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Abstract
Most of the life insurance contracts in Ghana contains surrender options and are also
path-dependent. The presence of one or more option elements and path-dependence
derivatives presents complexities in the valuation of the life insurance contract in
Ghana. The study seeks to compare the multi-period binomial tree method to the
Black-Scholes partial differential equation in the valuation of the life insurance con-
tract which contains surrender options.

The paper implemented and compare thethree finite difference algorithm 1n
solving the Black-Scholes equation and concluded that, the Crank-Nicolson method
gives more accurate results than the Implicit and Explicit finite difference methods
and the explicit finite method. The paper also checked the stability and accuracy of
the multi-period binomial tree and the implicit finite difference and Crank-Nicolson
method.

The study revealed that, the multi-period binomial tree method 1s closer to the
solution for even smaller values of N (the number of steps) than the Black-Scholes
partial differential equation and recommended the use of the binomial tree method in

the valuation of the life insurance contract in Ghana which contains surrender options.
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Chapter 1

INTRODUCTION

1.1 Background of the Study

If one wants to trace back the history of insurance then one need to look up to that
period where most of the commerce and business. deals used to happen through sea
routes. During this period, people used to send the ships along with their valuable
material in order to make business but if the weather turned bad then sometimes the
ship may used to go out of control and sometimes they did not have any option but to
remove all the material from the ship in order to save their life. So, many of the ship
owners decided that they should form a common fund and the common fund should be
utilized for the purpose of reimbursement of the monetary losses of the person whose
ship was involved in an accident. This is how insurance started. Now it is far more than
marine insurance all over the world. There are many more types of insurance which
have entered the market over this period of time.

According to Financial Consumer Agency of Canada, FCAC (2011), insurance
is a way of reducing your potential financial loss or hardship. It can help cover the

cost _@f_ unexpected ﬂgms_such as theft, illness or property damage. Insurance can also

provide your loved ones with a financial payment upon your death.

1.1.1 Insurance policy types

There are many different types of insurance policies available, and it is important (o
choose the right insurance deal for you. Examples includes auto insurance policy, life
insurance, health insurance, home (property) insurance, tenants (renter’s) insurance,

business insurance, credit or debt insurance, buying insurance and so on.

1



Health insurance

Health insurance is insurance against the risk of incurring medical expenses among

individuals.

Vehicle (auto) Insurance Policy and Types in Ghana

Vehicle insurance (also known as auto insurance, GAP (Guaranteed Auto Protection)
insurance, car insurance, or motor insurance) is insurance purchased for cars, trucks,
motorcycles, and other road vehicles. Its primary use is to provide financial protec-
tion against physical damage and/or bodily injury resulting from traffic collisions and

against liability that could also arise from it.

Life insurance

Life insurance is a contract between an insurance policy holder and an insurer, where
the insurer promises to pay a designated beneficiary a sum of money (the "benefits™)
upon the death of the insured person. Depending on the contract, other events such as
terminal illness or critical illness may also trigger payment. The policy holder typically
pays a premium, either regularly or as a lump sum. Other expenses (such as funeral
expenses) are also sometimes included in the benefits. There are two main types of life
insurance: term and permanent.

Term life insurance provides coverage if you die within a specific period of
time, unless y_qj,jao not pay your premium. Term life insurance premiums are generally
less expensive than permanent life insurance premiums. Premiums are usually fixed for
tBEdlérﬂgth of the term, often at intervals of five or ten years. However, your premiums
may increase when you renew the policy. For example, premiums would increase every
five years on a five-year renewable policy. Most life insurance policies will only cover
you up to a maximum age.

Permanent life insurance is life insurance that remains active until the policy
matures, unless the owner fails to pay the premium when due. The policy cannot be

cancelled by the insurer for any reason except fraudulent application, and any such
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cancellation must occur within a period of time defined by law (usually two years).
It provides coverage throughout your lifetime, unless you fail to pay your premiums.
Permanent life insurance policies generally accumulate a cash value that is either added
to the face value of your policy and paid out upon your death, or returned to you if you
cancel your policy and reduces the risk to which the insurance company is exposed,

and thus the insurance expense over time.

Life insurance liabilities

A correct assessment of duration and convexity of insurance liabilities and equity mea-
sures is critical as they constitute the primary ingredients of any sound asset-liability
management approach. In addition, the effort toward a more detailed and more accu-
rate risk picture of life insurance operations enables one to debunk some pitfalls that
are commonly encountered in the insurance industry (Eric, 1995).

According to Anders Peter (2002), the holders of life insurance contracts (LICs)
have the first claim on the company’s assets, whereas equity holders have limited 1i-
ability; interest rate guarantees are common elements of LICs: and LICs according
to the so-called contribution principle (which states that if a risk is insured by mul-
tiple carriers, and one carrier has paid out a claim, that carrier is entitled to collect
proportionate coverage from other carriers) are entitled to receive a fair share of any
investment surplus.

Aecording to Eric(1995), risk-taking initially occurs on the liability side of the
balance sheet. Unmssue insurance policies which are transformed into lia-
bilities (read technical reserves). Because of the time lag between the premium inflow
and the indemnity outflow, the reserves are invested on the financial marketplace and

generate the portfolio of assets of the company.

1.1.2 Types of Life Insurance Contracts

There are several types of life insurance contracts. The most common among them are

the European-style and the American-style contracts. These options - as well as others

3



where the payoff is calculated similarly - are referred to as vanilla options. Options
where the payoff is calculated differently are categorized as exotic options. Exotic
options can pose challenging problems in valuation and hedging.

The European-style contract pays off simply the future benefit at the expiration
date. The price that is paid for the asset when the contract is exercised is called the
"exercise price or striking price”. The last day on which the contract may be exercised
is called the “expiration date” or "maturity date”.

An American-style contract on the other hand may be exercised at any time
before the expiration date. Since an American-style option provides an investor with a
greater degree of flexibility than a European style option, the premium for an American
style option is at least equal to or higher than the premium for a European-style option
which otherwise has all the same features. For both, the payoff - when it occurs - is
via:
max|(K — §),0], for a put option.

Where K is the Strike price (the fixed price at which the owner of an option can
sell (in the case of a put), the underlying se;curity or commodity.) and S is the spor
price of the underlying asset.

In finance, a spot contract, spot transaction, or simply spot, is a contract of buy-
ing or selling a commodity, security or currency for settlement (payment and delivery)
on the spot date, which is normally two business days after the trade date. The settle-

ment price (or rate) is called spot price (or spot rate).
== /

1.1.3 Numerical Methods

The life insurance contracts are often relatively complex and consist of path-dependent
derivatives and in most cases, analytical solutions to the valuation problems cannot be
found. Hence the need to resort to numerical methods in finding the value of the con-
tract. There are so many possibilities to numerically solve these valuation problems.
Among these methods are the Monte Carlo Simulations which is used for the valuation

of the insurance contract provided that the policyholders cannot change or ( partially)
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surrender the contract during its term - European contracts (Gerstner et al., n.d.).

In finance, the binomial options pricing model (BOPM) provides a generaliz-
able numerical method for the valuation of options. The binomial model was first
proposed by Cox, Ross and Rubinstein (1979) cited in (Hull, 2003). Essentially, the
model uses a discrete-time (lattice based) model of the varying price over time of the
underlying financial instrument. In general, binomial options pricing models do not
have closed-form solutions. The Binomial options pricing model approach is widely
used as it is able to handle a variety of conditions for which other models cannot easily
be applied. This is largely because the BOPM is based on the description of an under-
lying instrument over a period of time rather than a single point. As a consequence, 1t
is used to value American options that are exercisable at any time in a given interval
as well as Bermudan options that are exercisable at specific instances of time. Being
relatively simple, the model is readily implementable in computer software (including
a spreadsheet). Although computationally slower than the BlackScholes formula, it is
more accurate, particularly for longer-dated options on securities with dividend pay-
ments. For these reasons, various versions of the binomial model are widely used by

practitioners in the options markets.

1.1.4 Profile of Study Area

-

" /”_"_,_’

The services sector is one of the most important sectors of the Ghanalan economy,
and obviously of all other economies. The sector has shown significant development
over the past decade. Since 2008, it has contributed significantly towards Ghana'’s total
Gross Domestic Product (GDP). One major sector that constitutes the services sector
is the Financial Services Sector. Ghana’s Financial Services Sector can be classified
into three main categories i.e., Banking, Insurance and Capital Markets. One of these

sectors which have contributed immensely towards the growth of the financial services

in the Ghana is the insurance industry.



1.2 Statement of the Problem

According to Bjaerk (2001), life insurance contracts and pension plans are complex fi-
nancial securities that come in many variations. The contracts which offer a guaranteed
return each year until maturity are common throughout Ghana and other developing
countries. The contracts in Ghana are sometimes equipped with a right to terminate
the contract prior to maturity. When this applies the contract is said to contain a sur-
render option as well. The presence of one or more option elements in life insurance

presents complexities in the valuation of the life insurance contract in Ghana.

Also, analytical solution to the valuation problems cannot be found because of
the complexities and the presence of path-dependence derivatives in the life insurance
contract. Hence, the need to resort to numerical methods in the valuation of the life

insurance contract in Ghana.

1.3 Objective of the study

The objectives of the study are:

|. To implement multi-period binomial tree algorithm for fast and accurate numer-
ical valuation of the life insurance contract in Ghana.
R //’_P’_-
2-To determine which of the finite difference method is appropriate for the val-
uation of the American style life insurance contract using the Black-Scholes

equation.

3. To compare the multi-period binomial tree method to the Black-Scholes partial

differential equation in valuation of the life insurance contracts in Ghana which

contains surrender options.
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1.4 Methodology

Since path-dependence prohibits the derivation of closed-form valuation formulas, the
problem can be reduced to allow for the development and implementation of a finite
difference algorithm and binomial tree method for fast and accurate numerical valu-
ation of the life insurance contracts. Agents are assumed to operate in a continuous
time frictionless economy with a perfect financial market, so that tax effects, trans-
action costs, divisibility, liquidity, and short-sales constraints and other imperfections
can be ignored. As regards the specific contracts, we also ignore the effects of expense

charges, lapses and mortality. (Duffie, 1996).

1.5 Justification of the Study

The study analyses one of the most common life insurance products - the so-called
participating (or with profits) policy. The study takes a finite difference algorithm
approach and binomial tree method to the market valuation of equity and liabilities in

life insurance companies.

1.6 Thesis Organization

This thesis is organized into five main chapters. Chapter 1 presents the introduction of
the thcsis,'. This conwackground of the study, the research problem state-

ment, objectives of the study, methodology, thesis justification and organization. Chap-

— ter 2 is the literature review, which looks at briefly work done by other researchers on

the topic. Chapter 3 is the formulation of the mathematical model. Chapter 4 contains
the data collection and analysis, Formulation of model instances, algorithms, compu-
tational procedure, results and discussion. Chapter 5 looks at summary, conclusions

and recommendation of the results.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter looks into the review of related works on past insurance and insurance

liabilities the some related models from other writers.

2.2 Definition and meaning of Insurance

Various writers and researchers has given diverse definitions of the term insurance. But
despite the diversity in their expression, they seem (o almost talk about the same thing
or similar issue. Dorfman (2008), defined insurance as a financial arrangement that
redistributes the cost of unexpected losses. Thus, insurance involves the transfer of
loss exposures (or uncertainty of loss) to an insurance pool and the redistribution of the
cost of losses among the members of the pool and loss as in insurance term is an unin-
tentional decline in or disappearance of value arising from a contingency (Pal, Bolda,
& Garg, 2007). According to Dorfman (2008), an insurance system redistributes the
cost of losses_pj(,aallccting E@gﬁum-payment from every participant (insured) in the
system. In exchange for the premium payment, the insurer promises to pay the in-
sured’s claims in the event of a covered loss. Insurance companies bear risk in return
for a fee called premium.

Pal et al (2007) defined insurance as a co-operative mechanism to spread the
loss caused by a particular risk over a number of persons who are exposed to it and
who agree to ensure themselves against that risk (Pal et al., 2007). FCAC (2011) also
defined insurance as a way of reducing your potential financial loss or hardship. It

can help cover the cost of unexpected events such as theft, illness or property damage.
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Insurance can also provide your loved ones with a financial payment upon your death.

According to Mphasis (2009), insurance, in law and economics, is a form of
risk management primarily used to hedge against the risk of a contingent loss. It can
therefore be defined as the equitable transfer of the risk of a loss, from one entity to
another, in exchange for a premium, and can be thought of as a guaranteed small loss

to prevent a large, possibly devastating loss (Mphasis, 2009).

2.3 History of Insurance in Ghana

The British merchants in the 19th century introduced insurance in Ghana and these in-
surance were bounded by the British merchants and these merchants were bound by the
British Merchant shipping laws. The law basically states that all goods being shipped
into the British colonies should be carried by ships owned by British citizens. This
means that, the goods being carried by ships owned by its citizens were insured by in-
surance companies in the United Kingdom. Because of this, the insurance companies
in the United Kingdom sent their agents to Ghana where the goods were sent. Thus in-
surance transactions were done through the foreign trading companies in Ghana acting
as chief agents of insurance companies in the United Kingdom and other foreign coun-
tries. The insurance industry in Ghana at that time comprises mainly insurers; sellers
of insurance, insured; purchasers of insurance and intermediaries; agents of insurance
companies who act between the insurers and the insured and under the Act of British
Parlial__l_ieﬁl, legible Wposal and sign and issue insurance cover on behalf
of the insurance companies in the United Kingdom. There were no insurance broking,
" claim adjusting and reinsurance firms at the time in Ghana. Local insurance companies
began to emerge towards the independence in 1957. Gold Cost Insurance Company
which was formed in 1955 was among the first. In 1957 and 1958, General Insurance
Company and Cooperative Insurance Company were also formed respectively. Later,
Government purchased Gold Coast Insurance Company and took over Cooperative In-
surance Company, merge them to formed State Insurance Company (SIC) in 1962.

The period between 1962 and 1970 saw remarkable changes in Ghanaian insurance in-

9
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dustry. A lot of rules and regulations were introduced and Acts were passed into laws
in the insurance industry. This development sprung up more insurance policies into
the market apart from life policies. Policies such as workmen compensation, marine
insurance, aviation insurance, accident insurance such as motor, burglary, personal ac-
cident, employers’ liability, goods-in-transit etc. were also introduced into the market.
Most of the laws were enacted to favour and protect the local insurance companies and

created opportunities for more insurance companies to spring up (Afriyie, 2006).

2.4 Economics Importance of Insurance

Researchers attention were drawn to factors and patterns of economic growth. As
there were always the unexplained percentage of growth, three economic growth the-
ories evolved, classical, neo-classical and endogenous growth theory, which is usually
referred to as new growth theory. Classical economic growth theory is a theory on
economic growth that argues that economic growth will end because of an increas-
ing population and limited resources. Classical Growth Theory economists believed
that temporary increases in real GDP per person would cause a population explosion
that would consequently decrease real GDP. Neoclassical economic growth theory 18
an economic theory that outlines how a steady economic growth rate will be accom-
plished with the proper amounts of the three driving forces: labour, capital and tech-
nology. The theory states that by varying the amounts of labour and capital in the
production fur_l_c_:ﬁgﬁ., an equilibrium state can be accomplished. When a new technol-
ogy becomes available, the labour and capital need to be adjusted to maintain growth
cqiﬁTfEﬁum. And endogenous economic growth theory is an economic theory which
argues that economic growth is generated from within a system as a direct result of
internal processes. More specifically, the theory notes that the enhancement of a na-
tion’s human capital will lead to economic growth by means of the development of
new forms of technology and efficient and effective means of production. Researches
within the financial literature focused on the explanation of externalities that may pro-

mote economic growth in addition to labour, capital and technology factors that were
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typically used by representatives of classical and neo-classical economic growth the-
ories. However, most of the research done is focused on the impact of banking while
several studies examined the impact of capital markets development. As reviewed by
Levine (2005) most of the existing research on the links between the operation of the
financial system and economic growth suggest that better functioning of banks and

capital markets facilitates economic growth.

Researchers of the links of insurance and economic growth focused on the
impact of economy on insurance development. Beenstock, Dickinson and Khajurja
(1986) were among the first to do in-depth research that found a good foundation for
a positive impact of income on insurance demand. They used cross-section and time-
series data for ten industrialized countries for the period of 1970 to 1981 and found
the life insurance demand to be directly positively dependent on income, measured as
GDP per capita. A series of empirical was done on both life and nonlife insurance.
Using insurance premium as dependent variable and economys income as explanatory

variables it was realized that, life and nonlife insurance directly depend upon economic

development.

Ward and Zurbruegg (2000) conducted the first study that examined causal re-
lationship between insurance industry growth and economic growth. They short and
long dynamic relationships between economic growth, measured by annual real GDP,
and insurance industry, measured by total real premiums, for nine OECD countries for
the p@jq& 1961-19Wmined. As additional explanatory variables they used
changes in private saving rates, the general-governrﬂem budget surplus, population
size, the general government level of current expenditure and youth plus old age de-
pendency ratios, measured as the proportion of the total population under 16 and over
65 years of age. Based on bivariate VAR methodology to test for Granger causality,
they found that the causal relationship between economic growth and insurance market
development vary across countries. Even though they did not found the exact causes,
they suspected that possible causes are country-specific nature of cultural, regulatory

and legal environment, the improvement in financial intermediation and the moral haz-
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ard effect of insurance. These conclusions were also reached by Outreville (1996) and
Enz (2000). They also concluded that elasticity of the demand for insurance varies it-
self with the level of income that is it becomes less sensitive to income growth in more
developed economies.

Webb, Grace and Skipper (2002) examine whether banks, life and nonlife in-
surers contribute to economic growth by facilitating the efficient allocation of capital
using revised Solow-Swan model of economic growth. They use cross-country data for
55 developed and developing countries, excluding ex-communist European economies,
for the period 1980- 1996. In addition to average penetration of life and non-life in-
surance, as explanatory variables for GDP per capita growth, they use average growth
rate of capital stock per capita, average penetration of banking activity, average level
of exports as a share of GDP, average government expenditure share of GDP, natural
log of initial real GDP per capita and data on propoﬁion of the population over 25
who have completed primary school. They found that the exogenous components of
banking and life insurance penetration are robustly predictive of increased productiv-
ity. Synergy between banks and insurers exists, ‘which indicates that banks and insurers
collectively provide greater benefits than it would be by summing their individual con-
tributions. Additionally, they found that there is no link between economic growth and
non-life insurance. Economic growth affects life insurance penetration while it does

not predict banking development.

2.5 Micro-Insurance in Ghana

National Insurance Commission (NIC) and many other agencies have come out with
plans to support micorsinsurance in Ghana. NIC most especially, has taken this i1s-
sue at both local and international level in an effort to gain a better understanding of
the relevance of microinsurance for financial inclusion and poverty reduction. Also,
the Program for Sustainable Economic Development of the German Development
Cooperation (GTZ) has been supporting microsinsurance in general for many years

(Wiedmaier-Pfister & Michael, 2009).
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2.6 Life Insurance Contracts

Grosen and Jorgensen (2000) analyzes one of the most common life insurance prod-
ucts - the so-called participating (or with profits) policy. This type of contract stands
in contrast to unit-linked (UL) products in that interest is credited to the policy period-
ically according to some mechanism which smooths past returns on the life insurance
company’s (LIC) assets. As is the case for UL products, the participating policies are
typically equipped with an interest rate guarantee and possibly also an option to sur-
render (sell-back) the policy to the LIC before maturity. They showed that the typical
participating policy can be decomposed into a risk free bond element, a bonus option,
and a surrender option. A dynamic model is constructed in which these elements can
be valued separately using contingent claims analysis. The impact of various bonus
policies and various levels of the guaranteed interest rate was analysed numerically,
They concluded that values of participating policies are highly sensitive to the bonus
policy, that surrender options can be quite valuable, and that LIC solvency can be
quickly jeopardized if earning opportunities deteriorate in a situation where bonus re-
serves are low and promised returns are high. The life insurance contract suggested by
Grosen and Jorgensen (2000) features some annual surplus participation. In this type
of contract, the greater of the guaranteed interest rate or a fraction of the asset return 18
annually credited to the policy and in turn becomes part of the guarantee, which is why
this type is called a cliquet-style guarantee. The insurance contract’s market value, as

well as the insurance company’s risk, depends on the guaranteed interest rate as well

__—as on the amount of ongoing surplus.

Grosen and Jorgensen (2002) takes a contingent claim approach to the market
valuation of equity and liabilities in life insurance companies. Their model explicitly
takes into account the facts that the holders of life insurance contracts (LICs) have the

first claim on the company’s assets whereas equity holders have limited liability, that

interest rate guarantees are common elements of LICs, and that LICs according to the.

so-called contribution principle are entitled to receive a fair share of any investment
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surplus. Furthermore, a regulatory mechanism in the form of an intervention rule was
built into their model. This mechanism is shown to significantly reduce the insolvency
risk of the issued contracts and it implies that the various claims on the company’s as-
sets become more exotic and obtain barrier option properties. In Grosen and J¢rgensen
(2002), the authors use a model with a point-to-point guarantee, that is, the company
guarantees only a maturity payment and an optional participation in the terminal sur-
plus at expiration of the contract. The contract’s market value in this model is basically
a function of the guaranteed interest rate and the terminal surplus participation and thus

only the guaranteed interest rate influences shortfall risk at maturity.

Hansen and Miltersen (2002) analyze minimum rate of return guarantees for life
insurance (investment) contracts and pension plans with a smooth surplus distribution
mechanism as in the model suggested by Grosen and J¢rgensen (2000). They specifi-
cally model the smoothing mechanism used by most Danish life insurance companies
and pension funds and they based the annual distribution of bonus on the smoothing
mechanism after the minimum rate of return guarantee into account has been taken.
They considered two different methods that the company can use to collect payment for
issuing these minimum rates of return guarantee contracts: The direct method where
the company gets a fixed percentage fee of the customer’s savings each year, €.g., 0.5%
in Denmark, and the indirect method where the company gets a share of the distributed

surplus.

Ballotta et al. (2003). developed suitable valuation techniques for the broad
category of participating life insurance policies. The nature of the liability implied
by these contracts allows treating them as options written on the reference portfolio
backing the policy. In these contracts, the liabilities annually earn the greater of some
guaranteed interest rate and a predetermined fraction of the arithmetic average of the
last period returns of some reference portfolio. Their valuation approach is based on
the classical contingent claim theory; in particular, Monte Carlo techniques were used
to compute the values of the so called “policy reserve”, that is the guaranteed payoftt

and the reversionary bonus, and the terminal bonus.
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2.7 Valuation of Life Insurance

Insurance Regulatory and Development Authority (IRDA) in India define Life Insur-
ance as a financial cover for a contingency linked with human life, like death, disability,
accident, retirement etc. Human life is subject to risks of death and disability due to
natural and accidental causes. When human life is lost or a person is disabled perma-

nently or temporarily, there is loss of income to the household.

Anders and Peter (2002) presented a model which explicitly takes into account
the fact that holders of life insurance contracts (LICs) have the first claim on the com-
pany’s assets whereas equity holders have limited liability, that 1S, interest rate guar-
antees are common elements of LICs, and that LICs according to the so-called con-
tribution principle are entitled to receive a fair share of any investment surplus. He
further built a regulatory mechanism in the form of an intervention rule into the model.
The mechanism was shown to significantly reduce the insolvency risk of the issued
contracts and it implies that the various claims on the company’s assets become more
exotic and obtain barrier option properties. He derived closed valuation formulas. Nu-
merical were also used to illustrate how the model can be used to establish the set
of initially fair contracts and to determine the market values of contracts after their

inception.

Daniel et al (2010) present such a generic model for the valuation of life in-
surance ¢antracts arﬁe/mb;dded options. They describe various numerical valuation
approaches within their generic setup. They particularly focus on contracts containing

— " early exercise features since these present (numerically) challenging valuation prob-
lems. Based on an example of participating life insurance contracts, they illustrate
the different approaches and compare their efficiency in a simple and a generalized
Black-Scholes setup, respectively. Moreover, they study the impact of the considered
early exercise feature on their example contract and analyse the influence of model
risk by additionally introducing an exponential L'evy model. In their study, they re-

alized that, the Monte Carlo approach yields fast results for European contracts, i.c.
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contracts without any early exercise features, but it was inefficient for the valuation of
long-term non-European contracts: In this case, the number of necessary simulation
steps to obtain accurate results may be extremely high. Secondly, they presented a
discretization approach based on the consecutive solution of certain partial (integro-)
differential equations (PDE approach). They realized the approach was more apt for
the valuation of long-term non-European contracts and allows for the calculation of
the Greeks, but depending on the model specifications solving the P(I)DEs can be very
complex and can slow down the algorithm considerably. Lastly, they discuss the so-
called least-squares Monte Carlo approach. It combines the advantages of the Monte
Carlo and the PDE approach: On one hand, it is a backward iterative scheme such that
early exercise features can be readily considered and, on the other hand, it remains effi-

cient even if the dimension of the state space becomes larger as the valuation is carried

out by Monte Carlo simulations rather than the numerical solution of partial (integro)
differential equations (P(I)DEs).

Christopher (2009) explain the new valuation approach based on market-consistent
values and its rationale; set out the issues fac;ed by life insurers in implementing the
new regime; and explain how these issues were addressed. He did this by analyzing the

valuation reports of the 38 life insurers who used the new approach and, in particular,

. T e wY m T

the information about the modelling they used . He realized that, the market consistent

basis offers a number of advantages over the traditional regime for valuing liabilities

in the United Kingdom. However, he found out that there are further challenges ahead.

He elaborated seme of the chalenges as:

—»What economic scenario generator an insurer uses can make a big difference to

the reported value of its guarantees and options; more work is needed to under-

stand (and, perhaps, reduce) these differences

e Incorporating, in the modelling, the insurers’ planned management actions more

fully is important and

e Further controls are needed so that he did not see as a continuation of the errors
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that arose when the new regime was introduced.

Eric (1995) addressed the issues of the duration and convexity of insurance liabilities
and equity is addressed since these issues have affected the insurance landscape. He
added that a correct assessment of these risk measures is critical as they constitute the
primary ingredients of any sound asset-liability management approach. In addition,
the effort toward a more detailed and more accurate risk picture of life insurance op-
erations enables one to debunk some pitfalls that are commonly encountered in the

insurance industry.

Fabio et al (2006) analysed both the term structure of interest and mortality rates
role for evaluating a fair value of a life insurance business. They discussed a fair value
accounting impact on reserve evaluations and compare it to the traditional deterministic
model based on local rules for an Italian balance sheet calculation and a stochastic one
based on a diffusion process for both mortality and financial risks. They separated
the embedded derivatives from their host contracts so the fair value of a traditional
life insurance contract would be expressed as the value of four components: the basic

contract, the participation option, the option to annuities and the surrender option.

2.8 Mathematical Model

Many _\fﬁiérs have Wdifferent models of valuation of insurance liabilities.

Differences among .the various models arise from the development of liabilities due

— to different types of guarantees and different surplus distribution mechanisms among

countries. Among these models are Black-Scholes model for asset prices, Levy model

for asset prices, the asset-liability management (ALM) model and asset dynamics and
interest rate modelling.

In the standard Black-Scholes framework, the total market value of assets A

evolves according to a geometric Brownian motion. A Levy process is a process with

independent and stationary increments that is continuous in probability (Nadine & Ste-
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fan, 2007). Levy models are viable alternative to the geometric Brownian motion for
modelling price processes of financial assets. In contract to the Brownian motion, the
Levy models allows for jumps in the price path, and skewness and excess kurtosis in
asset return distributions, and takes into account features often observed in real-world
asset prices. According to Nadine and Stefan (2007), replacing Black-Scholes with
the Levy model may seem to be a serious drawback since the Levy model lead to in-
complete markets with an infinite number of martingale measures and Black-Scholes
model relies on perfect hedging arguments. But the insurance industries cannot and
do not follow perfect hedging strategies for participating contracts. Note that, in in-
complete market situations, it is not just one arbitrage-free price but a whole range of
arbitrage-free prices.

The asset-liability management (ALM) is responsible for the administration of
the assets and liabilities of insurance contracts. The ALM model is used for the simula-
tion of the future development of a life insurance company. The ALM model includes
the Capital Market Model (for the specification of the dynamics of the short interest
rate at a time), the Management model which is used for the capital allocation, bonus
declaration mechanism and the shareholder participation and the Liability model for
the decrement of policies due to mortality and surrender and the development of the
policyholder’s accounts. It also include the Balance sheet model which is used to de-
rive the recursive development of all items in the simplified balance sheet (Gerstner et
al., n.d.).

2.9 Models Framework

There are financial and actuarial approaches to assess financial guarantees within life
insurance contracts. Some of the financial approach is concerned with risk-neutral val-
uation and has been researched by various authors, e.g. Briys and de Varenne (1997),
Grosen and J¢rgensen (2000), Grosen and Joergensen (2002), or Bauer et al. (2006).
Note that the concept of risk-neutral valuation is based on the assumption of a perfect

hedging strategy or replicating portfolio. Such a perfect hedge, however, is usually not
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possible for insurers for several reasons (cf. e.g. Bauer et al. (2006)).

Barbarin and Devolder (2005) propose a model that combines the financial and
actuarial approach. They use a simple liability model similar to Briys and de Varenne
(1997) and Grosen and Jorgensen (2002), with a point to point guarantee and terminal
surplus participation. To integrate both approaches, they use a two-step method: First,
they determine a guaranteed interest rate such that certain real world risk-measures
(e.g. value at risk or expected shortfall risk) are satisfied. Second, to obtain fair con-
tracts, they use risk-neutral valuation and adjust the surplus-participation rate accord-
ingly. This two-step approach can be applied within their model because the surplus
participation is only applied at maturity. Therefore whilst it has an influence on the
contract’s value it has no impact on the considered risk measures. However, they do

not consider cliquet-style guarantees that are predominant in many insurance markets.

In Brennan and Schwartz (1976, 1979), cited in Nielsen and Sandmann (1995),
the rational insurance premium on an equity - linked insurance contract was obtained
through the application of the theory of contingent claims pricing. The premium was
determined in an economy with the equity following a geometric Brownian motion,
whereas the interest rate was assumed to be constant. Nielsen and Sandmann (1995)
realized that, further consideration with deterministic interest rate allow for interest
rate risk by assuming an Ornstein - Uhlenbeck process implying a closed form solu-
tion of the single premium endowment policy. They presented a model for the multi

premium-case in the context of a stochastic interest rate process. It was shown that the

I

insurance contract includes an Asian - like option contract. No closed form solution
____will be obtained. They discuss different numerical approaches and apply Monte Carlo

simulations with a variance reduction technique.

Nielsen and Sandmann (1995) concluded that, in an economy with stochastic
development of the term structure of interest rates a model for the determination of
the fair premium on an equity linked life insurance contract has been established. An
essential part of the premium equation consists of a contingent claim with a character

as an Asian option. However it was shown that the stochastic interest rate and the long
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time to maturity of the insurance contract prohibited the application of the "usual™ so-
lution methods: Edgeworth expansion or Fast Fourier transform. The approximation
formula developed by Vorst (1992) cited in Nielsen and Sandmann (1995) exhibited a
better performance than the two just mentioned for medium term contracts. Nielsen
and Sandmann (1995) applied and advocated for Monte Carlo simulations to over-
come the difficulties. The result obtained was compared to the Edgeworth and Vorst
approximation and found to be preferable to these. They realized that, although the
Monte Carlo simulations are more time consuming than the other methods they did
not take it as a serious critical point against simulation as the fair premium only has to

be calculated once when the contract is entered.

According to Mike et al (2010), the use of advanced data mining techniques
to improve decision making has already taken root in property and casualty insurance
as well as in many other industries. However since in their opinion, the application
of such techniques for more objectives, consistent and optimal decision making in
the life insurance industry is still in a nascent stage, they described the ways data
mining and multivariate analytic techniques can be used to improve decision making
processes in such functions as life insurance underwriting and marketing, resulting in
more profitable and efficient operations. They implemented predictive modelling in
life insurance underwriting and marketing and demonstrated the segmentation power

of predictive modelling and resulting business benefits.

The liability structure of the insurance company is implied by participating life
B /ll :
insurance contracts and based on a model suggested by Ballota et al (2006) cited in
Nadin-and Stefan (2007). According to Ballota et al (2006) cited in Nadin and Stefan
(2007), for policyholders to initiate contracts, they must pay a single premium Py and if
the company’s initial capital is Ep, then the sum of the initial contribution Ag = Eq + Fp.
This sum of initial contribution A is invested in the reference portfolio. Hence for

0 < k < 1, it holds that Py = k- Ap and Ep = (1 —k) - Ag, where k represents the leverage

of the company.
If P denote the policyholders’ account, that is, the book value of the policy
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reserves. The policy reserve P is a year-to-year, or cliquet-style, guarantee, which
means it annually earns the maximum guaranteed interest rate or a fraction o of the
annual surplus generated by the insurer’s investment portfolio. Hence forr =1,2,..., T,
the development of the policy reserve is given by

A(t)
A(t—1)

P(t)=P(t—1)- (1 +max|g,o( —1)])

Bollotta et al (2006) summarizes the value of liabilities L(T') as
L(T) = P(T)+8[k-A(T))t =P(T)+5-B(T)—D(T)

Where D(T) denotes the default put option, £(7'), the residual claim of the equity
holders and is determined as the difference between the market value of the reference

portfolio A(T') and the policyholder’s claim L(T), i. e.
E(T) =A(T) —L(T) = max(A(T) — P(T),0) = 6-B(T') > 0

In the standard Black-Scholes framework, the total market value of assets A evolves
according to a geometric Brownian motion as stated earlier. In Black-Scholes model
for asset prices, the standard Brownian motion (W”(¢),0 <¢ < T') on a probability
space (Q,F,P) and (£),0 <t < T, be the filtration generated by the Brownian motion.
The total market value of the assets A in standard Brownian motion evolves according

to a geometric Brom under the objective measure P is given by
dA(t) = mA(t)dt + cA(t)dw" (1),

with constant asset drift 7z, volatility ¢, and P-Brownian motion WP, assuming a com-

plete, perfect, and frictionless market (Nadine & Stefan, 2007). The solution of the

stochastic differential equation is

Alt) :A(O)_e((mf%‘l)xm-w‘“{:;) — A=) _e(m—§+u-(wF{:)—w‘°(:—1}))
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Bjarke et al (2001) described the financial characteristics of the contract which is ar-
ranged between the insurance or Pension Company and the investor. If, a contract of
nominal value P, is issued by the company at time zero and the contract is immediately
acquired by an investor for a single premium of Vp, then let’s assumed that there are
no further payments from or to the contract prior to expiration at time 7' where the
contract is settled by a single payment from the company to the investor. In general Fp
shall be tread as exogenously given whereas V; is to be determined by our model. Vg
will also be referred to as the fair value of the contract. The contract is a contingent
claim and we will determine its value process using methods from the well-developed
theory of contingent claims valuation as also illustrated by Duffie (1996). The bene-
fit from the contract at the maturity date is denoted P(7') and shall generally refer to
{P(t)}o<i<r as the account balance process of the contract. The evolution of P(-) be-
tween successive time points in the set ¥ = {1,2,...,3} is determined by the discretely

compounded policy interest rate process, {rP(t) };er. Specifically, we have
P(t)=(1+rp(t))-P(t—1),t€Y

which implies
[

P(t) =Foe H(l +rp(i)),t €Y
=1

Time is measured in years, P(-) is updated annually, and the rp(-)s are annualized rates

as in real life contracts. Now, the way in which rP(-) is determined is of course of vital

importance. — .

~ According to Nadine and Alexander (unpublished), fair pricing of embedded
options in life insurance contracts is usually conducted by using the appropriate con-
cept of risk-neutral valuation. This concept assumes a perfect hedging strategy, which
insurance companies can hardly pursue in practice. They extended the risk-neutral val-
uation concept with a risk measurement approach and accomplish this by first calibrat-
ing contract parameters that lead to the same market value using risk-neutral valuation.

They then measure the resulting risk assuming that insurers do not follow perfect hedg-
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ing strategies. They use lower partial moments as the relevant risk measure, comparing
shortfall probability, expected shortfall, and shortfall variance. Their research showed
that even when contracts have the same market value, the insurance company’s risk
can vary widely, a finding that allows us to identify key risk drivers for participating

life insurance contracts.

2.10 Numerical Methods Approach

Gerstner et al (unpublished) propose a discrete time asset-liability management (ALM)
model for the simulation of simplified balance sheets of life insurance products. The
model incorporates the most important life insurance product characteristics, the sur-
render of contracts, a reserve-dependent bonus declaration, a dynamic asset allocation
and a two-factor stochastic capital market. All terms arising in the model can be cal-
culated recursively which allows an easy implementation and efficient evaluation of
the model equations. The modular design of the model permits straightforward mod-
ifications and extensions to handle specific requirements. In practise, the simulation
of stochastic ALM models is usually performed by Monte Carlo methods which suffer
from relatively low convergence rates and often very long run times, though. As alter-
natives to Monte Carlo simulation, they proposed deterministic integration schemes,
such as quasi-Monte Carlo and sparse grid methods for the numerical simulation of
such models. Their efficiency is demonstrated by numerical examples which show
that the t_icicnninistic /@:ﬂqunﬁen perform much better than Monte Carlo simulation
as well as by theoretical considerations which show that ALM problems are often of
— low effective dimension.

Russel and Collins (1962) described the application of the Monte Carlo tech-
nique to a practical situation in a company to solve the problem of rate-making with
real problem in the transfer of coverage from one carrier to another by a policyholder
who finds himself or herself in a large deficit position with the original carrier in the
field of insurance. This situation can be avoided if the policyholder is willing to pay

an additional charge for a guarantee of an upper limit on the amou?l of deficit carned
Wi TN
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forward from one year to the following years. In order to determine such a charge, it 1s
necessary to know the probability of, the expected value of, and the variation of claims
in excess of a given amount. The basic problem to be solved, of course, is that of de-
termining the frequency distribution of the annual claim cost of a given group of lives
for a given year. It was desired that the following properties of the group be allowed
to vary over rather wide ranges: (1) the size of the group, (2) the age distribution of
the group, (3) the sex distribution of the group, (4) the total amount of insurance, and
(5) the distribution of the insurance on individual lives. Since the analytical solution of
such a problem was complex, they used the Monte Carlo technique, which is admirably

suited to a problem of this nature.

Bjarke et al (2001), sets up a model for the valuation of traditional participating
life insurance policies. These claims are characterized by their explicit interest rate
guarantees and by various embedded option elements, such as bonus and surrender
options. Owing to the structure of these contracts, the theory of contingent claims
pricing is a particularly well-suited framework for the analysis of their valuation. The
eventual benefits (or pay-offs) from the contracts considered crucially depend on the
history of returns on the insurance company’s assets during the contract period. This
path-dependence prohibits the derivation of closed-form valuation formulas but they
demonstrated that the dimensionality of the problem can be reduced to allow for the
development and implementation of a finite difference algorithm for fast and accurate
numerical evaluation of the contracts. They also demonstrate how the fundamental
financial model can be extenMﬁf for mortality risk and we provide a wide
range of numerical pricing results. So they use finite difference approach to value the

life insurance liabilities.

The finite difference approaches used include the implicit finite difference, the
explicit finite difference and the Crank Nicolson scheme. Among them, it was real-
ized was more accurate than the implicit and the explicit finite difference because the

error associated with the final solution with Crank-Nicolson is smaller the other two

methods.
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2.11 Path-Dependent Option

A path-dependent option is an option whose payoff depends on the path followed by
the price of the underlying asset. Path dependence explains how the set of decisions
one faces for any given circumstance is limited by the decisions one has made in the
past, even though past circumstances may no longer be relevant. Their payoffs do not
merely depend on the final value of the underlying asset, but also on the way that the
price was reached. American-style contract for example, is path-dependent since there
is usually a probability of the option being exercised before expiry and thus ceasing
to exist. There are many kinds of path-dependent options, such as lookback and Asian
options. Others includes Russian, Game or Israeli, Cumulative Parisian and barrier
options.

Financial derivatives (eg. options and futures) derive their value from an under-
lying traded financial security, whose price is modelled by some stochastic process.
In their most general form, the option payoff is path dependent since it depends on
the entire future path traversed by the underlying security (Andrew, 1999). According
to Chance (1995) cited in Andrew (1999), path dependent options are defined using
either discrete or continuous price sampling. Closed form solutions are often avail-
able for continuous sample, but in practice most traded path dependent options are
discretely sampled. It is known that the application of these closed form solutions
leads to substantial pricing errors for discretely sampled options (Andrew, 1999) and

—_— /
(Chance, 1995).

— According to David (1985) cited in Scott (2006), the concept of path dependence
originated as an idea that a small initial advantage or a few minor random shocks along
the way could alter the course of history. But the scope of this idea has grown so wide
that path dependence has dulled it value and in becoming a trendy way to say that
history matters, path dependence no longer provides any analytic leverage ( Pierson,

2000).

As indicated by David (1985), the concept of path dependence seems almost
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metaphorical. Path dependence simply means that the current and future states, actions
or decisions depend on the path of previous states, actions or decisions (Scott, 2006).
Scott (2006) described a dynamic process that produces outcomes at discrete
time intervals indexed by the integers, t = {1,2,...} He denotes the outcome at time ¢
as x;. In addition to the outcome there are other information, opportunities, or events
that may arise in a given time period which he described as the environment at time .
This contains exogenous factors that influence outcomes. A history at time 7', hr is

the combination of all outcomes x; up through time (7' — 1) and all other factors, the y;

, up through time T .
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Chapter 3

METHODOLOGY
3.1 Introduction

This chapter consist of the methodology used to implement the numerical methods
used in the valuation of traditional participation of life insurance policies using the
finite difference approach and the binomial tree method. There are three formulas
of finite difference method, the backward difference scheme, the forward difference

scheme and the central difference scheme.

3.2 Preliminaries

In this study, the algorithm was derived from the application of the finite difference
scheme to solve boundary-value partial differential equations proposed by Bjarke et al
(2001) and the multi-period binomial ire:c mc_thod. This is because in this scheme, the
path-dependence variable is conveniently treated as a parameter in both the European-
style contract and the American-style contract. Also, the simple Monte Carlo approach
used by Grosen and Jorgensen (2000) requires that the exact solution to the Geometric
Brown_ia;l.;/lolion (GBM)the finite difference approach is not specific to this choice
of the process in the evolution in the asset base (Bjarke, Peter, & Anders, 2001). The

study is based on one time premium payment.
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Definition 3.1: Differential Equation

A differential equation is an equation involving the unknown function y = f(z), to-
gether with its derivatives y',y", ...,y

Mathematically, a differential equation may be express implicitly as
F(t,,5,y",.5")=0 (3.1)
Explicitly, the general form of a differential equation can be written as

¥y = £,y ...,y D) (3.2)

Definition 3.2: (Ordinary Differential Equations)

An ordinary differential equation (ODE) is an equation involving an unknown function
of a single variable together with one or more of its derivatives.

Definition 3.3: (Order of Differential Equations)

A first order differential equation is of the form

y=fty) | (3.3)

and the equation is said to be in normal form.

A differential equation of order n is of the form

.,--""H_F

feny, e yW) =0 = = (3.4)
and-is-also said to be in normal form.
A typical n'" order linear differential equation is given by

Y a1 (0)y "D + ()" 4 apy (1)Y +aa()y = £(2) (3.5)
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Definition 3.4: Partial Differential Equations (PDE)

A partial differential equation (PDE) is an equation that involves an unknown function
(the dependent variable) and some of its partial derivatives with respect to two or more

independent variables. Mathematically, PDE is of the form

F(‘lt*“!’ﬂ&“\lil{ au azu azu

afl'""at,.’arla:l"”‘a;,a;ﬂ*'“)=0 (3.6)

If F is a linear function of u and its derivatives, then the PDE is called linear. An

n'"-order PDE has the highest order derivative of order n. A simple PDE is
ou

This relation implies that the function u(z,y) is independent of 7. However the equation
gives no information on the function’s dependence on the variable y. Hence the general

solution of this equation 1s

u(t,y) = f(y) | (3.8)

where f is an arbitrary function of y.

General linear second order PDE is of the form

a(t,y)uy + 2b(r, ¥ ury +c(t,y)uyy +d(t,y)u, +e(t,y)uy +g(t,y)u = f(t,y) (3.9)
= /_/',_’
where (1,y) € £ is a domain in 7 — y coordinates.

Definition 3.5: Stochastic Differential Equation (SDE)

A stochastic differential equation (SDE) is a differential equation in which one or more
of the terms is a stochastic process, resulting in a solution which is itself a stochastic
process (Davis, 2005). In probability theory, a stochastic process or sometimes random
process (widely used) is a collection of random variables; this is often used to represent
the evolution of some random value, or system, over time. This is the probabilistic

counterpart to a deterministic process (or deterministic system).
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SDE'’s can be used to model the randomness of the underlying asset in valuing
insurance liabilities. For example, The dynamic behaviour of the asset price in a time

interval dr can then be represented by the SDE given by

ds; = (A, 1)dt + o (A;,1)dW; fort € [0,0) (3.10)

3.3 Finite Difference Approximation
A finite difference method typically involves the following steps:

1. Generate a grid, for example (x;,1*®)), where we want to find an approximate

solution.

2. Substitute the derivatives in an ODE/PDE or an ODE/PDE system of equations
with finite difference schemes. The ODE/PDE then become a linear/non-linear

system of algebraic equations.
3. Solve the system of algebraic equations.
4. Implement and debug the computer code.

5. Do the error analysis, both analytically and numerically.

3.3.1 Typeio_f finite di/f{g_rgggtafmethods

Depending on how we approximate the partial derivative with respect to time, we have

—

three different finite difference schemes:
1. Explicit finite difference scheme, when we use the forward difference formula
2. Implicit finite difference scheme, when we use the backward difference formula

3. Crank-Nicholson finite difference scheme, when we use the centred difference

formula.
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3.3.2 Finite difference formulas of Ordinary Differential Equations

(ODE)

There are three commonly used finite difference formulas to approximate first order
derivative of a function f(x). They are forward finite difference, backward finite dif-

ference and central finite difference.

Let’s consider Taylor’s series expansion of a funetion f(x) in the neighbour-

hood of x = x;:

N

Ax)3 Ax)4
21 I (31) ;H_l' ( 41) ffr”-]l-... (311)

I

fir1 = fi+Axfi +

Where'As— Xii1 —Xi -

Solving equation 3.11 for f;, we have

f_ﬁ—Fl_ﬁ‘_@ H_@ 1
i e Tl g i X5

Using the mean-value theorem, equation 3.12 becomes

/ i+1—=Ji  AX
fi = filx J = Tf (E)rrE <Xt (3.13)

where O(Ax) = — 5 £4EJ, the order of Ax , indicates the error is proportional to the

step length (Ax) and also a second derivative of f. Hence

/ ff+l ft i
A ) 3- 4
ff \ ( 14)

Equation 3.14 is called the Forward Difference Formula.

Similarly, the Backward Difference Formula from the Taylor series

2 3 _
fior = fi— Axfi + (A;) 5’—(—1;x;)—ﬁ”’+--- (3.15)
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is given by

Jiy i il
fl= = (3.16)

with the error O(Ax) = ?52—"" f"(&). Finally, subtracting equation 3.15 from equation 3.11

we have the central difference formula

A=y hitd=1
i T (3.17)

with the error O(Ax) = — (‘if k (&)

3.3.3 Finite Difference Approximation for Partial Differential Equa-
' tions (PDE)
Ay I i
! Ji-1. j+2 li, j+2 i+-1.§j+2 i+2, j+2 J
Ay
| R N | | #rilied g2, 441
. ™ I . -
- - - i-1.] !,-.!-'_J - ‘i+1’.j i+2,. 3 -
v i-1,§-1 L i §j-1 L x+1, §-1 | I-+2, §-1 8
- F ., =t -
I ﬂ Bl - | -— - | - |-
= Ax Ax P Pooe
}
| Figure 3.1: Two-dimensional grid
! — T —
In many financial and engineering problems , the function f depends on two or more

independent variables, hence the need for finite-difference approximation of partial

! derivatives. Since partial derivatives denotes the local variation of a function with

respect to a particular independent variable while all other independent variables are
held constant, finite difference approximation of ordinary derivatives can be adapted
for the partial derivatives. If there are two independent variables, we use the notation
(i, j) to designate the pivot point, and if there are three independent variables, (i, j, k)

are used where i, j and k are the counters in the x, y and z directions.
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Figure 3.1 above is a two-dimensional finite-difference grid. If we consider
the function f(x,y), then the finite-difference approximation for the partial derivative
of i‘y at x = x;,y = y; can be found by fixing the value of y at y; and treating f(x.y;)

as a one-variable function. The forward, backward and central difference of %{ can be

express as
g_if s - f(x;+Ax,);)c—-f(xny;) (3.18)
3_1: 3 ACDY) —iix,- —Ax,y;) (3.19)
_aa_if : 9 f(x,-+ﬁx,yj)2;xf(1f*ﬁxf)’j) (3.20)

Central-Difference Approximation of Second Partial Derivatives

The central-difference approximation of second partial derivatives at (x;,y;) can be

derived as
Of | flitAxy;) = 2f(xiry;) + f(xi = Ax.y;) (3.21)
i ox? |; ; (Ax)? |
Prf| Sy +A8y) = 2f(xi,y;) +f (xiry; = B) (3.22)
0y2 |; ; (Ay)?

and

9*f | _fxi+Ax,y; +Ay) — f(xi +Ax,yj — Ay) — f(xi — Ax,y; + Ay) + f(xi — Ax,y; — Ay)
dxdy |; ; - (4AxAy) -
(3.23)

33




Error of finite-difference approximation of partial derivatives

To find the error associated with finite-difference approximation of partial derivatives,

we use Taylor series expansion of f(x,y) around the point (x;,y;). That is,

WO N0 (Ax)* 0*f (Ax)’ 0° f
fay=futbeg | +5ag) £ 5| e (3.24)
of (Ay)? 0*f (Ay)° @ f
f:}:i:l f,j Ay ay f!j_i_ o) ayZ t',j:l: 3! ay3 I',j+ (3 25)

Truncating equation 3.24 after the nth order, we have the error

M)n—i—l an+lf(x }’)
R:cn o | n—H( ) b
and truncating equation 3.25 after the nth order gives the error
ﬁy)”"'l an-l—lf(x }’)
Ry == (= 1)1 1 g - 3.27)
g = =1) (n+1)! " gyl i i (

3.3.4 Finite difference approximation for two dimensional PDEs

Let’s consider a two-dimensional PDE

e

—

U U
Sy 9L 3.28
52 T a7~ 8%Y) (3.28)

such thata < x < band c <y <d. If welet U(a,y) = U, U(b,y) = Up, Ulx,e) =U.,
and U (x,d) = Uy, where Uy, Up, U and Uy are the boundary conditions at y and x

respectively. Note that, Ax is not necessarily equal to Ay, but for this case we let

Ax = Ay = h. Let’s consider the grid below.
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Ua Ua Uag
d
P7 Ps
Ua . . g,E’ Ub j+1
P Ps
Ua . : B ° . Ub j
C
a Ul U U b
i i+1

Figure 3.2: Simplify two-dimensional grid

At the generic points

Y
i\j dy?

02U

o A

)

Using the central difference scheme we have

U Ui =2Uij + Ui, (3.29)
Ox? h?
— /—-”—4
and
AU - Uij-1 = 2Uij + Uij (3.30)
dy? h?
Adding equations 3.29 and 3.30, we have
Py  PUsy Uity t Uiy = Wyt Uit lhim _ (3.31)
ox2 dy? h
= Uj—1,j+ Uit1,j —4Uij+ Ui j-1 +Uijn = hzgu Gas)
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Ath:i=1,j=1

=> U0'| + Uz ) —4UI,I +UI,D+U1.2 .~ hzgl.l

but Uy, = U,, and U, o = U,

= —4U) 1+ Uz + U1 2 = kg, —Us—Ue

= _4Pl +P2+P4 =h23|‘| _Uﬂ'—Uc

Ath:i=2,j=1

P, — 4P, + Py +Ps = h’gy 1 — U

Using the computational model below,

()

P i

(1S )

e

Figure 3.3: Computational model

we have Uy + Ur —4U5 ¥ Uy + Us = h’g;

Summarizing the generic points, we have

P
Py

FEFFITL P

—4P,
P

P\

+Ps
4P +Py
P, 4P
P

P

+Py

| pd_

+ Py

Py

+Ps

+Ps
+Ps
—4Ps
+Ps —4Fs
Ps

Ps
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—4P
+

—4P;
+F%

+F
—4Py

|

(3.33)
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Writing the above systems in matrix, we obtain

I
g
O
1R8N0
01
0 0
0 0
0 0
0 0

o

= L=l (=

0

0 10
OF i)
100
O eul
=48 i)
—4 0
0 —4
0, | 1
1)

oenoilifia
o )|
0 0| P
0RO B8z,
8l 2
0 1| &
1 o] A
IAL L 7
1 —4| | B

where by = h%g,, — U, — Uy, by = h2g,, —U,, b3 = h*g,, — Uc, by = h’g,, — Uy,

by = h2g,, — U, bs = h?g,,, bo'= hega, U=, by = h*g,, — U, ~U—d, bg =

h*g,,— Uz and by = h’g,, — Up—Uy

=
If weletA= | 1

-~

1 00
07 IR0

030+l

and O =

0 0 0
0 0O

Ot O

Also B; = by : b3, By = by - bgyBy=-bynbopXy = P, . P, Xr = Py : Pg and

X; = Py : Py, we obtain the matrix

A1l O
TR ]

= QA

—

X

_..-""'-#

X3
X3

which is simplify in the form

HX =B

(3.35)

(3.36)

When systems are express in the form HX = B, we have several solution techniques in

solving it.
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3.3.5 Solution Techniques

There exist different types of solution techniques. Notable among them are the Gaus-

sian Elimination, Gauss-Jordan Elimination, LU and QR decomposition and iterative

methods. The iterative methods includes Jacobi, Gauss-Seidel and the relation meth-

ods (Successive Under Relaxation and Successive Over Relaxation - SOR).

Iterative Methods

As stated earlier, the common iterative techniques for solving linear systems are Jacobi,

Gauss-Seidel and SOR method. The basic idea is to solve the i equation in the system

for the i variable ((Laurene, 2008)). Let’s consider the four-by-four system below:

a,x, +a,,x, +a,;x;, +a,,x, = bl
ay X, + a,X, +ay,x; +a,x, = b,
Ay X, + Gy X, + A== Byiy = b

G X + QX + G, %, TagX, =Dy

Solving for x,, x,, x,, x, in equations 3.37 to 3.40, we have

a a a b
xl______gxl_ '3):3 4y i
a, a a, a,

a a a b,
X, =— lel 23x3_ 24*‘4 LY
a,, 0y a,, a,,

a Ay, A— V5

x}___n_irlr_ 3“:(2_;1-4_{__3
Ay a5 Uy a3

a a a b

= 2 4
__.x;:_ixl_ixz_ix:‘ -
Ay Ay Ay Ay

Iterative methods are stopped at certain conditions. Below are two possibilities:

(3.37)
(3.38)
(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

1. Iterations are stopped when the norm of the change in the solution vector x from

iteration to the next is sufficiently small or

2. when the norm of the residual vector, ||Ax — b/, is below a specified tolerance.
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3.3.6 Jacobi Iterative Technique

In the Jacobi method, the system Ax = b is transformed into the system X = Hx +d,
where H has the zeros on the diagonal and X is a vector which is updated from previous

vector x.

The systems 3.41 to 3.44 in a matrix form is

a a a b
X 0 % TGS L G Y o
: a1 an a1 I a
X Lo Ll %
oY) o) LoY) 2 a5
= + 5 (3.45)
a a a
X e EED 0 . 9ay - Ban
‘ 249 as3 43 2 A33
a a a b
X g1 — 42 B4 O X _4 .
Liiad L Gy A4 Qp4 4] e LGy -
which is in the form X = Hx 4 d. Iteratively
X‘.H :fo.+d (3.46)

Equation 3.46 is the Jacobi Iterative technician. In this iteration, matlab will be used

to run the iteration.

3.3.7 Convergence, Consistency, and Stability

Norm of a sequence

For any sequence of numbers a,, let

Jafl = max|an 347

This norm is called the ”L.. -norm” of the sequence a,. There are other kinds of norms,
which are equally useful in their own circumstances but the researcher is interest in the

L.. -norm because we want to know the maximum error of our numerical solution

which is bounded by some tolerance &

max |g| < & or ||€]| < €l (3.48)
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Convergence

Definition 3.5: A one-step finite difference scheme approximating a partial differential
equation is a convergent scheme if for any solution to the partial differential equation,
u(t,x), and solutions to the finite difference scheme, u?, such that v¥ converges to ug(x)
as iAx converges to x, then V! converges to u(t,x) as (nAt,iAx) converges to (z,x) as
At, Ax converges to 0 (Singiresu, 2002).

Simply put, a numerical method is convergent if its global error computed up to a given

x satisfies:

This implies that, the numerical solution Y, is computed with no round-off (i.e ma-

chine) error.

Consistency

Definition 3.6 : A numerical method F (Y, h] = 0 is consistent if
lim ||z]| =0 | (3.50)
h—0

where T, = F[yn,h].

e

-

Stability

—

Definition 3.6: We say the method is numerically stable if the actual error €7 is

bounded as n — . Conversely, a method is numerically unstable if the actual error
grows without bound (this phenomenon is known as numerical instability)
This is to say that, for a stable method, the deviation between two numerical so-

lutions arising for example, due to the round-off error, does not grow with the number

of steps.
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3.4 Life Insurance Contract Models

3.4.1 The Contract and Dynamic Model

Let’s consider a simple balance sheet of the insurance company.

Table 3.1: Simplified balance sheet
Assets Liabilities
At =Ap| L) =L

B(t) = B,

A A

Note that, the balance sheet is not the companies balance sheet but rather a
simplified form of the asset and liability situation in relation to a given contract. In
the above balance sheet, A, denotes the market value of the insurer’s asset portfolio,
L; denotes the policyholder’s account balance and B; = A; — L; 1s the bonus reserve at

time 7.

If charges are disregarded, the policyholder’s account balance at time zero, Lo,
equals the single up-front premium P, that is, Lo = P. Note that the policyholder
may surrender his or her contract during the term of the contract. If the contract 1s
lapsed at time v € {1, ..., T'}, the policyholder receives the current account balance

L... It is assumed that shareholders are paid dividends during the anniversaries as

Vo *

compensations for the adopted risk.
e ,/__/_

The life insurance companies invest largely in highly liquid assets like bonds and

—stocks for which market prices are easily observed. For this reason, we can assume

that A is traded (Bjarke et al., 2001). The policy account balance, L(z), is a book

value. Alternatively, L(t) can also be considered to be the funds set aside to cover the

insurance contract liability a distributed reserve. B(z) is the undistributed reserve or

the buffer. The reason for keeping B() is to partly protect the policy reserve, L(r),

(thus company solvency) from unfavourable fluctuations in the asset base. Before

considering the policy interest rate, the dynamic asset side must be modelled.
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3.4.2 Asset Dynamic Models

Two different asset models -a geometric Brownian motion with deterministic interest
rate (constant short rate r) and a geometric Brownian motion with stochastic interest
rates given by a Vasicek model cited in cited in Daniel et al (2010).

In the case of the geometric Brownian motion with deterministic interest rate,
we use classical Black-Scholes setup. The asset process under the risk-free measure Q

evolves according to stochastic differential equation
dA; = rA,dt + 6AdW;, Ap = P(1 +xp) (3.51)

where r is the constant short rate, 64 > 0 is the volatility of the asset process A, and W
is a standard Brownian motion under Q (martingale).
According to Wilmott et al (1995), asset prices move randomly because of the

efficient market hypothesis. But the different forms of this hypothesis basically say

two things:

e The past history is fully reflected in the present price, which does not hold any

further information.

¢ Markets respond immediately to any new information about an asset.

The modelling of asset prices is really about modelling the arrival of new information
which affects the price. Base on the two assumptions, the unanticipated changes in the

asset price are a Markov process—

Figure 3.4: Details of a discrete random walk
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3.5 Numerical Methods

Closed form solutions exist for European contracts. However, for other contracts,
American or Asian contracts, a closed form solutions does not exist. And the only way
a market participant will be able to obtain a price is by using an appropriate numerical
method. Binomial tree method, Monte-Carlos Simulation and finite difference method
(Explicit, Implicit and Crank-Nicolson method) and Risk-neutral valuation methods
are some of the numerical methods. In this paper we will compare the Binomial tree
method and the finite difference method in the valuation of the life insurance liabilities.
In the finite difference method, we will use the Implicit and Crank-Nicolson method

as the explicit method is conditionally stable.

3.6 Black-Scholes setup for the Valuation model

Before we get to the valuation function using Black-Scholes setup, let’s consider the
concept of arbitrage, a concept, which in certain circumstances, allows us to establish

relationship between prices and hence determine them.

3.6.1 Hedging

Hedging is a financial strategy used to reduce the risk of investing in financial markets.
Like insurance, hedging can avoid some losses, but it also may reduce some potential
for returns on investment, An investor who believes he can make a profit on the in-
crease in value of an investment will reduce potential losses by betting on the decline
of a related investment. One very important strategy is delta hedging. The delta, A, of
the option is defined as the change of the option price with respect to the change in the

price of the underlying asset. In other words, it is the first derivative of the option price

with respect to the stock price:
oV

A=
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3.6.2 Arbitrage

It is the practice of taking advantage of a price difference between two or more markets:
striking a combination of matching deals that capitalize upon the imbalance, the profit
being the difference between the market prices. When used by academics, an arbitrage
is a transaction that involves no negative cash flow at any probabilistic or temporal
state and a positive cash flow in at least one state; in simple terms, it is the possibility

of a risk-free profit at zero cost.

One of the fundamental concepts underlying the theory of financial derivative
pricing and hedging (an investment position intended to offset potential losses/gains
that may be incurred by a companion investment) is that of arbitrage. Finance theory
assume the existence of risk-free investments that give a guaranteed return with no
chance of default (Wilmot, Howison, & Dewynne, 1995). The highest risk-free return
that one can make on a portfolio of assets is the same as the return if the equivalent

amount of cash were placed in a bank.

3.6.3 Options, values, pay-offs and strategies

Let V be the value of an option, where distinction is important, we use C(A,t) and
P(A,t) to denote a call and a put respectively. A call option, often simply labelled
a “call”, is a financial contract between two parties, the buyer and the seller of this
type of option. Tl_je buyer of the j{ﬁgg_tjgn has the right, but not the obligation to buy
an agreed quantity of a particular commodity or financial instrument (the underlying)
from the seller of the option at a certain time (the expiration date) for a certain price
(the strike price). The seller (or "writer”) is obligated to sell the commodity or financial
instrument should the buyer so decide. A put or put dption is a contract between two
parties to exchange an asset (the underlying), at a specified price (the strike), by a
predetermined date (the expiry or maturity). One party, the buyer of the put, has the
right, but not an obligation, to sell the asset at the strike price by the future date, while

the other party, the seller of the put, has the obligation to buy the asset at the strike
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price if the buyer exercises the option.

V is the function of the current underlying asset A, and time, . i.e. V =V/(A,1). The
value of the option/contract depends on the following parameters.

O - the volatility of the underlying asset.

T - the expiry or maturity time.

r - the interest rate.

3.6.4 The Black-Scholes Analysis

Before we develop a model for the price of asset, it is necessary to first develop a
model for the price of the asset itself. Economic theory and historical data suggest that
asset returns are composed of two components. First, the value of asset will increase
with time at a rate r known as the drift rate. Second, at any time the value of the asset
is subject to random variability. This variability is expressed by a random variable X
with certain special properties.

The notion that asset’s value will necessarily increase over time is due to the ex-
pectation that a company will, in the long run, generate a return, which is measured as
a percentage of the value of the investment, for investors. This is because the expected
absolute return is dependent on the price of the asset. The price change of a risk-less

asset in a time interval At could thus be modelled as follows:

AA = ArAt (3.52)

It is clear, however, that no stock is risk-less. Risk is modelled by the stochastic term

——

X which has the following two properties:
1. AX = O+/Ar where ¢ is a standard normal random variable, i.e. ¢ ~ N(0,1).

2 The value of AX in time interval Ar is independent of AX in any other time

interval.

These two properties describe X as a random variable that follows a Wiener process.
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Notice that for » time steps:

E [E ﬁX;} = (3.53)
i=1
Var (): AA;) = nAt (3.54)
i=1

Thus A is a random variable whose expected future value depends only on its present
value, and whose variability increases as more time intervals are considered. The first
property is consistent with an economic theory called the weak form of market effi-
ciency that states that current asset prices reflect all information that can be obtained
from the records of past asset prices. The second property shows that uncertainty about
the value of A increases as one looks further into the future. This is intuitively appeal-

ing, as more events affecting the asset price are anticipated in longer time intervals.

(Hull, 2003).

The first property of X implies that if Az represents one unit of time. Var(AX) =
1. To reflect the risk of a particular asset, the variability of AX needs to be adjusted.
That 1s, it must be scaled by a quantity which is an estimate of the variability of A in
Ar. This quantity is 6A where o is the standard deviation of A during A expressed as
a percentage. Thus cAAX is a random variable with standard deviation 6A. It is now

possible to model the behaviour of a asset price as follows:

AA = rAAt + cAAX (3.55)
— ,.//_4__
As At — 0
dA = rAdt + cAdX (3.56)

Equation (3.56) is the asset price model. Note that the absolute change in the asset
price is not by itself a useful quantity. With each change in asset price, we have a
return, defined to be the change in the price divided by the original value. Suppose

at time ¢, the asset price is A. Considering a small subsequent time interval d7, during
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which A changes to A +dA, as shown in figure 3.4 at page 42, the return on the asset,

%ﬁi is modelled.,

If 0 = 0, that is the standard deviation of the returns is zero (0)

dA

= H‘ = rdi
dA
= E},‘— =Ar
= A = Age’ ) (3.57)

where A(0) = Ag is the value of the asset at time ¢, that is r = 0. Thus, if ¢ = 0,
the asset is totally deterministic and the future price of the asset can be predicted with
certainty. The term dX contains the randomness that is a feature of asset price and 1s

known as Wiener Process or standard Brownian Motion. It has the following properties

e dX is arandom variable drawn from a normal distribution.
e the mean of dX is zero (0).

e the variance of dX 1s dt.

Equation (3.56) implies that, A follows an Ité Process. According to Wilmot, et al
(1995), the Black-Scholes analysis assumes that the asset prices behave as just demon-

strated and follows the following assumptions:

1. The asset price follows lognormal random walk: This assumption of the Black-
Scholes model suggests that people cannot consistently predict the direction of
the market or m—al stock. The Black-Scholes model assumes stocks
move in a manner referred to as a random walk. Random walk means that at any
given moment in time, the price of the underlying stock can go up or down with

the same probability. The price of a stock in time 7+ 1 is independent from the

price in time f.

7 The risk-free interest rate » and the asset volatility ¢ are known functions of
time over the life of the option/contract: The most significant assumption is

that volatility, a measure of how much a stock can be expected to move in the
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near-term, 1S a constant over time. While volatility can be relatively constant
in very short term, it is never constant in longer term. Some advanced option
valuation models substitute Black-Schole’s constant volatility with stochastic-
process generated estimates. The same like with the volatility, interest rates are
also assumed to be constant in the Black-Scholes model. The Black-Scholes
model uses the risk-free rate to represent this constant and known rate. In the
real world, there is no such thing as a risk-free rate, but it is possible to use
the U.S. Government Treasury Bills 30-day rate since the U. S. government is
deemed to be credible enough. Howeyver, these treasury rates can change in times

of increased volatility.

3. There 1s no transaction cost associated with hedging a portfolio: The Black-
Scholes model assumes that there are no fees for buying and selling options and

stocks and no barriers to trading.

4. The underlying asset has no dividends during the life of the option/contract: An-
other assumption is that the underlying stock does not pay dividends during the
option’s life. In the real world, most companies pay dividends to their share hold-
ers. The basic Black-Scholes model was later adjusted for dividends, so there is
a workaround for this. This assumption relates to the basic Black-Scholes for-

mula. A common way of adjusting the Black-Scholes model for dividends is to

subtract the discounted value of a future dividend from the stock price.

5. There are no arbitrage m:'s. It is impossible to secure a risk free profit.
Although there is arbitrage in certain market segments, these are not secure in

the long run and relying on them violates that basic needs for Black-Scholes to

work.

6. The Black-Scholes model assumes European-style options which can only be
exercised on the expiration date. American-style options can be exercised at any
time during the life of the option, making American options more valuable due

to their greater flexibility. That is trading of the underlying asset can take place
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continuously.

7. Short selling is permitted and the assets are divisible: The Black-Scholes model
assumes that markets are perfectly liquid and it is possible to purchase or sell

any amount of asset or options or their fractions at any given time (liquidity).

Insurers are actually selling a naked put option to the buyer of the insurance. Therefore

the method of finding the value of put options can be applied in the valuation of the

life insurance contract.

Consider a contract of V(A,r), where V is not necessarily a call or a put but
the value of the whole portfolio of different contract. We use a result from stochastic

calculus known as It6’s lemma. This states that, if x follows a general Itd process

dx = a(x,t)dt +b(x,t)dZ (3.58)

and f = f(x,?) then

of Bt -0 fi 2) of
e S dt +2Lp(x,t)dZ 3.59
df (axa(x,t) o v (b(x,t))” | dt + o 6 2) (3.59)
Applying It6’s Lemma to the function V' (A,) gives
)% oV 10*V 5 5 oV
_ I il —OCAdZ 3.60)

This expression is difficult to-solve for V since it contains the stochastic term dZ es-

pecially. The main idea behind Black-Scholes analysis is for one to create a portfolio

— which consist of shares of assets and derivatives that is instantaneously risk-less, and

thus eliminates the stochastic term in equation (3.59). The instantaneously risk-less
portfolio at time t consists of one long position in the derivative and a short position of

exactly %% (also referred to as the delta hedging) shares of the underlying asset. The
value of this portfolio is given by

W (3.61)
IT=V — éZA
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The instantaneous change of IT is

oV

Combining equations (3.56), (3.60) and (3.62), we obtain

oV )% aV  10%V 2\%
A o A Y 240 ay
A +(8Ar +ar+2aA2°A)dt+aA°AdZ

dv oV oV  19%V %)%
dIl = ——(rAdt +cA = 5242 Syl
dA(r +O dZ)+(aArA+ar+28A20A)dr+aAgAdz
a¥ 10%V , .,

Note that, in equation (3.63), the change in the instantaneously risk-less portfolio is
not dependent on the stochastic term dZ. In order for the portfolio to maintain its risk-
less property, it must be rebalanced at every point in_time as 3—: will not remain the
same for different values of 7. Thus shares will need to bought and sold continuously

in fractional amounts as was stated in the assumption.

Since this portfolio is risk-less, the assumption that there are no arbitrage oppor-
tunities dictates that it must earn exactly the risk free rate. If we consider the concept
of arbitrage and supply and demand, with assumption that there 1s no transaction cost,
the return on ark-aﬁmunt IT invested in riskless assets would see a growth of rIldr in

time dt. This implies the right-hand side of equation (3.63) is equal to rIldz. That 1s

B

—

dI1 = rlldt.

Using equation (3.61) and (3.63) we have

oV oV 10%*V 2)
— — = —+==—=0"A°.] d
dl’I:rl’Idr—r(V—aAA)df (aﬂLzaAZGz ;
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Simplifying and re-arranging results in the Black-Scholes PDE

oV 1 ,,0°V v

In analysing contracts/options on a path-depe'ndent quantity, such as the average asset
price, Black-Scholes approach become inadequate. This is because there are many
realizations of the asset prices random walk leading to the current value, any two of
these give a different value for the path-dependent (Wilmot et al., 1995). This led to the
introduction of a third variable in addition to A and t which will measure the relevant
path-dependent quantity.

Since we use continuously sampled quantities for the payoff of average strike
option (the fixed price at which the owner of an option can purchase in the case of
call or sell in the case of put, the underlying security or commodity), our average will
depend on a time integral.

To look at the time integrals of the random walk, consider European option/contract

with payoff depending on A and on
T
| ram),1yar (3.65)
0

where f is a given function of the variables A and ¢. The integral in eqn. (3.65) is over
the path of A from r = 0 to t = T (the expiry). The payoff at expiry for average strike

call is
A

g

L [ a(ryar,o (3.66)
max(A—TfU () ,) :
We have f(A,t) =A. Let
3 :/ S(A(T), T)dT | E:87)
0

We treat P, A and ¢ as independent variables since the history of the asset price is

independent of the current price. Note that, P varies depending on the variation of the
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random walk. In eqn.(3.67), T is replaced by ¢ since the payoff depends on both P and
A, the value of an exotic path-dependent contract is written as V (A, P,¢). This means,

the value of the option depends on the current asset price A, the time ¢ and the history

of the integral of the asset P.
The change in P due to small changes in ¢ and A is given by stochastic differen-

tial equation

t+drt

P(t+dt) =P+dP = ) f(A(T),T)dT (3.68)

Simplifying to O(dt) - the order of dt, we have
I
P+dP:/0 F(A(T),T)dT + F(A(t),1)dt (3.69)

where dP = f(A,t)dt. Equation (3.69) is Stochastic Differential Equation (SDE) of P
without random component. To value the contract that depends of A, t and P, we apply

It6’s lemma to the function V (A, P,t) and this gives

oV 1 5 40U —gV>- ¥ vV
dV = cAa dX+( ’A BA"+’ABA+ 5 +f(A r)ap) dt (3.70)

Since dP introduces no new source of risk, it is anticipated that the option can be hedge
using the underlying asset only. Since this is European contract, we set up the usual

risk-free portfolio which consist of one option and a short position with N = g: of the

underling asset. Considering arbitrage Ieads to

_avr 155 0% . oV
v A ety (3.71)
o f(A’)aP+2“AaA2 et

Note that, the path-dependent quantity P is updated discretely and is therefore
constant between sampling dates. The PDE for the option value between sampling
dates becomes just he basic Black-Scholes equation with P treated as a parameter. So
in valuing the path-dependent option with discrete sampling, we start from the expiry

date, when the option value is known (1.€. equal to the payoff) and work backwards.

D2



Hence equation (3.71) becomes

oV 1L, a0tV 51 %
§+50A W—l—rAa—rvzo (3.72)

3.6.5 Dividend Paying Asset

The above Black-Scholes equation, equation 3.72 is under assumption that no div-
idends are paid during the life of the insurance. We will therefore cater for these

dividends which are paid during the life of the contract.

Let ¢ be a constant continuous dividend yield which is known. This means that
the holder receives a dividend ¢AAr within the time interval Ar. After the dividend, the
share value is lowered making the expected rate of return r be (r — ¢). So the geometric

Brownian motion model in equation 3.56 becomes (Hull, 2003)
dA = (r— ¢)Adt + cAdX (3.73)

and the Black-Scholes equation becomes

0A 1 , ,0%V oV
—— —f v — — —_ = b 374
5, —|—20'A aA2+(r ¢)AaA V= () (3.74)

3.6.6 Finite Difference Approximation for Black-Scholes Differen-

tial Equations
e &

The finite difference methods attempt to solve Black Scholes Partial differential equa-
‘tion by approximating the differential equation over the area of integration by a system
of algebraic equations. They are a means of obtaining numerical solutions to Partial
differential equations. The most common finite difference methods for solving the
Black Scholes Partial differential equation are the Explicit method, the fully Implicit
method and the Crank-Nicolson method. These are closely related but differ in stabil-

ity, accuracy and execution speed. In the formulation of a partial differential equation

problem, three components are considered. T hey are:
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1. The partial differential equation.

2. The region of space-time on which the partial differential equation is required to

be satisfied.

3. The auxiliary boundary and initial conditions to be met.

Discretization of Black Scholes Equation

The finite difference method consists of discretizing the partial differential pricing
equation and the boundary conditions using a forward, a backward difference or cen-
tral difference approximation. The Black Scholes PDE given by 3.64 can we written

ds

oV (A,,t) o 0%A%0%V (A1)  rA9V(A;,t)

in simplify formed is written as:
dV  ©%A%0°V  rAodV
— 7V (3.75)

Y o T a;a

Note: For continuous dividend paying asset, replace r with r — ¢

The equation is discretize with respect to time, t, and to the underlying asset price, A.
The (A,7) plane is divided into grid or mesh using approximate infinitesimal steps AA
and Ar by small fixed finite stepi,A/nﬂﬂay of N+ 1 equally spaced grid pointstg, t;, ..., In
is used to discretize the time derivative with 7, —#; = At and At =T /N.

—Also, since asset price cannot go below 0 and it is assumed that A,qx = 2A9. We
also have M + 1 equally spaced grid points Ao, A, ...,Am and is used to discretize the
asset price derivative with A ;11 —A;=AA and AA = ‘ﬂf{ﬂ. We then have a rectangular
region on the (A,¢) plane with sides (0, Spqx) and (0,T). Using the grid coordinates
(4, /), we are able to compute the solution at discrete points with a total grid points of

(M+1)(N+1).
The (i,j) points on the grid corresponds to time iAr for i = 0,1,...,N and the Asset price
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JAA for j=0,1,...,M. The figure below illustrates the discretized asset price and time

derivatives into(M + 1) and (N + 1) grid points respectively.

x A
£
< T - . . L] ' . ™ - . °
L - - - ™ 'Y P ° - o -
<
5 L 3 - - - . » . = L) . .
Q
-g L] - - - i.v n g o o ® e ®
— - - - - 5 : 5 - - - -
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0 |
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n
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R NRESY EpURmL
Time, T

Figure 3.5: The mesh points for the finite difference approximation

Representing V (A,7) in the grid by V; ;, their respective expansions of V(A +
AA,t) and V(A — AA,1) in Taylor series are:

VA+AA L) = V+8VM o o) Akl L) LAy W 0(AA%) (3.76)
’ 0A 2 0A2 6 0A3 '
and
oV TPV, [l
V(A—AA,I)—V—E“;M 28A2M _BWM + O(AA™) (3.77)
Using equation 3.76, the forward difference is given by
7 g 4
—V(A,t
a_V=V(A+AA,r) ( )-|-O(AA)
0A AA
BV -’ Vi.j+1 i Vf.f (378)

A~ M

and 3.77 gives the corresponding backward difference

oV V(A I) V(A AAI) (M)
0A dA
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Y 9 i (3.79)
Eqn (3.76)-eqn.(3.77), taking the first partial derivative results in the central difference

which is given by

dV(A,1) V(A+AA1)—V(A-AA,1)
0A 2AA

+ O(AA?)

aV(AJ) = Vr‘.j+l _ Vi.j-l
A = 2M

(3.80)

To estimate the second order partial derivative, we use the central difference approx-

imation. Adding equation 3.77 to 3.76 and taking the second partial derivative, we

get

3’V V(A+AA1)-2V(A,1)+V(A-AA) :

= AAZ

dA? AA? o)

0%V ey, +V, .,

et i, f+ 7 i 3'81

0A? AA? B
Expanding V (A, + Ar) in Taylor series, we obtain

vV V(Ar+Ar)—V(A1)

= : + O(At

ot At (&)

o _ Y=V, (3.82)

ot At

S ,--""""'-__-—_—_
Boundary and Initial Conditions

—

Without 'I;:Jundary or initial conditions, the solution of the Black-Scholes PDE will
either have an infinity of solutions or no solution. We therefore need to specify the
boundary and initial conditions for the European style contract whose payoff is given

by max(K —A,,0). When an asset is worth nothing, a put is worth it strike price K.

That is

3.83
Vo =K fori=0,1,..,N (3.83)
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The value of the contract approaches zero (0) as the price of the underlying asset price

increases. Hence A, = Ay and this means
Viu =0 fori=0,1,...,N ' (3.84)
Since the value of the contract is known at time T, we can find the initial condition

V, . =max(K — jAA,0) for j=0,1,...M (3.85)

v/

The 1nitial condition results in the value of the contract V at the end of the period of
the contract and not the beginning, implying a backward move from maturity to time

zero. The American style are also handled almost the same way,

Vy; = max(jAA—K,0) for j=0,1,...M (3.86)

3.6.7 Approaches of Finite Difference Scheme

Let’s consider the European contract stated in equation 3.75, suppose that T is the

maturity of the assetand A__is the maximum asset price. Let MAA =A , and NAt =
TV, ; denotes the asset value at (iAt, jAt). We will take a look at three approaches of

the finite difference scheme: Implicit finite difference method, explicit finite difference

method and Crank Nicolson method.

—— _,—-""'"_————_F
Explicit Finite Difference Method

— Gince we know the value of the contract at maturity time, we can give the expression

that gives the next value V, ; explicitly in terms of Vo io1» Viyyand V. We there-
fore discretize Black-Scholes partial differential equation (PDE) in equation 3.75 by

taking forward difference for time and central difference for the asset price discretiza-

tion. This gives

GZjZMZ
[V}+1,j+1 = VHlJ—l] o IAA2

Vs+1,f“Vf,f+"jM

At 2AA

[Vi+1,j—1 —2‘7:'+1J+VE+1J+1] =1Vij
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(3.87)

Making V; ; the subject, we have

1
Vi',j=m [ﬂj‘r"m,j—l+bj1’?+1,j+cj1/’s+1,j+1] fori=0,1,...Nand j=1,2,....M
(3.88)
where the weights a;, b; and c; are given by
aj = 6% j2At — 1rjAt
bj=1-02j2At (3.89)

cj = 5rjAt — 6% j2At

Since the finite difference for the discretization of the time is accurate to O(At) and
that of the central difference of the asset discretization is O(Ar, AA?).
The weights, which are the risk neutral probabilities of the 3 assets prices A — AA, A

and A + AA at ¢ + Ar adds up to one (1) and ; +1r£;1 is the discounted factor. But we can

get negative probabilities unless further restrictions are imposed on Ar and AA. This
produces results that do not converge to the solution of the PDE and this shows the
explicit method is unstable unless those restrictions are imposed on Ar and AA. The

conditions to have non-negative probabilities is that 02j2At < 1 and r < 6% (Hull,

2003).
The system is rggfqgented in tlmrn//allil_foml as
e oy, 000 e 0 0 0 Virro Vio =
a b ¢ - 0 0 0 Vieri Vii
: = : (3.90)
0' 0 0 'iea aM_] bM—l CH—I Va'-rl.H—l V*-H |
gt Q) e 0 Ay by ASE v:-...]_y o _V:M n rM_
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The system of equations can be written in the form AV, j=V,for j=0,1,..,M and

the error terms are ignored since the boundary conditions cater for them.

The vector of the asset price V.11, 18 known at time T from the initial condition
. We solve for V, . by working backward using the matrix A which comprises of the

probabilities a;, b; and ¢, which are known probabilities and the backward iteration

leads to the value of the contract obtained at time zero.

| Stability of the Finite Difference Scheme

: Truncation error in the asset price discretization and in the time discretization are the
! two fundamental sources of error. Consistency, stability and convergence are the three

* fundamental factors that characterized a numerical scheme. They are linked together

E———

by Lax Equivalence theorem which states that given a property posed linear initial

value problem and a consistent finite difference scheme, stability is the necessary and

sufficient condition for convergence (Smith, 1985).

Tﬂ}l@jei.genvaluew matrix

e y Z
|
il U
X Y Z
X
is given by A; = y=+2(1/x2) cosﬁ—ﬁi fori=1,2,...,N where x,y and z may be real or

complex no. The system is stable if IA;| < 1. (Smith, 1985).
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Stability of the Explicit Finite Difference Scheme

To analyze the stability of the Explicit Difference Method, we use the matrix A. Matrix

A is real and symmetric. If A; is the ith eigenvalue of A, then

|A][2 = p(A) = max [A;] (3.91)

The eigenvalues A; are given by
Ai=b.+2 Vg B for i "

. Substituting a, b and ¢ and re-arranging the results in

A = 1 —202% j*Atsi il :
i J“At sin N (3.92)

The scheme stable when
h T
|A||, = max |1 -2o2fmsm-2’-ﬁ) <1

. b '
=] <1 —262j2msin22iﬁ R lfor il 2 3 |

y(N=1)m
2N

— 1

as At — 0, N — oo and sin

Hence 0 < o j°Ar < 1.
PO T ' < o2 j2At < 1
Therefore the scheme is stable, convergent and consistent for 0 < 6°j°A7 < 1.

Hence the explicit finite difference method is conditionally stable.

The Implicit Finite Difference Method

We substitute equations 3.80, 3.81 and 3.82 in equation 3.75 and express Vi1, explic-

itly in terms of the unknowns V, ;_,, Vi andV, . That is, we discretize Black-Scholes

PDE in 3.75 using forward difference for time and central difference for the asset price
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Vier,j—Vi;  1jAA 02 2AA2
: ) LA J°AA
e o Vij+1=Vijo1] + SAA2 [Vij41 = 2V3 5+ Vi j1] = rVign, g
(3.93)
Making Vi1, the subject in eqn. 3.93 gives
e
i1, = 7 ¥ V-1 +3, Vi +2, Vi) (3.94)

fori=0,1,...Nand j=1,2, }..M =\
Similarly to the explicit method, the implicit method is accurate to O(At,AA?). The

weights x,y and z are given by

4

L A )

N

y, =1+0%j°At (3.95)

z; = —3rjAt=50° 2 At

\

The system of equations in tridiagonal matrix form 1s

Vit1,0— %, e e o S 0 0 Vio

Vi1, (P et A il 0 0 0 Vi
i A, /S| i | @

Vietrm-1 0.0 0 .- J0mSWy™ 2y | |Vim-

Vit — 2, et 0 %, Y | [Wm

m——

The system is written as AV; j = Viy1,j for j =0,1,....M. The matrix A has y, =
1+ o2 j2At in the diagonal which is positive. The product of the diagonal elements are
non-zero and therefore the matrix is non-singular . We can therefore solve by finding

the inverse of the matrix, A~!. Applying the boundary conditions with 3.94 changes

the element y,,y,, = 1 and 2y, %, = 0 in the matrix A.
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Stability of the Implicit Finite Difference Method

The eigenvalues are given by
Ni=y,+2 LT
i=Y, (szj)cosﬁ Jor1=1.2 . N=1 (3.97)

Substituting for X, y and z in (3.97) and simplifying, we obtain

r2 12
Ai = 1+0% %At + 0% 2 At [1——] ' st
i J J 17 1—-2s5mn" — N

= A~ 142079 — 20‘212&‘31112 u’

N (3.98)

The change of sigh is due to the truncation of the binomial expansion. The scheme 1s

stable when
1Al = max |1 +26%2Ar — 26 2 At sin? 2’; <1
= —-1< 1+202j2m —20‘2j251‘s:n2 ;:[ <1 (3.99)

As At — 0, N — o and sin (—Nif‘}—)“ — 1, |A] 5'1'. Therefore the scheme 1s uncondi-

tionally stable, convergent and consistent.

e

The Crank Nicolson Method

i

e m—

The Crank scheme is the average of explicit finite difference methods and the implicit

finite difference. Adding equations 3.87 and 3.93 and finding their average gives

o AA

At 2AA
2 A A2
ﬁﬁ? [Vi.j—1 = 2Vi,j+ Vij+1 + Vis1j-1 — QWi+ Virrja] =

% [rVij+rViax)  (3.100)
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and re-arranging

4 Vij-1+bVij+eVij1 =xVier j1 4+, Vier j + 2, Vier 4 (3.101)

fori=0,1,....,Nand j=1,2,..., M — 1. Where the parameters a,b;,c,x;,y andz,

are given by

4

ﬁ
el Lol
a, = zrjAt — ;0% j°At

b, =1+ rAt + 162 j2Ar

J

(3.102)

c,= _%szzm_ érjzlt %
X; %szzﬂt — ﬁrj&t

y, =1—3rAt — 362 j*Ar

J

z; = zrjAt + 362 j2At

\ /

The system of equations in eqn. (3.101) 1s express as CV; = DV;, and resulting in

tridiagonal gives

bowc, 0 0 0 0 Vio
a, bl C, 0 0 0 V}‘l
0 0 0 Ay by Cy-y Vim—1
080 0 Wy o
—_—— /—-—"—l - =
T 7 SHONRCCOREN 0 0 Vit1,0
L IR 0 0, Vi1l
: (3.103)
0 G S
0 0 0 S 0 'xM }’M Wl "/I'—FI,M /|
i HHABE
WAME HKFEU":?::HM:
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Solving the system

The elements of vector V. are known at maturity time T, and so we express the
system (3.103) as V; = C~'DViy,. By repeatedly iterating from time 7 to time zero,
we obtain the value of V as the value of the life insurance contract. The diagonal
entries of the matrix Cis b, = 1+ %rﬁr + %0‘2 j2At are always positive and thus the
diagonal elements are non-zero. Therefore the matrix is non-singular as the diagonal

entries are non-zero.

Accuracy of Crank-Nicolson Method

The Crank-Nicolson method is more accurate than the explicit and implicit method

because it is with an accuracy of O(Ar?,AA%). Equating the central difference and

symmetric central difference at VI = V(¢ + A).
Expanding V;; ; in Taylor series at V. 1 110 yield
Vv
Vit1,j =V, +§AI+O(AI ) ~ (3.104)

and expanding V; jar V,, | ; gives

BV

Taking the average of the equations (3.104) and (3.105) gives

e /’-—"—'l_
N5 V:+ J,—I—O(At)
This implies
1 ] Vi *I-V' i1 —2Vi41,j+ Vit '+l]+0(&f2]
V“'m _2K+1,J+V+ ,J+1#§[W=f‘1‘2‘/'vi+v’~»‘+']+2[ i+1,j-1 +1,j J

(3.107)

The right-hand side of equation (3.107) is the average of the two symmetric central
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difference centred at i and i + 1. Dividing by AA? we obtain the equality

3’V(1+%.AT)_I *V(1,A) *V(t+ArA) als
0A2 oK W7 PRl A2 + O(Ar°,AA7) (3.108)

Equation (3.108) is the symmetric central difference approximation. The subscript J is

arbitrary and we deduce the central difference approximation as follows:

1 ]

Vt+§.j+1_vf+§,j-1 ) [Vf-f+l*er,f |]+§[V...1.,*| - Vis1,j 1] +O(A) (3.109)

Dividing by 2AA, we get

oV (r+3,AT) 1 [aV(1,A) L V(+4rA)
dA 2| OA dA

] + 0(Ar*,AA%) (3.110)

and is the first order central difference approximation. Subtracting equation (3.105)

from (3.104) we obtain the approximation of %V at (1 + im,A). That is,

oV (t+341,A) V,
T

+1.j=VYij 5
+ O(Ar (3.111)
Al ! ( )

Hence the Black-Scholes PDE centred at (1 + iN‘A) has a finite difference approxi-
mation

Vitrj—Vij  (r=2)jA4

= v [V},ju"vi.j-l*l'vui,;f!—Vi+|.;~|]+

! 2 e
0?::? [Vi,j=|—2W.;+‘4.;+1+Vi+i.f—l+2"’5*1-1+"’3*'-P'] =rVyy G114

Ec-arranging (3.112), we get an equation of the form (3.101) at page 63 which is
the exact Crank-Nicolson scheme. Therefore the scheme has a leading error of order

O(Ar?,AA?) (Kerman, 2002).
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3.7 Binomial tree method for the valuation of life in-

surance contract

In finance, the binomial options pricing method (BOPM) provides a generalized nu-
merical method for the valuation of options. It was first proposed by Cox, Ross and
Rubinstein in 1979 cited in (Hull, 2003). In contrast to the Black-Scholes and other
complex option-pricing model that requires solution to stochastic differential equa-
tions, the binomial option-pricing model (two-state option-pricing model for example)
is mathematically simple. It is based on the assumption of no arbitrage.

The assumption of no arbitrage implies that all risk-free investments earns the
risk-free rate of return and no investment opportunities exist that requires zero amount
of money of investment but yields positive returns. Itis the activity of many individuals
operating within the context financial markets that, in fact, upholds these conditions.
The activities of arbitragers or speculators are often maligned in the media, but their

activities insure that our financial market works. -

There are two cases of binomial model: a one-step and two-step binomial model.

3.7.1 One-Step Binomial Model

| “AcU
Vu

A-d
vd

Figure 3.6: Asset and contract value in one-step tree

Let’s consider an asset whose price is Ag and the current contract value V. Let’s assume

the contract lasts for time 7 and that during the life of the contract, the asset price can
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either move up from Ag to Agu or down to Agd where d < 1 < u. The proportional
increase in the asset price when there is an up movement is % — 1 and that for the down
movement is 1 —d. Let the payoff from the contract when the asset move up to Agu be

Vu and that when move down to Agd be Vd as shown in figure 3.6 above.

Let’s imagine a portfolio consisting of a long position in A shares and a short
position in one contract. If there is an up movement in the asset price, the value of the
portfolio at the end of the life of the contract is AguA — Vu and that if there is a down

movement is AgdA — Vd. Since the two are equal, it implies that

AouA — Vu=ApdA—-Vd (Srl1Ey)
B Vu—-Vd 3114
~ Aou—Aod S

In this case, the contract is riskless and must earn a risk-free interest rate. Equation

3.114 shows the A is the change in value of the contract to the change in the asset price

as we moves between nodes at time 7.

If r is the risk-free interest rate, the present value of the contract is
(AguA —V,)e =rT The cost of setting up contract is ApA— V. It follows that

—-rl

AgA—V = (AguA—Vy)e

V=A0A(1 — ue™T) + Ve % | (3.115)

Substituting from equation 3.114 for A we obtain

V=e"T[pVu+(1-p)Vd] (3.116)
where
yel —d (3.117)
BT u—d
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Equations 3.116 and 3.117 enables contracts to be valued when the asset price move-

ments are given by a one-step model.

3.7.2 Two-Step Binomial Model

Agu2
Vuu
Asu
Vu
A Aocud
A4 Vud
A.d
vd
Adz
vdd

Figure 3.7: Asset and contract value 1n two-step tree

Let’s consider figure 3.7, similar to the one-step, the asset price moves up to Agu of

down to Apd. Given that the length of the time-step is Az, equations 3.116 and 3.117

becomes
V=e"[pVu+(1-p)Vd] (3.118)
e e —d (3.119)
u—d

Repeating equation 3.118,

Vu:e"rm[quu—k(l — p)Vudr— (3.120)

Vd = e ™ [pVud + (1 — p)Vdd| (3.121)
Substituting equations 3.120 and 3. 121 in 3.118 gives

V = =28 2V + 2pp(1 _p)Vud+(1 —p)*vdd| (3.122)

The variables p?, 2p(1 — p) and (1 — p)? are the probabilities that the upper, middle

and lower nodes will be reached. The contrast value 1s equal to the expected payoff in

68




a risk-neutral world discounted a risk-free intere st rate.

Note that, if the asset price move up followed by a down move., it will be the
same as a down move followed by and upward move. The parameters u, d and p

satisfy the conditions for risk-neutral valuation and the lognormal distribution of the

asset price.

3.7.3 Valuing American Contract

The method discuss so far is used for the valuation of European contract. To find the
value of the American contract, we work back through the tree from the end to the
beginning, testing each node to see whether early exercise is optimal. The value of the
American contract at the final node is equal to the value of the European contract. The

value of the contract at earlier node is max(V, payoff from early exercise) where
V=e¢"[pVu+(1-p)Vd]

In practice, u and d are determine from the asset price volatility, & , and the length of

the step time interval Ar. Crox, Ross and Rubinstein (CRR) choose the up and down

ratios to be

u— VM (3.123)
= g~oVE (3.124)
Sa= TS
oo —:1
ed —d

From equation 3.119, p = ——7

o

In practice, the life of a contract is divided into 30 or more time step. In each

time step, there is a binomial asset price movements of 30 time steps, 31 terminal

asset prices and 230 or about 1 billion possible asset price paths are considered. The

: 4
equations which define the trees are equations 3.122and e ™.
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374 Numerical Implementation of Binomial tree

The CRR model in equation 3.122 can only be used in the valuation of European
contract as mentioned earlier. To find the value of American style contract, we use
different multi-period binomial model. The no arbitrage arguments are used and no
assumptions are required for the probabilities of up and down movements in the asset

price at each node.

At time zero, the asset price A 1s known. At time At, there are two possible asset
prices Au and Ad. At time 2Az, there are three possible asset prices, Au?, Aud and Ad?,

and so on. In general, at time ;Ar, where 0 < i < N, (i+ 1) asset prices are considered,

given by
Awd"~) for j=0,1,..,N (3.125)

where N is the total number of movements and j is the total number of up movements.

Note that, we are adopting the European contract for an American contract. In
this case we use backwards induction to fill in the nodes on the contract value tree
and compare the value we get by using the formula from before to the value of early

exercise at that respective node. The actual value of the node is the greater of the two.

That is,

Value of contract at a node=max(Binomial value, Exercise Value)

If the life of an European-eontract on a non-dividend paying asset is divided

into N sub-interval of length iAr and the j** node at time iAf at the (i, j) node where

0<i<Nand0< j<i. Then the value of the contract is V; jat(i, j) node. Given that

the asset price at node (i, j) is Auldi—J. then the value of the European contract is given

by

Vi.j = max(Au/d"~/ — K,0) forj=0,1,:..,N (3.126)

The probability p of moving from (i, j) node at time iAt to (i+1,j+1) node at ime
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(i + 1)At, and probability (1—p) of moving from the (7, j) node at time iAz to the

(i4+1,j) node at time (i + 1)At give the risk neutral valuation Vi.j as
¢ m— At '
Vij=e¢ " [pVis1,j+1+ (i—p)Vip1,]] and 0< i< N—-1,0< j < i (3.127)

For American contract, we find the value of the contract at any node (i, j) earlier than
the maturity time 7. When early exercise is.taken into account, the value V; j of the

contract must be compared with the contracts intrinsic value (Davis, 2005), (Hull,

2003) and is given by

Vi,j = max[K — Awd'~) ™™ (pVi 1 jr1+ (1=p) Vi1, ;)] (3.128)
! Dividend Paying Asset

The Merton’s model adjust the Black-Scholes model to cater for European options on
stocks that pay continuous dividend. In so doing, the risk-free rate 1s modified from r
to (r—A), where A is the continuous dividend yield. Applying the same principle for

the valuation of the contract, the risk-neutral probability in equation 3.1 19 is modified

but the other parameters remains the same. That 1s,

! u = eSVA
d=e" VAl
! e (r-NA—7
i (3.129)
and p = =

When generating the binomial tree of the asset for the American and the European

contract as well on assets paying a continuous dividend, these parameters are applied

and the tree will be identical in both cases. The probability of an asset price increase

varies inversely with level of the continuous dividend rate A (Davis, 2005).

On a particular date T, it is assumed that there is a single known dividend and

the dividend yield is a percentage of the asset price which is known. If iA t is prior to
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the asset going ex-dividend, the nodes on the tree correspond to asset prices
Au'd"~! for j=0,1,..,N (3.130)

If the time /At is after the asset goes ex-dividend the nodes correspond to asset prices

(Davis, 2005).

A(1-Nuw/'d"~7 for j=0,1,..,N (3.131)

3.7.5 Stability of Binomial tree method

For the Binomial tree method to converge, 0 < p < 1. And for this condition to be met,
d < e™ < u. The choice of u and d is constrained to ensure that the limiting tree is the
BlackScholes model. Since p ensures that the mean is correct, we have one essential
condition left: the variances must converge correctly. Since we have two sequences

and only one condition, there is still quite a lot of flexibility.
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Chapter 4

ANALYSIS AND RESULTS

4.1 Introduction

In this chapter, we look at the application Black-Scholes partial differential equation
and Binomial tree method in the valuation of life insurance liabilities. The chapter
compare and contrast the convergence of the Black-Scholes PDE and the Binomial
tree method in the valuation of life insurance liabilities. The assumptions underlying

the application of Black-Scholes equation are fully elaborated in page 47.

4.2 Matlab Implementation

The matrices obtained using the finite difference method are generally a very large
tri-diagonal matrices and requires more computational time. For this reason, Matlab
was used find the solutions to the systems. See appendix 1 and II for Matlab codes
for Implicit Method and Crank-Nicolson method respectively. Matlab code was also

——

implemented for the multi-period binomial tree method. See appendix III and IV for

~__matlab code.

4.3 Stability analysis of Implicit Finite Difference Method

The eigenvalues of the resulting matrix are given in table 4.1 below for volatility of

' ' aturity of 30 years.
0.2231 and surrender time of 2 years for maturty of 30 ye
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Table 4.1: Eigenvalues of the Implicit Finite Difference Method as N — =

N=2000 N=4000 N=5000 N=6000 N=7000
j A J A j A j ) ; ]
1991 1.0197 | 3991 1.0099 | 4991 1.0079 | 5991 1.0066 | 6991 1.0057
1992 1.0156 | 3992 1.0078 | 4992 1.0063 | 5992 1.0052 | 6992 1.0045
1993 1.0120 | 3993 1.0060 | 4993 1.0048 | 5993 1.0040 | 6993 1.0034
1994 1.0088 | 3994 1.0044 | 4994 1.0035 | 5994 1.0029 | 6994 1.0025
1995 1.0061 | 3995 1.0031 | 4995 1.0025 | 5995 1.0021 | 6995 1.0018
1996 1.0039 | 3996 1.0020 | 4996 1.0016 | 5996 1.0013 | 6996 1.0011
1997 1.0022 | 3997 1.0011 | 4997 1.0009 | 5997 1.0007 | 6997 1.0006
1998 1.0010 | 3998 1.0005 | 4998 1.0004 | 5998 1.0003 | 6998 1.0003
1999 1.0003 | 3999  1.0001 | 4999 1.0001 | 5999 1.0001 | 6999 1.0001
' N=10000 [N=11000 |
] A j A
9991 1.0040 | 10091 1.0036
9992 1.0031 | 10092 1.0029
9993 1.0024 | 10093 1.0022
9994 1.0018 | 10094 1.0016
9995 1.0012 | 10095 1.0011
T 9996 1.0008 [ 10096  1.0007
9997 1.0004 | 10097 1.0004
: 9998 1.0002 | 10098  1.0002
i 9999 1.0001 | 10099 1.0000
[
It could be verify from table 4.1 that, as the number of steps N increases, the
| eigenvalue approaches 1 and this shows that the implicit finite difference scheme is
unconditionally stable.
f
4.4 Stability of Crank-Nicolson Method
The table below shows the eigenvalues of the Matrix of the scheme as N — ee.
| fTabe: 4.2: The eigenvalues of the Crank-Nicolson method as N — 2
N=100 N=500 N=1000 N=2000 NEY
j IE Aj | Aouh e %015
93 1.0572 | 493 1.0119- 993 1.0060 | 1993 1.0030 | 3993 1.00“
94 1.0398 | 494 1.0088 | 994 1.0044 | 1994 1.0022 | 3994 :
1.0031 | 1995 1.0016 | 3995 1.0008
95 1.0284 | 495 1.0062 | 995 0010 | 3996 1 0005
96 1.0189 | 496 1.0040 | 996 1.0020 | 1996 1. :
1.0012 | 1997 1.0006 | 3997 1.0003
97 1.0111 | 497 1.0023 | 997 1 0003 | 3998 10001
%8 10055 |498 10011 [998 10006 | 1998 LOOD3| 3998 CA0
99 1.0020 | 499  1.0004 | 999 1.0002 | 1999 L. .
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Table 4.2 indicates that as N — oo, the eigenvalues approaches one (1) showing

the stability of the Crank-Nicolson’s method. Also the Crank-Nicolson method is with

2 2 o B
an accuracy of O(Ar°,AA%) and that also indicates that how accurate the results is to

the actual value.

4.5 Stability of the Binomial tree method

Table below shows how the convergence of the Binomial tree for o = 0.2231, r = 0.05

and T = 2 years. The multi-period binomial tree method is stable if d < ™ < u.

Table 4.3: Stability of Binomial tree method

Binomial tree is stable as N — o= and hence the multi-period binomial tree method is
s < -

stable.

—

i

N d e U

100 | 0.9689 | 1.0010 | 1.0321
150 | 0.9746 | 1.0007 | 1.0261
200 | 0.9779 | 1.0005 | 1.0226
250 | 0.9802 | 1.0004 | 1.0202
300 | 0.9819 | 1.0003 | 1.0184
350 | 0.9833 | 1.0003 | 1.0170
400 | 0.9843 | 1.0003 | 1.0159
450 | 0.9852 | 1.0002 | 1.0150
700 | 0.9881 | 1.0001 | 1.0120
900 | 0.9895 | 1.0001 | 1.0106
2050 | 0.9931 | 1.0000 | 1.0070
3000 | 0.9943 | 1.0000 | 1.0058
10000 | 0.9968 | 1.0000 | 1.0032
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4,6 Comparing the convergence of the Binomial tree,
Implicit and Crank-Nicolson’s Method Life Insur-

ance Valuation with no-dividend

Earlier in chapter 3, we considered the convergence of the fully implicit, the Crank-
Nicolson method and the multi period model with relﬁtion to the Black Scholes value
of the life insurance contract. Table 4.4 shows the value of life insurance contract
containing surrender option with data from Life Insurance Company A and table 4.5
shows that of the data from Life Insurance Company B. The data from company A are
as follows:
Asset price, A = 50, strike price, K = 52, risk-free interest rate, r = 0.05, surrender
period, 1 = 2 years, maturity period, 7 = 30 years, volatility, c = 0.2231 and the
dividend payment rate, ¢ = 0.03. The surrender value of the life insurance contract is
5.4650 with the value at maturity being 8.22 for non-dividend paying asset.

The data from Insurance Company B are as follows:
A =250, K =260, r = 0.06, t =7 years, T = 30 years, and o = 0.24. The value of the
life insurance contract at maturity is 40.15 and the surrender value is 36.04.

Note: In the tables below, the figures in bracket are the difference between the

actual values and values obtained from the various numerical methods.
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Table 4.4: The comparison of the

Expected value = 5.4650

No. of Multi-Period  Fully Crank-

steps  Binomial Implicit Nicolson

30 5.4834(-.0184) 5.3770(.0880) 5.4204(.0446)
90 5.4842(-.0192) 5.431 1(.0339) 5.4465(.0185)
150 5.4582(.0068) 5.4413(.0237) 5.4503(.0147)
210 5.4554(.0096) 5.4462(.0188) 5.4531(.01 19)
270 5.4551(.0099) 5.4486(.0164) 5.4541(.0109)
330 5.4572(.0078) 5.4501(.0149) 5.4546(.0104)
390 5.4581(.0069) 5.4511(.0139) 5.4550(.0100)
450 5.4584(.0066) 5.4518(.0132) 5.4552(.0098)
510 5.4584(.0066) 5.4525(.0125) 5.4554(.0096)
570 5.4583(.0067)  5.4529(.0121) 5.4556(.0094)
630 5.4508(.0142) 5.4533(.0117) 5.4557(.0093)
660 5.4558(.0070) 5.4534(.0116) 5.4558(.0092)
690 5.4578(.0072) 5.4536(.0114) 5.4558(.0092)
720 5.4577(.0073) 5.4537(.0113) 5.4559(.0091)
750 5.4575(.0075) 5.4538(.0112) 5.4559(.0091)
780 5.4574(.0076) 5.4554(.0110) 5.4559(.0091)
810 5.4572(.0078) 5.4541(.0109) 5.4560(.0090)
840 5.4571(.0079) 5.4542(.0108) 5.4560(.0090)
870 5.4569(.0081) 5.4543(.0107) 5.4560(.0090)

puAC T | 14 three methods in the valuation of Life Insurance
Liabilities with no-dividend payment for company A. Surrender value at t=

2 years. -

Table 4.5: The valuation of Life Insurance Liabilities with no-dividend payment at
Maturity (=30 years) for company A. Expected Value=8.220

S

No. of Multi-Period  Fully Crank-

steps ~ Binomial Implicit Nicolson

100 8.1763(.0437) 7.4244(.7956) 7.5107(.7093)
250 8.1831(.0369) 7.5275(.6925) 7.5622(.6578)
400 8.2045(.0155) 7.5535(.6665) 7.5757(.6443)
550 8.2076(.0124) 7.5656(.6544) 7.5817(.6383)
700 8.2074(.0126) 7.5725(.6475) 7.5851(.6349)
850 8.2040(.0160) 7.5770(.6430) 7.5874(.6326)
1000 8.2075(.0125) 7.5801 (.6399) 7.5890(.6310)
1150  8.2116(.0084) 7.5824(.6376) 7.5901(.6299)
1300  8.2085(.0115) 7.5842(.6358) 7.5910(.6290)
1450  8.2085(.0115) 7.5846(.6354) 7.5917(.6283)
1500  8.2085(.0115) 7.5860(.6340) 7.5919(.6281)
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Table 4.6: The comparison of the three methods
Liabilities with no-dividend payment for company B. Surrender value at (=

in the valuation of Life Insurance

Expected value = 36.04 Lt -

No. of Multi-Period Fully Crank-

steps  Binomial Implicit Nicolson

30 35.8113(.2287) 34.4780(1.5620) 35.0667(.9733)
90 35.9807(.0593) 35.2300(.8100) 35.4022(.6378)
330 36.0343(.0057) 35.4678(.5722) 35.5187(.5213)
390 36.0315(.0085) 35.4817(.5583)  35.5249(.515 1)
450 36.0263(.0137) 35.4919(.5481)  35.5294(.5106)
510 36.0319(.0081) 35.4998(.5402)  35.5329(.5071)
570 36.0334(.0066) 35.5060(.5340)  35.5356(.5044)
630 36.0287(.0113) 35.5110(.5290)  35.5378(.5022)
660 36.0324(.0076) 35.5131(.5269). 35.5387(.5013)
690 36.0339(.0061) 35.5151(.5249) 35.5396(.5004)
720 36.0300(.0100) 35.5169(.5231) 35.5404(.4996)
750 36.0304(.0096) 35.5185(.5215) 35.5412(.4988)
780 36.0336(.0064) 35.5201(.5199) 35.5419(.4981)
810 36.0331(.0069) 35.5215(.5185) 35.5425(.4975)
840 36.0302(.0098) 35.5228(.5172) 35.5431(.4969)
870 36.0319(.0081) 35.5241(.5159) 35.5436(.4964)

Tables 4.4, 4.5 and 4.6 shows that the Crank-Nicolson finite scheme in con-

verges faster than the fully implicit finite scheme in as N — oo. The multi-period
binomial model is closer to the value of the life insurance contract for small values of
N than the two finite difference methods and it also give more accurate results than the

Black-Scholes partial differential equation (see also figures 4.1, 4.2, 4.3 and 4.4).

Convergenc oRBinomial tres Method for the valuation of Lie Insurance
. T |

/-'—————-—___ el

Figure 4.1: Chart on Binomial tree for the value of Life Insurance with no-dividend
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Figure 4.2: Chart on Fully Implicit Method for the valuation of Life Insurance with
no-dividend

Figure 4.3: Chart on Crank-Nicolson Method for the valuation of Life Insurance with L
~ no-dividend
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. Comapring Binomis! lres methed, Implicit Finte difference and Crank-Micolson method
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Figure 4.4: Comparing the Values obtained by Multi-period binomial tree, Implicit
finite difference and Crank-Nicolson method

4.7 Numerical Method for Life Insurance Valuation with

continuous dividend for coinpany A

Figures 4.5, 4.6 and 4.7 shows the value of the life insurance contract for continuous

dividend payment for company A.

Convergence anzlysis of Life Insurance Valuation with continuous dividend - Binomial tree methc
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Figure 4.5: Chart on Multi-Period Binomial tree Method for the valuation of Life
Insurance with continuous dividend
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Figure 4.6: Chart on Fully Implicit Method for the valuation of Life Insurance with
continuous dividend
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Figure 4.7: Chart on Crank-Nicolson Method for the valuation of Life Insurance with
continuous dividend
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Figure 4.8 shows the changes in the value of Jife insurance liability due to different

volatilities using the Binomial tree method. The graph shows that, the smaller the

volatility the faster the convergence but the bigger the volatility the higher the value of

the life insurance.
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Figure 4.10: Crank-Nicolson method with different volatilities

s —

Figures 4.9 and 4.10 shows the effect of different volatilities on the valuation of

the life insurance liabilities. The figures show that, the higher the volatility, the higher

the value of the contract. This indicates that, even though volatility causes the up and

1l

down movement of the value of the contract,

it as well affect the value of the contract.

82



Chapter 5

CONCLUSION AND RECOMMENDATION

5.1 Introduction

This chapter look at the summary of the results obtained from the analysis, the conclu-

sions drawn and some recommendations in relation to the methods used.

S.2 Summary of Results

From the analysis, it was realized that, asset price discretization and time discretiza-
tion are two fundamental sources of error. Lax Equivalence theorem indicated that,
the three fundamental factors that characterized a numerical scheme are consistency,
stability and convergence.

The study used the eigenvalue to test the stability of the three finite difference
methods. The results showed that, the explicit finite difference scheme is conditionally
stable but the implicit finite difference and the Crank-Nicolson methods were uncon-
ditionally stable. The results also showed that, the multi-period binomial tree method
was also stable (see table 4.3).

The;résults also showed-that, the Crank-Nicolson method also converges faster

than the implicit finite difference method when used in solving the Black-Scholes par-

Tz:ﬁ differential equation. But the multi-period binomial tree method was found to give

more accurate results for life insurance contract containing surrender options 1n Ghana

than the Black-Scholes partial differential equation.
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5.3 Conclusion

The Crank-Nicolson method converges faster than the implicit finite difference method
when these schemes are used in solving the Black-Scholes pde. That is, the Crank-
Nicolson method gives more accurate results than the implicit finite difference scheme.

The multi-period binomial tree method was found to be closer to the solution for
even smaller values of N (the number of steps) than the Black-Scholes pde when the
valuing the life insurance contract in Ghana. The big advantage the binomial model
has over the Black-Scholes model is that it can be used to accurately price American
options. This is because with the binomial model it’s possible to check at every point
in an option’s life (ie at every step of the binomial tree) for the possibility of early
exercise (eg where, due to eg a dividend, or a put being deeply in the money the option
price at that point is less than its intrinsic value). Hence the Binomial tree method gives

more accurate results than the Black-Scholes model.

5.4 Recommendations

In finding the value of American style life insurance contract, the binomial model gives
more accurate results than the Black-Scholes model. In the case where the Black-
Scholes model is going to be used, then the Crank-N icolson method converges faster

and gives more accurate results than the implicit finite difference scheme. But the ex-

plicit finite difference scheme va&accurate results because of its conditional

stability.

——

o —

5.5 Further Studies

This study looked at the valuation of single premium American life insurance con-

tract. The researcher will take a look at the valuation of continuous-instalment options

which contains surrender option as well.
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APPENDIX

Appendix I - Matlab Code for Implicit Finite Scheme

function[Rec,V]=ImplicitFDBS_nodividend2 (A, K, r,volatility, T, N,M)

t If no dividend payment was made, enter zero for the dividend_yield

% A 1s the asset price
¥ K 1s the strike price
$ T is the maturity period
% N is the number of iterations in the time direction
% M is the number of iterations in the asset direction
sigma=volatility;
y=length (N) ;
Table=zeros (y,3);
for j=l:y
dt=T/N(J);
dA=2*A/M(])
B=zeros (M(J)+1,M(])+1);
f=max (K- (0:M(j)) *dR,0)";
£(1)=Ff(1)-(0.5*r*1*%dt=0,5*sigma"2*1*dt);
x=1/(1-f*dt);

for m=1:M(j)-1

i f—

——

B(m+1,m)=x*(r*m*dt—sigma.“2*m.“2*dt}/2;
B(m+1,m+l)=x*(1+sigma.“2*m.“2*dt);
B(m+l,m+2)=x*(—r{m*dt-sigma.“Z*m.“Z*dt)/2;
end

Ri(lpL)=1;

B(M(J)+1,M(J)+1)=1;
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Eors =Ni{ge=111
f=B\f;
f=max (£, (K-(0:M(3))*dA)"’);
end
f;
V=f (round ( (M(j)+1)/2));
Table(j,1)=3;
Table (j,2)=N(]);
Table(j,3)=V;
end

Rec=Table;

Appendix II - Matlab Code for Crank-Nicolson Method

function[P] = CrankNicolsonFDBS(S,K,r,0,T,N,M,dividendyield)
% If no dividend payment was made, enter zero for the dividend_yield
% S is the asset price

% K 1is the strike price

% T is the maturity period

% N is the number of iterations in the time direction

% M is the number of iterations in the asset direction

G is the volatility — e L

A = dividend _yield,

ds=2%8/M;

A = zeros(M+1,M +1);
f=max(K—(0: M) xds,0);
Torm=1:M—1

Am+1,m) = ((r~h)*m*dr—02*m2*dr)/4;
Am+1,m+1)=1 —I-O.S*(r—l)#dr—i—O.S*oz#mz-*df;
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A(m+1,m+2) = (—(r—A) xmx*dt —c?xm? xdt) /4;
end

A1) = 1;

AMA+1,M+1)=1,

A;

form=1:M—1

B(m+1,m) = (—(r—A) *mxdt + 6% xm.* xdt) /4,
B(m+1,m+1)=1—-05%(r—A)xdt —0.5% 0% xm.% x dt;
Bm+1,m+2) = ((r—A)*mxdt +06%xm?*xdt)/4;
end

BLi=1;

B(M+1,M+1)=1;

B;

dari=N:—1:1
f=A"'(Bxf);

f =max(f,(K— (0: M)xds)");
end

s

P = f(round((M+1)/2));

Appendix - Matlab Code for Binomial tree with no divi-
— F /-—/l

(_iend

e

function[Rec,V]=american_binomial_nodividend(Asset,Strike_Price,

Maturity, rate,sigma,N)
S=Rsset;K=Strike_Price;T=Maturity;r=rate;z=sigma;
x=1length (N) ;

Table=zeros (x,3)

for j=1:X

91




dt=T/N(j);
A=zeros(N(j)+1);
a=exp (r*dt);
u=exp(z*sqrt (dt));
p=(a*u-1)/(u"2-1);
A(N(Jj)+1,:)=max (K-S*u." (2* (0:N(j))-N(j)),0);
for i=N(j):-1:1
A(i,1:i)=max((K-S*u.” (2*(1:1)-i-1)), (p*A(i+1, (1:1)+1)+(1-p)*A(i+1,1:1i))/a);
end
V=A(1,1);
| Table(j,1)=3;
Table(j,2)=N(]);
Table(j,3)=V;
end

Rec=Table;

Appendix III - Matlab Code for Binomial Tree with div-

idend

functicn[V]=american_binomial_dividend(Asset, Strike Price, Maturity,

rate, volati%};y, N, difigggg=ggrcentage, dividend_payment_date)

% time remaining until expiration is expressed as a percent of a year

§ voTafility is the annual volatility of stock price (the standard deviation
of the short-term returns over one year)

% rate is the current contiquously compounded risk-free interest rate

% N should be in a row matrix form and it'’s indicates the number of

% iterations.
A=Asset;K=Strike_Price;T=Maturity;r=rate;g=volatility;rd=dividend_percentage{
t au=dividend_payment_date;
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xX=length (N) ;

Table=zeros (x, 3) ;

for j=1l:x
dt=T/N(j) ;

B=zeros (N(j)+1);
a=exp (r*dt) ;

u=exp (g*sqrt (dt) ) ;

d=1/u;

n=floor (tau/dt) ;

if n==

1;

n
end

p=(a-d)/ (u—-d);

B(N(j)+1,:)=max (K-A* (1-rd) *u.” (2* (0:N(J))-N(3)),0);

for i=N(j):-1:n
E(i,l:i)=max((K—H*[l—rd)*u.“(2*(1:i)—iF1J},

“(p*B(i+l, (1:1)+1)+(1-p) *B(i+1,1:1))/a);

end
—or i=h:=1:1
B(i,l:i)=max((K—A*(l—rd)*u.“(2*(1:1)—i—1)),(p*B(i+l,(1:i)+1)+(1—p)*B(i+l,l:
end
%B

STteration=N(7J);
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V=B(1l,1);
Table(3j,1)=73;
Table(j,2)=N(]j);
Table(3,3)=V;
end
Table
plot (Table(:,2),Table(:,3)),xlabel ("No. of steps’),ylabel (‘Life Insurance
Value'),title(’Convergence analysis of Life Insurance Valuation with

continuous dividend - Binomial tree method’)
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