defecation and

urinating in sources of drinking water. This will reduce the contribution of each infected

person to the aquatic reservoir or environment (parameter e).

Also, we recommend that the Government should provide portable water to the populace

in order to discourage drinking of untreated water. This will reduce the rate of exposure

to contaminated water (parameter a).

Finally, until Government and other stakeholders are able to stop street vending of

water and food, poor liquid and solid waste disposal, clean choked drains regularly,

complete stoppage of urban slums, then can Ghana and other developing countries

virtually eradicate cholera.
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Appendix

APPENDIX A

Code Title: Numerical solutions to the Fractional Order Differential Equations

function result = diff3(t,Y)

% Parameters

par.H = 6500;

par.n = 0.001;

par.a = 0.5;

par.K = 6500;

par.r = 0.06;

par.nb_mb = 0.02;

par.e = 1;

p = 2;

M = 5;

alpha=0.95;

sums=0;

t = 1;

for pp = p:M

sums = sums + A(alpha,p)*(thetaP(p,t)/t^(p-1+alpha));

end

result = zeros(3,1);
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result(1) = (1/Omega(alpha,t,M)*(par.n*(par.H-Y(1))) - par.a...

* (Y(1)*theta2MP(p,t)))- Phi(alpha,t,M)*Y(1) - sums;

sumc = 0;

for pp = p:M

sumc = sumc + A(alpha,p)*(thetaMP(p,t)/t^(p-1+alpha));

end

result(2) = (1/Omega(alpha,t,M))* par.a * (Y(1)*Y(2)/(par.K + Y(2))...

- par.r* Y(2) - Phi(alpha,t,M)*Y(1) - sumc);

sumss = 0;

for pp = p:M

sumss = sumss + A(alpha,p)*(theta2MP(p,t)/t^(p-1+alpha));

end

result(3) = (1/Omega(alpha,t,M)) * (par.nb_mb * Y(3) + par.e * Y(2)...

- Phi(alpha,t,M)*Y(3) - sumss);

end

APPENDIX B

Code for fig 4.2-fig4.4

Title: Plots for the Disease Free Equilibrium States

S_o = 6500; %65000

I_o = 5; %5

B_o = 15; %60

h = 0.25; % 0.1 < h < 1

%the smaller the value of h, the more accurate the result
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time = [0 300];

[a, b]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.60);

[~, c]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.70);

[~, d]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.80);

[~, e]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.90);

S95 = b(:,1);

I95 = b(:,2);

B95 = b(:,3);

S96 = c(:,1);

I96 = c(:,2);

B96 = c(:,3);

S97 = d(:,1);

I97 = d(:,2);

B97 = d(:,3);

S98 = e(:,1);

I98 = e(:,2);

B98 = e(:,3);

%PLOTS

figure

plot(a,S95,'k','linewidth',2),hold on

plot(a,S96,'b','linewidth',2)

plot(a,S97,'r','linewidth',2)

plot(a,S98,'g','linewidth',2)

xlabel('Time(days)'),ylabel('Susceptible')

title('R_{o} < 1')

legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

figure
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plot(a,I95,'k','linewidth',2),hold on

plot(a,I96,'b','linewidth',2)

plot(a,I97,'r','linewidth',2)

plot(a,I98,'g','linewidth',2)

xlabel('Time(days)'),ylabel('Infectious Population')

title('R_{o} < 1')

legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

figure

plot(a,B95,'k','linewidth',2),hold on

plot(a,B96,'b','linewidth',2)

plot(a,B97,'r','linewidth',2)

plot(a,B98,'g','linewidth',2)

xlabel('Time(days)'),ylabel('Concentration of Pathogen')

title('R_{o} < 1')

legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

save less

APPENDIX C

Code for fig 4.5-fig4.7

Title: Plots for the Endemic Equilibrium States

S_o = 6500; %000

I_o = 5; %10

B_o = 60; %60

h = 0.25; % 0.1 < h < 1

%the smaller the value of h, the more accurate the result

time = [0 300];

86



[a, b]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.30);

[~, c]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.40);

[~, d]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.50);

[~, e]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.60);

S50 = b(:,1);

I50 = b(:,2);

B50 = b(:,3);

S55 = c(:,1);

I55 = c(:,2);

B55 = c(:,3);

S60 = d(:,1);

I60 = d(:,2);

B60 = d(:,3);

S65 = e(:,1);

I65 = e(:,2);

B65 = e(:,3);

%PLOTS

figure

plot(a,S50,'k','linewidth',2),hold on

plot(a,S55,'b','linewidth',2)

plot(a,S60,'r','linewidth',2)

plot(a,S65,'g','linewidth',2)

xlabel('Time(days)'),ylabel('Susceptible')

title('R_{o} > 1')

legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

% figure

% plot(a,I50,'k','linewidth',2),hold on

% plot(a,I55,'b','linewidth',2)
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% plot(a,I60,'r','linewidth',2)

% plot(a,I65,'g','linewidth',2)

% xlabel('Time(days)'),ylabel('Infectious Population')

% title('R_{o} > 1')

%legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

figure

plot(a,B50,'k','linewidth',2),hold on

plot(a,B55,'b','linewidth',2)

plot(a,B60,'r','linewidth',2)

plot(a,B65,'g','linewidth',2)

xlabel('Time(days)'),ylabel('Concentration of Pathogens')

title('R_{o} > 1')

legend('\alpha =0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

save concentration30

APPENDIX D

Code for fig 4.8-fig4.9.4

Title: Plots for the Concentration of toxigenic Vibrio Cholerae in Water

S_o = 6500; %45000

I_o = 5; %10

B_o = 15; %60

h = 0.25; % 0.1 < h < 1

% the smaller the value of h, the more accurate the result

time = [0 300];

[a, b]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.60);
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[~, c]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.70);

[~, d]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.80);

[~, e]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.90);

S50 = b(:,1);

I50 = b(:,2);

B50 = b(:,3);

S55 = c(:,1);

I55 = c(:,2);

B55 = c(:,3);

S60 = d(:,1);

I60 = d(:,2);

B60 = d(:,3);

S65 = e(:,1);

I65 = e(:,2);

B65 = e(:,3);

%PLOTS

% figure

% plot(a,S50,'k','linewidth',2),hold on

% plot(a,S55,'b','linewidth',2)

% plot(a,S60,'r','linewidth',2)

% plot(a,S65,'g','linewidth',2)

% xlabel('Time(days)'),ylabel('Susceptible')

% title('R_{o} > 1')

%legend('\alpha = 0.50','\alpha = 0.55','\alpha = 0.60','\alpha = 0.65')

%

figure

plot(S50,I50,'k','linewidth',2),hold on

plot(S55,I55,'b','linewidth',2)

plot(S60,I60,'r','linewidth',2)
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plot(S65,I65,'g','linewidth',2)

xlabel('Susceptible'),ylabel('Infectious Population')

title('R_{o} > 1')

legend('\alpha = 0.60','\alpha = 0.70','\alpha = 0.80','\alpha = 0.90')

%

% figure

% plot(a,B50,'k','linewidth',2),hold on

% plot(a,B55,'b','linewidth',2)

% plot(a,B60,'r','linewidth',2)

% plot(a,B65,'g','linewidth',2)

% xlabel('Time(days)'),ylabel('Concentration of Pathogens')

% title('R_{o} > 1 Initial conc. @ 30')

%legend('\alpha = 0.50','\alpha = 0.55','\alpha = 0.60','\alpha = 0.65')

save concentration3007
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