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ABSTRACT 

The problem of locating a facility on a network to optimize certain objective criteria has been 

object in the past few years of growing interest for its relevance in the context of minimizing 

maximum travel distance between demand nodes. 

This thesis therefore considers the problem of locating a library facility as a 𝑝 – centre problem 

under the condition that there are some existing facilities already located in the Berekum 

Municipality in the Brong Ahafo Region. 

Berman and Drezner (2008) method was used on 18 – nodes network which had two existing 

library facilities at Berekum and Jininjini. An additional library facility using Berman and 

Drezner (2008) should be located at Akrofro with an objective function value of 8. The objective 

function value of 8 means that, the minimum distance travelled the farthest library user to the 

new library facility at Akrofro is 8 kilometres. 
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CHAPTER 1 

INTRODUCTION 

1.1INTRODUCTION  

A library is a collection of sources, resources, and services, and the structure in which it is 

housed; it is organized for use and maintained by a public body, an institution, or a private 

individual. In a more traditional sense, a library is a collection of books. It is also the collection, 

the building or room that houses such a collection, or both. The term “Library” has itself 

acquired a secondary meaning: “a collection of useful material for common use”. This sense is 

used in fields such as Computer Science, Mathematics, Statistics, Electronics and Biology. It can 

be used by publishers in naming related books. E.g. The library of Anglo – Catholic Theology. 

A library often provides a place of silence for studying. (Wikipedia, 2012). 

 

Public and institutional collections and services may be intended for use by people who choose 

not to, or cannot afford to purchase an extensive collection themselves and who need material no 

individual can reasonably be expected to have, or who require professional assistance with their 

research.  

 

1.2 THE EARLY HISTORY OF LIBRARIES 

The first libraries were composed, for the most part, of published records, a particular type of 

library called archives. Archaeological findings from the ancient city – states of summer have 

revealed temple rooms full of clay tablets in cuneiform script. (Wikipedia, 2012). 
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These archives were made up of the records of commercial transactions or inventories, with only 

a few documents touching theological matters, historical records or legends. Things were much 

the same in the government and temple records on papyrus of Ancient Egypt. 

(Wikipedia,2012). 

The earliest discovered private archives were kept at Ugarit; besides correspondence and 

inventories, texts of myths may have been standardized practice – texts for teaching new scribes. 

(Wikipedia, 2012). 

There is also an evidence of libraries at Nippur about 1900 B.C. and those at Nineveh about 700 

B.C. (Wikipedia, 2012).  

Over 30,000 clay tablets from library of Ashurbanipal have been discovered at Nineveh, 

providing archaeologists with an amazing wealth of Mesopotamian library, religious and 

administrative work. (Wikipedia, 2012). 

 

1.3 LIBRARY CLASSIFICATION  

A library classification is a system of coding and organizing library materials (books, serials, 

audiovisual materials, computer files, maps, manuscript, realia) according to their subject and 

allocating of call number to that information resource. Similar to classification systems used 

inbiology, bibliographic classification systems group entities together that are similar, typically 

arranged in a hierarchical tree structure. A different kind of classification system, called a faceted 

classification system, is also widely used which allows the assignment of multiple classification 

to an object, enabling the classifications to be ordered in multiple ways.  

(Wikipedia, 2012). 
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1.4 DESCRIPTION OF LIBRARIES 

Library classification form part of the field of library and information Science. It is a form of 

bibliographic classification (library classification are used in library catalogs, 

while“bibliographic classification” also covers classification used in other kinds of bibliographic 

database). It goes hand in hand with library (descriptive) cataloging under the rubric of 

cataloging and classification, sometimes grouped together as technical services. The library 

professional who engages in the process of cataloging and classifying library materials is called a 

cataloguer or catalog librarian. Library classification systems are one of the two tools used to 

facilitate subject access. The order consists of alphabetical indexing languages such as Thesauri 

and Subject Headings Systems.  

Library classification of a piece of work consists of two steps. Firstly the “aboutness” of the 

material is asserted. Next, a call number (essentially a book’s address), based on the time in use 

at the particular library will be assigned to the work using the notation of the system. 

 It is important to note that unlike subject heading where multiple terms can be assigned to the 

same work, in library classification system, each work can only be placed in one class. This is 

due to shelving purpose.  

 

1.5 TYPES OF LIBRARIES 

1.5.1 ACADEMIC LIBRARIES 

These libraries are located on the campuses of colleges and universities and serve primarily the 

students and the faculty of that and other academic institutions. Some academic libraries, 

especially those at public institutions, are accessible to the members of the general public. 

 



4 
 

1.5.2 PUBLIC LIBRARIES 

These libraries provide services to the general public and make at least some of their books 

available for borrowing, so that readers may use them at home over a period of time. Typically, 

libraries issue library cards to community members wishing to borrow books.  

 

 1.5.3RESEARCH LIBRARIES  

They are intended for supporting scholarly research, and therefore maintain permanent 

collections and attempt to provide access to all necessary material. They are often academic 

libraries or national libraries, but many large special libraries have research libraries within their 

special filed and a very few of the large public libraries also serve as a research libraries.  

 

1.5.4 SCHOOL LIBRARIES  

Most public and private primary and secondary schools have libraries designed to support the 

school curriculum.  

 

1.5.5SPECIAL LIBRARIES  

 All other libraries fall into this category. Many private businesses and public organizations, 

including hospitals, museums, research laboratories, law firms, and many government 

departments and agencies, maintain their own libraries for the use of their employees in doing 

specialized research, related to their work. Special libraries may or may not be accessible to 

some identified part of the general public.  
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1.6 BEREKUM MUNICIPALITY AND ITS EDUCATIONAL INSTITUTIONS 

Berekum Municipal came into existence as a semi-autonomous spatial unit by virtue of the 

decentralization policy adopted by the Ghana Government in 1988. Berekum is a Municipal 

located at the western part of the Ghana in the Brong-Ahafo Region.  It lies between latitude 

7’15’ South and 8’00’ North and longitudes 2’25’ East and 2’50’ West.  

The Municipality shares boundaries with Wenchi Municipal and Jaman District to the Northeast 

and Northwest respectively, Dormaa Municipal to the South and Sunyani Municipal to the East. 

Berekum, the Municipal capital is 32km and 437km North West of Sunyani, its regional capital 

and Accra, the national capital respectively. The human population of the Berekum Municipality 

in 2006 is 113,650 with population growth rate of 3.3 percent (3.3%). Its total area is nine 

hundred and fifty-five kilometers square (955 km2) which constitutes about 0.7 percent of the 

entire two hundred and thirty-three thousand, five hundred and eighty-eight kilometres square 

(233, 588km²) of Ghana’s total area. The municipal’s close proximity to Cote d’Ivoire is another 

remarkable feature which promotes economic and commercial activities between the Municipal 

and Cote d’ Ivoire (Berekum Municipal Assembly, 2006).   

 

The following are the many schools and other important institutions in the municipality; Nurses’ 

Training College, College of Education, Jackson Educational Complex, Presbyterian Senior 

High School, Berekum Senior High School, Methodist Senior High School, Jinijini Senior High 

School, Star Business Senior High School and hundreds of Junior High Schools and Primary 

Schools can be cited in this municipality.  
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1.7 PROBLEM STATEMENT  

Due to the nonexistence of libraries in most communities in Berekum Municipality, performance 

of students is low. Where there are libraries, the locations are poorly sited and that most library 

users do not get access to the library facility. 

The researcher therefore intends to locate an additional library facility to serve the people of 

Berekum Municipality who had to travel a long distance to any of the only two existing libraries 

(one at Berekum and the other at Jinijini) and also people who do not have access to library at 

all. 

 

1.8 OBJECTIVES OF THE STUDY  

 

1. To model location of an additional library facility in the Berekum Municipal as a conditional 

p- center problem 

2. To solve the conditional p – center problem using Berman and Drezner’s algorithm.  

 

 

1.9 METHODOLOGY   

The objective of the study is to locate an additional library facility in Berekum Municipality using 

Berman and Drezner’s algorithm. The data for this study is the road distance between the suburbs 

of Berekum Municipality. The suburbs of the municipal will be coded and Floyd’s algorithm will 

be used to find the distance matrix, d (i, j) for all pairs shortest path. Berman and Drezner’s algorithm 

will then use the distance matrix to locate an additional library facility. 

The researcher will use the following resources for the study; personal laptop, Kwame Nkrumah 

University of Science and Technology Kumasi main library, Sunyani Polytechnic Library, the 

Encyclopedia Britannica 2011and the internet. 
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1.10 JUSTIFICATION OF THE STUDY 

The study therefore is significant due to the following reasons: 

It will help to inculcate the habit of reading in the people of the municipality. 

It will improve students’ performance. 

It will help to reduce students’ burden of travelling long distance to library. 

It will serve as a reference centre for Schools and Colleges within the municipality. 

 

1.11 ORGANIZATION OF THE STUDY 

The thesis consists of five chapters: including this chapter, which introduces the study. Chapter 2 

is on Literature Review which takes stock of what has already been written on the topic in terms 

of theories or concepts, scientific research studies and the overall goal of clarifying how the 

present study intends to address the gap silence or weakness in the existing literature. Chapter 3 

explains the methodology that is being used for the study. The findings and discussions will be 

presented in Chapter 4. Lastly, Chapter 5 will discuss on the conclusions and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0 INTRODUCTION  

To locate a specific type of facility, one usually looks for the best way to serve a set of 

communities whose location and demands are known. This implies one needs to consider the 

following:  

i. The number and location of the facilities to serve the demand  

ii. Size and capacity of each facility  

iii. The allocation of the demand points to open facilities  

iv. Optimizing some objective location function.  

Most location models deals with desirable facilities, such as warehouse, service and 

transportation centers, emergency services, etc, which interact with the customers and where 

distance travel is involved. As a consequence, typical criteria for such decision include 

minimizing some function of the distance between facilities and/ or clients (i. e., average travel 

time, average response time, cost function of travel or response time, maximum travel time or 

cost, etc.). However, during the last two decades, those responsible for the overall development 

of the area, where the new facility is going to be located (i.e. central government, local 

authorities) as well as those living in the area (population), are showing an increasing interest in 

preserving the area’s quality of life. Hence, new words have been introduced in the location 

theory, such as: noxious, obnoxious, semi obnoxious, hazardous, etc. As examples of undesirable 

facilities we can mention include nuclear and military installations, equipment emitting particular 

smell or noise, warehouses containing flammable materials, regions containing refuse or waste 

materials, garbage dumps, sewage plants, correctional centers, etc. The traditional optimality 
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criterion of closeness (to locate the facility as close as possible to the customers) is replaced by 

the opposite criterion of how far away from the customers can the facility be placed to ensure 

accessibility to the demand point. This generates the NIMBY syndrome (NOT-IN-MY-BACK-

YARD) (Capitivo and Climaco, 2008). Buettcher(2004), described the p-Center problem, as the 

Min-Max Multicenter problem or the Facility Location problem, to be a famous problem from 

operations research. He classified the optimization problem into three different types, depending 

on which of the restrictions applied.  

i. The general optimization problem in which the choice of the distance function d is not 

restricted in any way.  

ii. The metric problem in which d satisfies the triangle inequality.  

iii. The metric and symmetric problem in which d(x; y) = d(y; x), and d satisfies the triangle 

inequality.  

It was realized that, the metric, asymmetric p-Center problem had remained unstudied even ten 

years after its symmetric counterpart had been finally solved (by presenting an algorithm with 

optimal approximation factor) in 1986. In 1998, the O(log*(n)) approximation algorithm found 

by Panigrahy and Vishwanathan(1998) was published. Thus, it was clear that - in contrast to the 

general p-Center problem without any restrictions to the distance function - this problem could 

be approximated. And the approximation was a very good one, although the algorithm could not 

guarantee a constant-factor approximation. A few years later, in 2003, it turned out that this is 

the best approximation ratio possible (unless P = NP), (Halperin et al., 2003). So, the p-Center 

problem is one of the rare problems for which essentially nothing was known, then a first non-

trivial algorithm was found that can approximate the problem, and it was already this very first 
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algorithm that achieves the best approximation ratio possible. This alone is already very exciting. 

What makes the p-Center problem even more fascinating is the approximability of the problem. 

log*(n) is one of the functions where the discrepancy between theoretical results and practical 

consequences becomes very clear. Log2* (n) can be assumed ≤ 6 for all practical purposes. Yet, 

from a theoretical point of view, there is a clear distinction between constant approximation 

factor and log*(n).  

 

2.1 SOME APPROACHES TO FACILITY LOCATION PROBLEMS  

Goldengorin et al. (1999), considered the simple plant location problem. This problem often 

appears as a sub-problem in other combinatorial problems. Several branch and bound techniques 

have been developed to solve these problems. The thesis considered new approaches called 

branch and peg algorithms, where pegging refers to assigning values to variables outside the 

branching process. An exhaustive computational experiment shows that the new algorithms 

generate less than 60% of the number of sub-problems generated by branch and bound 

algorithms, and in certain cases requires less than 10% of the execution times required by branch 

and bound algorithms. Firstly, for each sub-problem generated in the branch and bound tree, a 

powerful pegging procedure is applied to reduce the size of the sub-problem. Secondly, the 

branching function is based on predictions made using the Beresnev function of the sub-problem 

at hand. They saw that branch and peg algorithms comprehensively outperform branch and 

bound algorithms using the same bound, taking on the average, less than 10% of the execution 

time of branch and bound algorithms when the transportation cost matrix is dense. The main 
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recommendation from the results of the experiment is that branch and peg algorithms should be 

used to solve SPLP instances. 

Erkut and Neuman (1992), presented a mixed integer linear model for undesirable facility 

location. The objectives considered are total cost minimization, total opposition minimization 

and equity minimization.  

Caruso et al. (1993), presented a model for planning an urban solid waste management system. 

Incineration, composition and recycling are considered for the processing phase and sanitary 

landfills are considered for the disposal phase. Heuristic techniques (embedded in the reference 

point approximation) are used to solve the model and, as a consequence, “approximate Pareto 

solutions” are obtained. By varying the reference point, different solutions can be obtained. The 

results for a case study (Lombardy region in Italy) are presented and discussed.  

Wyman and Kuby (1993, 1995), presented a multi-objective mixed integer programming model 

for the location of hazardous material facilities (including the technologies choice variable) with 

three objectives functions (cost, risk and equity). 

Melachrinoudis et al. (1995), propose a dynamic multi-period capacitated mixed integer 

programming model for the location of sanitary landfills.  

Fonseca and Captivo (1996; 2006; 2007), studied the location of semi obnoxious facilities as a 

discrete location problem on a network. Several bi-criteria models are presented considering two 

conflicting objectives, the minimization of obnoxious effect and the maximization of the 

accessibility of the community to the closest open facility. Each of these objectives is considered 

in two different ways, trying to optimize its average value over all the communities or trying to 

optimize its worst value. The Euclidean distance is used to evaluate the obnoxious effect and the 
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shortest path distance is used to evaluate the accessibility. The obnoxious effect is considered 

inversely proportional to the weighted Euclidean distance between demand points and open 

facilities, and demand directly proportional to the population in each community. All the models 

are solved using Chalmet et al. (1986), non- interactive algorithm for Bi-criteria Integer Linear 

Programming modified to an interactive procedure by Ferreira et al. (1994). Several equity 

measures are computed for each non-denominated solution presented to the decision-maker, in 

order to increase the information available to the decision –maker about the set of possible 

solutions.  

Moscibroda and Wattenhofer(2005), initiated the studied of the approximability of the facility 

location problem in a distributed setting. In particular, they explore a trade between the amount 

of communication and the resulting approximation ratio. The authors give a distributed algorithm 

that, for every constant k, achieves an O(pk(m½)1=pklog (m + n)) approximation in O(k) 

communication rounds where message size is bounded to O(log n)bits. The number of facilities 

and clients are m and n, respectively, and ½ is a coefficient that depends on the cost values of the 

instance. Their technique is based on a distributed primal-dual approach for approximating a 

linear program, that does not form a covering or packing program. 

 

Ferreira et al. (1996), proposed a bi-criteria mixed integer linear model for the facility location 

where the objectives are the minimization of total cost and the minimization of environmental 

pollution at facility sites. The interactive approach of Ferreira et al (1994) is used to obtain and 

analyze non-dominated solutions. 

Giannikos (1998), presented a discrete model for the location of disposal or treatment facilities 

and transporting hazardous waste through a network linking the population centers that produce 
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the waste and the candidate locations for the treatment facilities method to choose the location 

for a waste treatment facility in a region of Finland.  

Krivitski et al. (2005), addressed a well-known facility location problem (FLP) in a sensor 

network environment. The problem deals with finding the optimal way to provide service to a 

(possibly) very large number of clients. They show that a variation of the problem can be solved 

using a local algorithm. Local algorithms are extremely useful in a sensor network scenario. This 

is because they allow the communication range of the sensor to be restricted to the minimum, 

they can operate in routerless networks, and they allow complex problems to be solved on the 

basis of very little information, gathered from nearby sensors. The local facility location 

algorithm presented is entirely asynchronous, seamlessly supports failures and changes in the 

data during calculation, poses modest memory and computational requirements, and can provide 

an anytime solution which is guaranteed to converge to the exact same one that would be 

computed by a centralized algorithm given the entire data. 

 

Costa et al. (2008), developed two bi-criteria models for single allocation hub location problems. 

In both models the total cost is the first criteria to be minimized. Instead of using capacity 

constraints to limit the amount of flow that can be received by the hubs, a second objective 

function is used, trying to minimize the time to process the flow entering the hubs. In the first 

model, total time is considered as the second criteria and, in the second model, the maximum 

service time for the hubs are minimized. Non-dominated solutions are generated using an 

interactive decision-aid approach developed for bi-criteria integer linear programming problems. 

Both bi-criteria models are tested on a set of instances, analyzing the corresponding non-
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dominated solutions set and studying the reasonableness of the hubs flow charge for these non-

dominated solutions.  

Ballou (1998), discusses a selected number of facility location methods for strategic planning. 

He further classifies the more practical methods into a number of categories in the logistics 

network, which include single–facility location, multi–facility location, dynamic facility 

location, retail and service location. 

Christopher and Wills (1972), comprehensively present that whether the problem of depot 

location is static or dynamic, “Infinite Set‟ approaches and “Feasible Set‟ approach can be 

identified. The infinite set approach assumes that a warehouse is flexible to be located anywhere 

in a certain area. The feasible set approach assumes that only a finite number of known sites are 

available as warehouse locations. They believe the centre of gravity method is a sort of infinite 

set model.  

Ballou (1998), stated that exact centre of gravity approach is simple and appropriate for locating 

one depot in a region, since the transportation rate and the point volume are the only location 

factors. Given a set of points that represent source points and demand points, along with the 

volumes needed to be moved and the associated transportation rates, an optimal facility location 

could be found through minimizing total transportation cost. In principle, the total transportation 

cost is equal to the volume at a point multiplied by the transportation rate to ship to that point 

multiplied by the distance to that point. Furthermore, Ballou outlines the steps involved in the 

solution process in order to implement the exact centre of gravity approach properly.  
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2.2 P- CENTRE LOCATION PROBLEM 

The conditional location problem is to locate p new facilities to serve a set of demand points 

given that q facilities are already located. When q is equal to zero (q = 0), the problem is 

unconditional. In conditional p – center problems, once the new p locations are determined, a 

demand can be served either by one of the existing or by one of the new facilities whichever is 

the closest facility to the demand (Berman, 2008). The p-center problem seeks the location of p 

facilities. Each demand point receives its service from the closest facility. The objective is to 

minimize the maximal distance for all demand points. The p-center problem consists of choosing 

p facilities among a set of M possible locations and assigning N clients to them in order to 

minimize the maximum distance between a client and the facility to which it is allocated.  

Elloumi et al. (2004), presented a new integer linear programming formulation for this min-max 

problem with a polynomial number of variables and constraints, and show that its LP relaxation 

provides a lower bound tighter than the classical one. Moreover, they showed that an even better 

lower bound LB*, obtained by keeping the integrality restrictions on a subset of the variables, 

can be computed in polynomial time by solving at most O(log2(NM)) linear programs, each 

having N rows and M columns. They also show that, when the distances satisfy triangle 

inequalities, LB* is at least one third of the optimal value. Finally, they used the LB* in an exact 

solution method and report extensive computational results on test problems from the literature. 

For instances where the triangle inequalities are satisfied, their method out performs the running 

time of other recent exact methods by an order of magnitude. In addition, it is the first one to 

solve large instances of size up to N = M = 1, 817.  
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Krumke(1995), considered the generalization of the p-Center Problem, which is called the α-

Neighbor p-Center Problem (𝑝 − 𝐶𝐸𝑁𝑇𝐸𝑅(𝛼)). Given a complete edge-weighted network, the 

goal is to minimize the maximum distance of a client to it’s α nearest neighbor in the set of p 

centers. He shows that in general finding a O (2poly(¦V¦))-approximation for𝑝 − 𝐶𝐸𝑁𝑇𝐸𝑅(𝛼) is NP-

hard(Garey and Johnson, 1979), where ¦V¦ denotes the number of nodes in the network. If the 

distances are required to satisfy the triangle inequality, there can be no polynomial time 

approximation algorithm with a (2 − 𝜀) performance guarantee for any fixed 𝜀 > 0 and any fixed 

α ≤ 𝑝, unless P = NP. For this case, He presented a simple yet efficient algorithm that provides a 

4-approximation for α≥ 2. Considering the p-Center Problem with Connectivity Constraint, let G 

(V, E, W) be a graph with n-vertex-set V and m-edge-set E in which each edge e is associated 

with a positive distance W (e). 

Chung-Kung et al. (2006), proposed an additional practical constraint which restricted the p 

vertices, to be connected. The resulting problem is called the connected p-Center problem (the 

CpC problem). They first show that the CpC problem is NP-Hard on bipartite graphs and split 

graphs. Then, an O (n)-time algorithm for the problem on trees is proposed. Finally, the 

algorithm was extended to trees with forbidden vertices. That is some vertices in V cannot be 

selected as center vertices, and the time-complexity is also O (n). Meanwhile, it was identified 

that other variants of the traditional p-Center problem is also a very important issue. For 

example, just restricting that the p-center must be “total”, thus, the subgraph induced by the p-

center has no isolated vertices, is another typical practical variant.  

Chen and Chen (2009), presented a new relaxation algorithm for solving the conditional 

continuous and discrete p-center problems. In the continuous p-center problem, the location of 

the service facilities can be anywhere in the two-dimensional Euclidean space. In the discrete 
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variant there is a finite set of potential service points to choose from. An analogous 

representation of the discrete p-center problem is the p-center problem on networks. In the p-

center problem on networks, both the demand points and the potential service points are located 

on a weighted undirected graph, and the distance between any two points is the cost of the 

shortest path between them. They assumed that, there are a finite number of values for the 

optimal solution of an unconditional p-center problem. They use the assumption to implement 

the subroutine Get- Next Bound (Lower-Bound) which returns the smallest value, among the 

possible values for the optimal solution, which is greater than Lower-Bound. Also the subroutine 

Find Feasible Solution (Sub, r), which answers the question: ``is there a solution to the sub-

problem with value less than r?'' (And if so, finds such a solution).  

Hassin et al. (2003), introduced a local search strategy that suits combinatorial optimization 

problems with a min-max (or max-min) objective. According to this approach, solutions are 

compared lexicographically rather than by their worst coordinate. They apply this approach to 

the p-center problem. Based on a computational study, the lexicographic local search proved to 

be superior to the ordinary local search. This superiority was demonstrated by a worst-case 

analysis.  

Cheng et al. (2005), worked on the Improved Algorithm for the p-Center Problem on Interval 

Graphs with Unit Lengths. They presented an O (n) time algorithm for the problem under the 

assumption that the endpoints of the intervals are sorted, which improves on the existing best 

algorithm for the problem that has a run time of O (pn). 

 They modeled the network as a graph G = (V, E), where V is the vertex set with |V | = n and E is 

the edge set with |E| = m. it was assumed that, the demand points coincide with the vertices, and 
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the location of the facilities was restricted to the vertices. Also they assumed that each edge of E 

has a unit length. It remains an interesting question whether they could develop an 

approximation algorithm for the p-center problem on interval graphs with general edge lengths. 

 

2.3 CONDITIONAL LOCATION PROBLEM 

Minieka (2006), stated that, previous treatments of location problems on a graph have been 

confined to the optimum location of a single facility or the simultaneous optimum location of 

multiple facilities. The author addresses the problem of optimally locating a facility on a graph 

when one or more other facilities have already been located in the graph. The author shows that 

previous solution techniques can be reused if the distances in the graph are judiciously redefined. 

Tamir et al. (2005), deal with the location of extensive facilities on trees, both discrete and 

continuous, under the condition that existing facilities are already located. They require that the 

selected new server is a subtree, although we also specialize to the case of paths. They study the 

problem with the two most widely used criteria in Location Analysis: center and median. Their 

main results under the center criterion are nestedness properties of the solution and subquadratic 

algorithms for the location of paths and subtrees. For the case of the median criterion they prove 

that unlike the case where there is no existing facility, the continuous conditional median sub-

tree problem is NP-hard and we develop a corresponding fully polynomial approximation 

algorithm. They also present subquadratic algorithms for almost all other models. 

Wouter et al. (2011), contributed to conditional location by writing; within research on world 

cities, much attention has been paid to Advanced Producer Services (APS) and their role within 

both global urban hierarchies and network formation between cities. What is largely ignored is 
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that these APS provide services to firms operating in a range of different sectors. Does sector-

specific specialization of advanced producer services influence the economic geography of 

corporate networks between cities? If so, what factors might explain this geographical pattern? 

This paper investigates these theoretical questions by empirically focusing on those advanced 

producer services related to the port and maritime sector. The empirical results show that the 

location of AMPS is correlated with maritime localisation economies, expressed in the presence 

of ship owners and port-related industry as well as APS in general, but not by throughput flows 

of ports. Based upon the findings, policy recommendations are addressed.  

Berman and Simchi (2011), described an algorithm to solve conditional location problems (such 

as the conditional p-median problem or the conditional p-center problem) on networks, where 

demand points are served by the closest facility whether existing or new. This algorithm requires 

the one-time solution of a (p + 1)-unconditional corresponding location problem using an 

appropriate shortest distance matrix.  

Berman and Drezner (2007), discuss the conditional p-median and p-center problems on a 

network. Demand nodes are served by the closest facility whether existing or new. Rather than 

creating a new location for an artificial facility and force the algorithm to locate a new facility 

there by creating an artificial demand point, the distance matrix was just modified. They 

suggested solving both conditional problems by defining a modified shortest distance matrix. 
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CHAPTER 3 

METHODOLOGY 

3.0   SHORTEST PATH PROBLEM 

In graph theory, the shortest path problem is the problem of finding a path between two 

vertices(nodes) in a graph such that the sum of the weights of its constituent edges is minimized. 

An example is finding the quickest way to get from one location to another on a road map; in this 

case, the vertices represent locations and the edges represent segments of road and are weighted 

by the time needed to travel that segment.  

3.1 SHORTEST PATH FROM A SOURCE 

3.1.1 DIJKSTRA’S ALGORITHM 

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and 

published in 1959, is a graph search algorithm that solves the single-source shortest path problem 

for a graph with nonnegative edge path costs, producing a shortest path tree. This algorithm is 

often used in routing and as a subroutine in other graph algorithms. For a given source vertex 

(node) in the graph, the algorithm finds the path with lowest cost (i.e. the shortest path) between 

that vertex and every other vertex. It can also be used for finding costs of shortest paths from a 

single vertex to a single destination vertex by stopping the algorithm once the shortest path to the 

destination vertex has been determined. For example, if the vertices of the graph represent cities 

and edge path costs represent driving distances between pairs of cities connected by a direct 

road, Dijkstra's algorithm can be used to find the shortest route between one city and all other 

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Path_%28graph_theory%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Weighted_graphs_and_networks
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cities. As a result, the shortest path first is widely used in network routing protocols, most 

notably IS-IS and OSPF (Open Shortest Path First).  

3.1.2 Algorithm 

Dijkstra's algorithm will assign some initial distance values and will try to improve them step by 

step. 

Step 1. Assign to every node a tentative distance value: set it to zero for our initial node and to 

infinity for all other nodes. 

Step 2. Mark all nodes except the initial node as unvisited. Set the initial node as current. Create 

a set of the unvisited nodes called the unvisited set consisting of all the nodes except the initial 

node. 

Step 3. For the current node, consider all of its unvisited neighbors and calculate their tentative 

distances. For example, if the current node A is marked with a distance of 6, and the edge 

connecting it with a neighbour B has length 2, then the distance to B (through A) will be 6+2=8. 

If this distance is less than the previously recorded distance, then overwrite that distance. Even 

though a neighbour has been examined, it is not marked as visited at this time, and it remains in 

theunvisited set. 

Step 4. After considering all of the neighbours of the current node, mark the current node as 

visited and remove it from the unvisited set. A visited node will never be checked again; its 

distance recorded now is final and minimal. 

Step 5. The next current node will be the node marked with the lowest (tentative) distance in the 

unvisited set. 
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Step 6. If the unvisited set is empty, then stop. The algorithm has finished. Otherwise, set the 

unvisited node marked with the smallest tentative distance as the next "current node" and go 

back to step 3. 

Solved Example of Dijkstra's algorithm 

In Figure 3.1 below, A, B, C D and E are nodes and the numbers on the edges are the distances 

between the nodes. 

                       A               2                    B             1               E 

  

                                3                                            3         2     

                                        C                       4                          D 

Figure 3.1  Network for Dijkstra’s Example 

Solution 

Assign a permanent label 0 to the starting vertex, A   

                  1     0 A 

 

Assign temporary labels to nodes B and C which are directly connected to vertex A. Vertex B is 

the smallest among all temporary labels so permanently label vertex B as 2.  

                                  2     2     

            2            B       2 

                          1       0      A 

                                                  3    C  

 3 
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Assign temporary labels to nodes D and E which are directly connected to vertex B. 

 A       B      E = 3, A        C = 3 and A      B      D = 5. Since A       B      E =3 and A      C =3, are 

the same arbitrary permanently assign 3 to vertex C. 

                      2      2 

                                       B              2             1         E          3 

2 

 1      0    A                            3 

                               3        

 3     3   

                           3              C                                D         5 

 

Assign temporary labels to nodes which are directly connected to vertex C. A       B      E = 3,        

A        C     D =9 and A       B      D = 5. Since A       B      E = 3 is smaller than A       B      D = 5 

and B      C       D = 9, permanently assign 4 to vertex E. 

                      2      2                          4      3 

                                        B          2               1         E          3 

                               2 

 1      0    A                          3 

                               3        

 3       3                   

                           3            C                4                D        5    

 



24 
 

Finally, assign a permanent label of 5 to node D. 

                      2      2                          4      3 

                                        B            2            1           E        3 

                               2 

 1      0    A                            3                           2 

                               3        

 3       3                  5     5  

                           3             C                4                D        5    

 

From above, the shortest distance between nodes A and B is 2, that of C and E is 6. The table 

below summarizes the results.  

Table 3.1Distance Matrix, 𝐷 using Dijkstra's algorithm. 

Demand 

Nodes 

Potential Location 

A B C D E 

A 0 2 3 5 3 

B 2 0 5 3 1 

C 3 5 0 4 6 

D 5 3 4 0 2 

E 3 1 6 2 0 
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3.2 ALL-PAIR SHORTEST PATH PROBLEM 

3.2.1 FLOYD-WARSHALLALGORITHM 

The Floyd-Warshall algorithm is an efficient matrix method algorithm to find all- pair shortest 

paths on a graph. That is, it is guaranteed to find the shortest path between every pair of vertices 

in a graph. The graph may have negative weight edges, but no negative weight cycles (for then 

the shortest path is undefined). 

This algorithm can also be used to detect the presence of negative cycles; the graph has a 

negative cycles if at the end of the algorithm, the distance from a vertex 𝑣 to itself is negative. 

3.2.2 Algorithm  

The Floyd-Warshall algorithm is an application of Dynamic Programming.  

 Let dist(𝑘, 𝑖, 𝑗) be the length of the shortest path from 𝑖 and 𝑗 that uses only the vertices 

1,2,3,..........,𝑘 as intermediate vertices in N x N graph matrix .  The following recurrence: 

Step 1.𝑘 = 0is our base case, thus 𝑑𝑖𝑠𝑡(0, 𝑖, 𝑗 ) is the length of the edge from vertex 𝑖 to vertex 

𝑗if it exists and infinite (∞) otherwise. 

Step 2, using 𝑑𝑖𝑠𝑡(0, 𝑖, 𝑗), it then computes 𝑑𝑖𝑠𝑡(1, 𝑖, 𝑗) for all pairs of nodes 𝑖 and𝑗. 

Step 3.using𝑑𝑖𝑠𝑡(1, 𝑖, 𝑗),  it then computes 𝑑𝑖𝑠𝑡(2, 𝑖, 𝑗), for all pairs of nodes 𝑖 and 𝑗. It then 

repeats the process until it obtains 𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) for all node pairs 𝑖 and𝑗 when it terminates. The 

algorithm computes;  𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) = min(𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑘) + 𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑘, 𝑗), 𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑗)) ; 

for any vertex 𝑖 and vertex 𝑗, the length of the shortest path from 𝑖 to𝑗 with all intermediate 

vertices ≤ 𝑘 simply does not involve the vertex k at all (in which case it is the same as dist (k – 

1, k ,𝑗),or that the shorter path goes through vertex k, so the shortest path between vertex 𝑖and 

vertex j is the combination of the path from vertex 𝑖 to k, and from vertex k to j. 

After N iterations, there is no need any more to go through any more intermediate vertices, so the 

distance dist (N, 𝑖, j) represents the shortest distance between 𝑖and j. 
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Solved Example of Floyd’s Algorithm 

Using Figure 3.1 as an example for Floyd’s Algorithm, the matrix below is formed from the 

network.
 

  Table 3.2  Matrix Representation of Figure 3.1                   

Nodes A B C D E 

A 0 2 3 ∞ ∞ 

B 2 0 ∞ 3 1 

C 3 ∞ 0 4 ∞ 

D ∞ 3 4 0 2 

E ∞ 1 ∞ 2 0 

 

From node A 

From node A to B 

The direct distance between nodes A and B is 2 

A 3 C ∞ B = 3 + ∞ = ∞ 

A ∞ D 3 B = ∞ + 3 = ∞ 

A ∞ E 1 B = ∞ + 1 = ∞ 

The min { ∞} = ∞ which is not less than 2 (the direct distance between node A and B). Therefore 

2 in the cells [1 2] and [2 1] is retained. 

From node A to C 

The direct distance between nodes A and C is 3 

A 2 B ∞ C = 2 + ∞ = ∞ 

A ∞ D  4 C = ∞ + 4 = ∞ 

A ∞         E ∞ C = ∞ + ∞ = ∞ 
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The min {∞} = ∞ which is not less than 3 (the direct distance between nodes A and C). 

Therefore the value of 3 is retain in the cells [1 3] and [3 1]. 

From node A to D 

The direct distance between nodes A and D is ∞ 

A 2 B 3 D = 2 +3 = 5 

A 3 C 4 D = 3 + 4 = 7 

A ∞ E 2 D = ∞ + 2 = ∞ 

The min {5, 7, ∞} = 5 which is less than ∞ (the direct distance between nodes A and D). 

Therefore ∞ in the cells [1 4] and [4 1] is replaced by 5. 

From node A to E 

The direct distance between nodes A and E is ∞ 

A 2 B 1     E = 2 + 1 = 3 

A 3 C ∞    E = 3 + ∞ = 4 

A 5 D 2     E = 5 + 2 = 7 

The min {3, 4, 7} = 3 which is less than ∞ (the direct distance between nodes A and E). 

Therefore ∞ in the cells [1 5] and [5 1] is replaced by 3. 

From node B 

From node B to C 

The direct distance between nodes B and C is ∞ 

B 2 A 3 C = 2 + 3 = 5 

B 3 D 4 C = 3 + 4 = 7 
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B 1 E ∞ C = 1 + ∞ = ∞ 

The min {5,7,∞} = 5 which is less than ∞ (the direct distance between nodes B and C). Therefore 

∞ in the cells [2 3] and [3 2] is replaced by 5. 

From node B to D   

The direct distance between nodes B and D is 3 

B 2 A 5 D = 2 + 5 = 7 

B ∞ C 4 D = ∞ + 4 = ∞ 

B 1 E 2 D = 1 + 2 = 3 

The min {7, ∞,3} = 3 which is not less than 3 (the direct distance between nodes B and D). 

Therefore 3 in the cells [2 4] and [4 2] is retained. 

From node B to E 

The direct distance between nodes B and E is 1 

B 2 A 3 E = 2 + 3 = 5 

B 5 C ∞ E = 5 + ∞ = ∞ 

B 3 D 2 E = 3 + 2 = 5 

The min {5, ∞,} = 5 which is not less than 1 (the direct distance between nodes B and E). 

Therefore 3 in the cells [2 5] and [5 2] is retained. 

From node C 

From node C to D 

The direct distance between nodes C and D is 4 

C 3 A 3 D = 3 + 3 = 6 
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C 5 B 3 D = 5 + 3 = 8 

C ∞ E 2 D = ∞+ 2 = ∞ 

The min {6, 8, ∞} = 6 which is not less than 4 (the direct distance between nodes C and D). 

Therefore 4 in the cells [3 4] and [4 3] is retained. 

From node C to E 

The direct distance between nodes C and E is ∞ 

C 3 A 3 E = 3 + 3 = 6 

C 5 B 1 E = 5 + 1 = 6 

C 4 D 2 E = 4 + 2 = 6 

The min {6} = 6 which is less than ∞ (the direct distance between nodes C and E). Therefore ∞ 

in the cells [3 5] and [5 3] is replaced by 6. 

From node D 

From node D to E 

The direct distance between nodes D and E is 2 

D 5 A 3 E = 5 + 3 = 8 

D 3 B 1 E = 3 + 1 = 4 

D 4 C 6 E = 4 + 6 = 10 

The min {8, 4, 10} = 4 which is not less than 2 (the direct distance between nodes D and E). 

Therefore 2 in the cells [4 5] and [5 4] is retained. 
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Table 3.3   Distance Matrix, 𝐷 using Floyd. 

Demand 

Nodes 

Potential Location 

A B C D E 

A 0 2 3 5 3 

B 2 0 5 3 1 

C 3 5 0 4 6 

D 5 3 4 0 2 

E 3 1 6 2 0 

 

3.3 NETWORK LOCATION MODELS  

Network location problems are concerned with finding the right locations to place one or more 

facilities in a network of demand points, (customer locations) represented by nodes in the 

network, that optimize a certain objective function related to the distance between the facilities 

and the demand points. 

3.4 BASIC FACILITY LOCATION MODELS 

This section presents models classified according to their consideration of distance. The 

maximum distance models and total (or average) distance.  

 

3.4.1 TOTAL OR AVERAGE DISTANCE MODELS  

Many facility location planning situations in the public and private sections are concerned with 

the total travel distance between facilities and demand nodes. An example in the private sector 

might be the location of production facilities that receive their inputs from established sources by 

truckload deliveries. In the public sector, one might want to locate a network of service providers 

such as licensing bureaus in such a way as to minimize the total distance that customers must 
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traverse to reach their closest facility. This approach may be viewed as an “efficiency” objective 

as opposed to the “equity” objective of minimizing the maximum distance, which is mentioned 

in other models.  

1. P-median problem: 

 The p-median model (Hakimi, 1964; 1965) finds the locations of p facilities to minimize the 

demand-weighted total distance between demand nodes and the facilities to which they are 

assigned.  

2. The Maxisum Location Problem: 

The maxisum location problem seeks the locations of p facilities such that the total demand-

weighted distance between demand nodes and the facilities to which they are assigned is 

maximized.  

 

3.4.2 MAXIMUM DISTANCE MODELS 

In some locations problems, an acceptable distance is set a priori. In the facility location 

literature, a priori acceptable distances such distances known as “covering” distances. Demand 

within the covering distance of its closest facility is considered “covered.” An underlying 

assumption of this measure of covering distance is that demand is fully satisfied if the nearest 

facility is within the coverage distance and is not satisfied if the closest facility is beyond that 

distance.  
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1. Set covering location model: 

The objective of this model is to locate the minimum number of facilities required to “cover” all 

of the demand nodes (Toregas et al., 1971).  

2. Maximal covering location problem:  

The objective of the Maximal covering location problem (MCLP) is to locate a predetermined 

number of facilities, p, in such a way as to maximize the demand that is covered. Thus, the 

MCLP assumes that there may not be enough facilities to cover all of the demand nodes. If all 

nodes cannot be covered, then the model seeks the sitting scheme that covers the most demand 

(Church and ReVelle, 1974).  

3. The p-dispersion problem: 

 The p-dispersion problem (PDP) is only concerned with the distance between new facilities and 

the objective is to maximize the minimum distance between any pair of facilities. Potential 

applications of the PDP include the sitting of military installations where separation makes them 

more difficult to attack or locating franchise outlets where separation reduces cannibalization 

among stores (Kuby, 1987).  

4. P-Center Problem: 

 The p-center problem (Hakimi, 1964;1965) addresses the problem of minimizing the maximum 

distance that demand is from its closet facility given that we are sitting a pre-determined number 

of facilities. There are several possible variations of the basic model. The “vertex” p-center 

problem restricts the set of candidate facility sites to the nodes of the network while the 

“absolute” p-center problem permits the facilities to be anywhere along the arcs or the network. 
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Both versions can be either weighted or unweighted. In the unweighted problem, all demand 

nodes are treated equally. In the weighted model, the distances between demand nodes and 

facilities are multiplied by a weight associated with the demand node. For example, this weight 

might represent a node’s importance or, more commonly, the level of its demand.   

 

3.5 THE P-CENTER PROBLEM 

The p-center problem is the problem of locating p (facilities) in order to minimizes the maximum 

response time (the time between a demand site and the nearest facility), using a given number of 

p. With the above definition and the decision variable; 

𝑊 = The maximum distance between a demand node and the facility to which is assigned. 

                1 if the demand node is assigned to a facility at node 𝑗 

𝑦𝑖𝑗= 

               0 if not 

The p – centre problem therefore can be formulated as follows: 

Minimize 𝑊  ……………………………………………….. (1) 

Subject to: 

  j J jx p  ………………………..……….. (2) 

1j J jx   i I   ………………………. (3) 

0ij jy x   ,i I j J    ………………… (4) 

0j J i ijW h d   
i I   ………………… (5) 

{0,1}jx   
j J    ……………………….. (6) 

{0,1}ijy   ,i I j J    ………………….. (7) 
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The objective function (1) minimizes the maximum demand – weighted distance between each 

demand node and its closet open facility. Constraint set (2) stipulates that 𝑝 facilities are to be 

located. Constraint set (3) requires that each demand node be assigned to exactly one facility. 

Constraint set (4) restricts demand node assignments only to open facilities. Constraint set (5) 

defines the lower bound on the maximum demand – weighted distance, which is being 

minimized. Constraint set (6) established the sitting decision variable as binary. Constraint set 

(7) requires the demand at a node to be assigned to one facility only. Constraint set (7) can be 

replaced by 0ijy  ,i I j J    because constraint set (4) guarantees that 1ijy  . If some 
ijy  are 

fractional, we simply assign node 𝑖 to its closet open facility (Current et al, 2001). 

 

3.6 THE CONDITIONAL P-CENTER PROBLEM  

The conditional location problem is to locate p new facilities to serve a set of demand points 

given that q facilities are already located. When q = 0, the problem is unconditional. In the 

conditional p-center problems, once the new p locations are determined, a demand can be served 

either by one of the existing or by one of the new facilities whichever is the closest facility to the 

demand. Consider a network  

𝐺 = (𝑁, 𝐿) Where; 𝑁 = the set of nodes, |𝑁| = 𝑛 

𝐿 = the set of links. 

Let 𝑑(𝑥, 𝑦) be the shortest distance between any 𝑥, 𝑦 ∈ 𝐺. Suppose that there is a set 𝑄 

(|𝑄| = 𝑞) of existing facilities. Let 𝑌 = (𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑞) and 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑝) be vectors 

of size 𝑞and 𝑝 respectively, where𝑌𝑖 is the location of existing facility𝑖 and 𝑋𝑖 is the location of 
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new facility 𝑖. Without any loss of generality we do not need to assume that 𝑌𝑖 ∈ 𝑁. The 

conditional 𝑝-center location problem is to; 

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i




 
where (𝑋, 𝑖) and (𝑌, 𝑖), is the shortest distance from the 

closet facility in 𝑋 and 𝑌 respectively to the node 𝑖, ( Berman and Simchi-Levi, 1990) 

 

3.7 BERMAN AND SIMCHI-LEVI ALGORITHM  

Berman and Simchi-Levi (1990), suggested to solve the conditional p-center problem on a 

network by an algorithm that requires one-time solution of an unconditional (p + 1)-center 

problem.  

 

3.7.1 Algorithm 

Step 1: Let𝐷 be a distance matrix with rows corresponding to demands and columns 

corresponding to potential locations. For the 𝑝-center problem the columns of D correspond to 

the set of local centers. The idea is to create a new potential location representing all existing 

facilities. If a demand point is utilizing the services of an existing facility, it will use the services 

of the closest existing facility. Therefore, the distance between a demand point and the new 

location is the minimum distance calculated for all existing facilities.  

Step 2: To force the creation of a facility at the new location, a new demand point is created with 

a distance of zero to the new potential location and a large distance to all other potential 

locations. The new distance matrix,
ˆ̂

D  is constructed by adding a new location 𝑎𝑜 (a new 

column) to𝐷 so that the columns represent the Q existing locations and a new demand point  
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𝑣0 with an arbitrary positive weight. For each demand point (node) 𝑖, 𝑑(𝑖, 𝑎0) = 𝑚𝑖𝑛𝑘∈𝑄{𝑑𝑖𝑘} 

and 𝑑(𝑣0, 𝑎0) = 0. For each potential location (node) 𝑗, 𝑑(𝑣0, 𝑗) = 𝑀(𝑀 is a large number). 

Again the nodes in Q and potential locations Q are removed.  

Step 3: Find the optimal new location using 
ˆ̂

D  for the network with the objective function 

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i




 

Illustrative example of Berman and Simchi - Levi Algorithm 

Step 1: Table 3.4 below is all pair shortest path (distance matrix), D obtained by using Floyd on 

figure 3.1. Suppose that nodes B and C are the existing set of facilities and an additional one 

facility is to be located ( i.e. p = 1).  

Column 1 and row 1 in the Table below represent demand nodes and potential location 

respectively. 

Table 3.4 All pair shortest paths distance matrix, 𝐷 

Demand 

Nodes 

Potential Location 

A B C D E 

A 0 2 3 5 3 

B 2 0 5 3 1 

C 3 5 0 4 6 

D 5 3 4 0 2 

E 3 1 6 2 0 

 

Step 2: Determine the modified shortest distance matrix,
ˆ̂

D  by adding a new 𝑎𝑜( a new column) 

to 𝐷 and adding a new demand point 𝑣0( a new row) with an arbitrary positive weight to the 

rows. For each demand point (node) 𝑖, 𝑑(𝑖, 𝑎0) = 𝑚𝑖𝑛𝑘∈𝑄{𝑑𝑖𝑘} and 𝑑(𝑣𝑜 , 𝑎𝑜) = 0. For each 

potential location (node) 𝑗, 𝑑(𝑣0, 𝑗) = 𝑀(𝑀 is a large number) as shown in Table 3.5 below. 
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Table 3.5 Modified Distance Matrix, 
ˆ̂

D  

Demand 

Nodes 

Potential Location 

A B C D D 𝒂𝟎 

A 0 2 3 5 3 2 

B 2 0 5 3 1 0 

C 3 5 0 4 6 0 

D 5 3 4 0 2 3 

E 3 1 6 2 0 1 

𝒗𝟎 M M M M M 0 

 

Nodes B and C in set 𝑄 been the nodes with existing facility are removed and presented in Table 

3.6 below. 

Table 3.6  Modified Distance Matrix, 
ˆ̂

D  with nodes B and C removed 

Demand 

Nodes 

Potential Location 

A D E 𝒂𝟎 

A 0 5 3 2 

D 5 0 2 3 

E 3 2 0 1 

𝒗𝟎 M M M 0 

 

Step 3: Find the optimal new location using the distance matrix 
ˆ̂

D  and objective function,

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i


  

With { , , }X A D E  and { , }Y B C  

For 𝑿 = 𝑨     

𝑖 = 𝐴, we have      𝑖 = 𝐵, we have 

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}   𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)} 

𝑚𝑖𝑛{𝑑(𝐴, 𝐴), 𝑑(𝐵, 𝐴), 𝑑(𝐶, 𝐴)   𝑚𝑖𝑛 {𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐵), (𝐶, 𝐵)} 

𝑚𝑖𝑛(0, 2, 3) = 0     min(2,0, 5) = 0 
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𝑖 = 𝐶, we have     𝑖 = 𝐸, we have    

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}   𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}  

𝑚𝑖𝑛{𝑑(𝐴, 𝐶), 𝑑(𝐵, 𝐶), 𝑑(𝐶, 𝐶)}   𝑚𝑖𝑛 {𝑑(𝐴, 𝐸), 𝑑(𝐵, 𝐸), (𝐶, 𝐸)}   

𝑚𝑖𝑛(3, 5, 0) = 0     min(3, 1, 4) = 1 

 

𝑖 = 𝐷, we have      

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}  

𝑚𝑖𝑛{𝑑(𝐴, 𝐷), 𝑑(𝐵, 𝐷), 𝑑(𝐶, 𝐷)} 

𝑚𝑖𝑛(5, 3, 4) = 3     

From the calculations above, maximum of min{ ( , ), ( , )}]d X i d Y i  at 𝑋 = 𝐴 is 3, at𝑋 = 𝐷 , the 

maximum is 2 and that of  𝑋 = 𝐸 is also 2. 

The results are then summarized and presented in Table 3.7 with column 5 representing the 

maximum distance on each row. 

Table 3.7 Optimal Location𝑀𝑖𝑛(𝑔(𝑥)) using 
ˆ̂

D  

Demand Nodes A D E Maximum 

A 0 3 1 3 

D 2 0 1 2 

E 2 2 0 2 

Minimum 2 

 

The optimal new location should be located at either node D or E with an objective function 

value of 2. 

 

3.8 BERMAN AND DREZNER’S ALGORITHM 

Berman and Drezner (2008), discussed a very simple algorithm that solves the conditional p-center 

problem on a network. The algorithm requires one-time solution of an unconditional p-center 
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problem using an appropriate shortest distance matrix. Rather than creating a new location for an 

artificial facility and force the algorithm to locate a new facility there by creating an artificial demand 

point, they just modify the distance matrix.  

 

3.8.1 Algorithm 

Step 1: Let 𝐷 be a distance matrix with rows corresponding to demands and columns corresponding 

to potential locations.  

Step 2: conditional problem is solved by defining a modified shortest distance matrix, from D to D̂ , 

where D̂ = min{𝑑𝑖𝑗 mink∈Q{𝑑𝑖𝑘}} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐶 (Center). Even though 𝐷 is symmetric but D̂  is 

not symmetric. 

The unconditional p-center problem using the appropriate D̂  solves the conditional p-center 

problem. This is so since if the shortest distance from node 𝑖 to the new p facilities are larger than 

𝑚𝑖𝑛𝑘∈𝑄{𝑑𝑖𝑘}, then the shortest distance to the existing facilities is been utilized. Notice that the size 

of D̂  is 𝑛 × |𝐶| for the conditional p-center.  

Step 3: Find the optimal new location using D̂  for the network with the objective function  

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i




 

 

Illustrative example of Berman and Drezner’s Algorithm. 

Step 1: Table 3.8 below is all pair shortest path (distance matrix), D obtained by using Floyd’s 

algorithm on figure 3.1. Suppose that nodes B and C are the existing set of facilities and an 

additional one facility is to be located ( i.e. p  = 1). 
 

Column 1 and row 1 in table 3.8 below represent demand nodes and potential location 

respectively. 
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Table 3.8  All pair shortest paths distance matrix, 𝐷 

Demand 

Nodes 

Potential Location 

A B C D E 

A 0 2 3 5 3 

B 2 0 5 3 1 

C 3 5 0 4 6 

D 5 3 4 0 2 

E 3 1 6 2 0 

 

Step 2: Modified shortest distance matrix is obtained using D̂ = min {𝑑𝑖𝑗𝑚𝑖𝑛𝑘∈𝑄{𝑑𝑖𝑘}} as shown 

below: 

For node A       

At 𝑖 = 𝐴 𝑎𝑛𝑑 𝑗 = 𝐴,     At 𝑖 = 𝐴 𝑎𝑛𝑑 𝑗 = 𝐸,     

ˆ
AAD min {𝑑𝐴𝐴𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{𝑑𝐴𝐵, 𝑑𝐴𝐶}}  ˆ

AED   min {𝑑𝐴𝐸𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{𝑑𝐴𝐵, 𝑑𝐴𝐶}} 

ˆ
AAD min {0 𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{2,3}} =  0   ˆ

AED   min {3 𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{2,3}} =  2  

 

At 𝑖 = 𝐴 𝑎𝑛𝑑 𝑗 = 𝐵,  

ˆ
ABD   min {𝑑𝐵𝐵𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{𝑑𝐵𝐵, 𝑑𝐵𝐶}} 

ˆ
ABD   min {2 𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{2,3}} =  2    

 

At 𝑖 = 𝐴 𝑎𝑛𝑑 𝑗 = 𝐶,   

ˆ
ACD   min {𝑑𝐴𝐶𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{𝑑𝐴𝐵, 𝑑𝐴𝐶}}   

ˆ
ACD   min {3 𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{2,3}} =  2    

 

At 𝑖 = 𝐴 𝑎𝑛𝑑 𝑗 = 𝐷,      

ˆ
ADD   min {𝑑𝐴𝐷𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{𝑑𝐴𝐵, 𝑑𝐴𝐶}}   

ˆ
ADD min {5 𝑚𝑖𝑛{𝐵,𝐶}∈𝑄{2,3}} =  2    
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From above, for node 𝐴: ˆ 0,AAD  ˆ 2,ABD  ˆ 2,ACD  ˆ 2,ADD  ˆ 2AED 
 and the table below then 

summarizes the results. 

Table 3.9 Modified Distance Matrix, D̂  

Demand 

Nodes 

Potential location 

A B C D E 

A 0 2 2 2 2 

B 0 0 0 0 0 

C 0 0 0 0 0 

D 3 3 3 0 2 

E 1 1 1 1 0 

 

Nodes B and C in 𝑄 been the nodes with existing facility are removed and presented in Table 

3.10 below. 

Table 3.10  Modified Distance Matrix, D̂  with nodes B and C removed 

Demand Nodes Potential Location 

A D E 

A 0 2 2 

D 3 0 2 

E 1 1 0 

 

Step 3: Find the optimal new location using the modified distance matrix D̂  and objective 

function,
1,...,

[ ( ) max min{ ( , ), ( , )}]
i n

Min G x d X i d Y i



 

With { , , }X A D E  and { , }Y B C  

For 𝑿 = 𝑨      

𝑖 = 𝐴, we have      𝑖 = 𝐵, we have 

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}  𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)} 

𝑚𝑖𝑛{𝑑(𝐴, 𝐴), 𝑑(𝐵, 𝐴), 𝑑(𝐶, 𝐴)  𝑚𝑖𝑛 {𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐵), (𝐶, 𝐵)} 

𝑚𝑖𝑛(0, 2, 2) = 0    min(0, 0, 0) = 0 
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𝑖 = 𝐶, we have      

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), 𝑑(𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}   

𝑚𝑖𝑛{𝑑(𝐴, 𝐶), 𝑑(𝐵, 𝐶), 𝑑(𝐶, 𝐶)} 

𝑚𝑖𝑛(0, 0, 0) = 0     

 

𝑖 = 𝐷, we have     

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), (𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)}    

𝑚𝑖𝑛{𝑑(𝐴, 𝐷), 𝑑(𝐵, 𝐷), 𝑑(𝐶, 𝐷)}   

𝑚𝑖𝑛(3, 3, 3) = 3 

 

𝑖 = 𝐸, we have      

𝑚𝑖𝑛{𝑑(𝑋, 𝑖), (𝑌𝐴, 𝑖), 𝑑(𝑌𝐵, 𝑖)} 

𝑚𝑖𝑛{𝑑(𝐴, 𝐸), 𝑑(𝐵, 𝐸), 𝑑(𝐶, 𝐸)}   

𝑚𝑖𝑛(1, 1, 1) = 1   

From the calculations above, maximum of min{ ( , ), ( , )}]d X i d Y i  at 𝑋 = 𝐴 is 3, at = 𝐷 , the 

maximum is 2 and that of  𝑋 = 𝐸 is also 2. 

The results are then summarized and presented in Table 3.11 with column 5 representing the 

maximum distance on each row. 

Table 3.11Optimal Location, 𝑀𝑖𝑛(𝑔(𝑥)) using D̂  

Demand Nodes Potential Location Maximum 

A D E 

A 0 3 1 3 

D 2 0 1 2 

E 2 2 0 2 

Minimum 2 
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The optimal new location should be located at either node D or E with an objective function 

value of 2. 
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CHAPTER 4 

DATACOLLECTION, ANALYSIS AND RESULTS 

4.1 DATA COLLECTION 

Agency that was contacted for distances between towns in this study was the Department of 

Feeder Roads, Berekum Municipal Assembly. The lengths of the arcs connecting towns in the 

Berekum Municipality is of interest in this study. 

4.2 BEREKUM MUNICIPAL ROAD NETWORK 

 The distance between towns is obtained from the Department of Feeder Roads at the Berekum 

Municipal Assembly. 

The data is then developed into a network. In the network below, numbers in the boxes are the 

nodes representing the eighteen towns and numbers on the edges are the various road distances 

between the towns in kilometers. 

 

 

 

 

 

 

 

 



45 
 

  

                                                               4         16        3         14         4           13 

 5 17                                           3        3              2         

 18 11 

                   5                                   7          5 15 12       3 

 7    7                          6 

             4     7            3           2            2                  5                      

 1      5 10 

                  2                        3  7 

 7 

 5                                                7                        3                    4 

          6 3 

    2 9 

 6              6              8 

Figure 4.1  Road Network of Berekum Municipality. 

 

4.3 DATA PROCESSING 

Table 4.1   Towns in Berekum Municipality and their codes 

Number Town Number Town Number Town 

1 Berekum 7 Nsapor 13 Kutre No. 1 

2 Jamdede 8 Biadan 14 Akrofro 

3 Domfete 9 Senase 15 Mpatasie 

4 Jinijini 10 Kato 16 Abisaase 

5 Ayimon 11 Kutre No. 2 17 Koraso 

6 Benkasa 12 Mpatapo 18 Fentantaa 
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Currently, there are only two existing libraries; one at Berekum and the other one, community 

library at Jinijini. These communities form the set of existing facilities, thus node 1 and node 4 

respectively.  

 

4.3.1 MATRIX FORMATION 

The data of inter-towns and suburbs were entered manually into an edge distance matrix of size 

eighteen by eighteen using Microsoft excel. The edge distances of the nodes (suburbs) which are 

directly connected were allocated and nodes which were not directly connected have the edge 

distance entered as ‘inf’, representing infinite (∞) distance. 

A square matrix of size eighteen by eighteen is formed from figure 4.1(the road network) and the 

matrix is shown in table 4.2 below. 
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Table 4.2   18 × 18 Matrix input data for the Floyd-Warshall algorithm. 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 5 inf inf inf inf 7 7 3 5 7 inf inf inf 7 inf inf inf 

2 5 0 2 inf inf inf inf inf inf inf inf inf inf inf inf 5 7 inf 

3 inf 2 0 7 inf inf 3 inf inf inf inf inf inf inf inf inf inf inf 

4 inf inf 7 0 2 inf inf inf inf inf inf inf inf inf inf inf inf 5 

5 inf inf inf 2 0 6 inf inf inf inf inf inf inf inf inf inf inf inf 

6 inf inf inf inf 6 0 3 6 inf inf inf inf inf inf inf inf inf inf 

7 7 inf 3 inf inf 3 0 inf inf inf inf inf inf inf inf inf inf inf 

8 7 inf inf inf inf 6 inf 0 2 inf inf inf inf inf inf inf inf inf 

9 3 inf inf inf inf inf inf 2 0 4 inf inf inf inf inf inf inf inf 

10 5 inf inf inf inf inf inf inf 4 0 6 inf inf inf inf inf inf inf 

11 7 inf inf inf inf inf inf inf inf 6 0 3 2 inf inf inf inf inf 

12 inf inf inf inf inf inf inf inf inf inf 3 0 3 inf 2 inf inf inf 

13 inf inf inf inf inf inf Inf inf inf inf 2 3 0 4 inf inf inf inf 

14 inf inf inf inf inf inf inf inf inf inf inf inf 4 0 3 3 inf inf 

15 7 inf Inf inf inf inf inf inf inf inf inf 2 inf 3 0 inf inf inf 

16 inf 5 inf inf inf inf inf inf inf inf inf inf inf 3 inf 0 4 inf 

17 inf 7 inf inf inf inf inf inf inf inf inf inf inf inf inf 4 0 5 

18 inf inf inf 5 inf inf inf inf inf inf inf inf inf inf inf inf 5 0 

 

4.4   COMPUTATIONAL RESULTS 

Matlab program software was used for the coding of the Floyd-Warshall algorithm. The codes 

for Floyd-Warshall algorithm was developed and ran on Dell AMD Athlon (tm) II P360 Dual-

Core Processor 2.30GHz of RAM 3.00GB, 64-bit Operating System with Windows Ultimate 

Laptop Computer. 

 



48 
 

4.4.1 Computation using Floyd-Warshall Algorithm  

The 18 x 18 edge distance matrix was used as an input for the Floyd-Warshall algorithm coded 

in matlab. The algorithm steps for the Floyd-Warshall algorithmis shown below and the matlab 

code is presented in Appendix A. 

 Let dist(𝑘, 𝑖, 𝑗) be the length of the shortest path from 𝑖 and 𝑗 that uses only the vertices 

1,2,3,..........,𝑘 as intermediate vertices.  The following recurrence: 

Step 1; 𝑘 = 0 is our base case, thus 𝑑𝑖𝑠𝑡(0, 𝑖, 𝑗 ) = DA (𝑖, 𝑗) is the length of the edge from vertex 

𝑖 to vertex 𝑗if it exists and infinite (∞) otherwise. 

Step 2; using 𝑑𝑖𝑠𝑡(0, 𝑖, 𝑗), it then computes 𝑑𝑖𝑠𝑡(1, 𝑖, 𝑗) for all pairs of nodes 𝑖 and𝑗. 

Step 3; using 𝑑𝑖𝑠𝑡(1, 𝑖, 𝑗),  it then computes 𝑑𝑖𝑠𝑡(2, 𝑖, 𝑗), for all pairs of nodes 𝑖 and 𝑗. it then 

repeats the process until it obtains 𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) for all node pairs 𝑖 and𝑗 when it terminates. The 

algorithm computes the shortest paths as; 

𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) = min(𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑗), 𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑘) + 𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑘, 𝑗)). 

The calculated all pair shortest paths, Distance Matrix, 𝐷 (in kilometres) obtained from the run 

of the Floyd-Warshall algorithm on table 4.2 is summarised in table 4.3. 

In table 4.3, column one and row one represent the demand nodes and potential location 

respectively; the other rows also represent the interconnecting road distances.  
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Table 4.3 All pair shortest paths Distance Matrix, 𝐷 using Floyd-Warshall algorithm. 

Demand 

Nodes 

Potential Locations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 5 7 14 16 10 7 5 3 5 10 7 10 10 7 10 12 17 

2 5 0 2 9 11 8 5 10 8 10 14 12 12 8 11 5 7 12 

3 7 2 0 7 9 6 3 12 10 12 16 14 14 10 13 7 9 12 

4 14 9 7 0 2 8 10 14 16 19 23 21 21 17 20 14 10 5 

5 16 11 9 2 0 6 9 12 14 18 25 23 23 19 22 16 12 7 

6 10 8 6 8 6 0 3 6 8 12 20 17 20 16 17 13 15 13 

7 7 5 3 10 9 3 0 9 10 12 17 14 17 13 14 10 12 15 

8 5 10 12 14 12 6 9 0 2 6 14 12 15 15 12 15 17 19 

9 3 8 10 16 14 8 10 2 0 4 12 10 13 13 10 13 15 20 

10 5 10 12 19 18 12 12 6 4 0 8 11 10 14 12 15 17 22 

11 10 14 16 23 25 20 17 14 12 8 0 3 2 6 6 9 13 18 

12 7 12 14 21 23 17 14 12 10 11 3 0 3 6 3 9 13 18 

13 10 12 14 21 23 20 17 15 13 10 2 3 0 4 6 7 11 16 

14 10 8 10 17 19 16 13 15 13 14 6 6 4 0 3 3 7 12 

15 7 11 13 20 22 17 14 12 10 12 6 3 6 3 0 6 10 15 

16 10 5 7 14 16 13 10 15 13 15 9 9 7 3 6 0 4 9 

17 12 7 9 10 12 15 12 17 13 17 13 13 11 7 10 4 0 5 

18 17 12 12 5 7 13 15 19 15 22 18 18 16 12 15 9 5 0 

 

4.5 BERMAN AND DREZNER’S ALGORITHM  

At this point, we use the Berman and Drezner’s algorithm (2008) to solve the problem. We begin 

by formulating the conditional p- center problem as  

1,..,
[ ( ) max

i n
Min G x


 min{ ( , ), ( , )}]d X i d Y i  

Let 𝑑(𝑥, 𝑦) be the shortest distance between any 𝑥, 𝑦 ∈ 𝐺. Suppose that there is a set Q (|Q| = 𝑞) 

of existing facilities. Let 𝑌 = (𝑌1,𝑌2, 𝑌3, … , 𝑌𝑞) and 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑝) be vectors of size q 

and p respectively, where𝑌𝑖 is the location of existing facility and 𝑋𝑖 is the location of new 
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facility. Where 𝑑(𝑋, 𝑖) and 𝑑(𝑌, 𝑖) is the shortest distance from the closest facility in 𝑋 and 

𝑌 respectively to the node i,(Berman and Simchi-Levi, 1990).  

The set of location of new facilities 𝑋 = {2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} and 

the set of location of existing facilities 𝑌 = {1, 4}, then the conditional p – centre problem is to: 

     𝑑(2, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

                𝑑(3, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

     𝑑(5, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

      .     .      . 

Minimize 𝐺(𝑥) =  
1,2,3,...,
max

i n
𝑚𝑖𝑛 .     .      .  

     .     .      . 

     𝑑(16, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

     𝑑(17, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

     𝑑(18, 𝑖), 𝑑(1, 𝑖), 𝑑(4, 𝑖) 

 

Where  𝑖 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 

 

4.5 .1 THE ALGORITHM 

Step 1: Let 𝐷 be a distance matrix with rows corresponding to demands and columns corresponding 

to potential locations.  

Step 2: Conditional problem is solved by defining a modified shortest distance matrix, from D to D̂ , 

where D̂ = min{𝑑𝑖𝑗 mink∈Q{𝑑𝑖𝑗}} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐶 (Center). 

Even though 𝐷 is symmetric but D̂  is not symmetric. 

Step 3: Find the optimal new location using D̂  for the network with the objective function  



51 
 

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i




 

4.6 COMPUTATION USING BERMAN AND DREZNER’S ALGORITHM. 
 

A new shortest path distance matrix called modified shortest distance matrix, D̂  is formed from 

table 4.3. Thus from D to D̂  

4.6.1 MODIFIED SHORTEST DISTANCE MATRIX, D̂  

By defining a modified shortest distance matrix D̂  where  

ˆ
ijD = min{𝑑𝑖𝑗 mink∈Q{𝑑𝑖𝑘}} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐶(Center). 

For node 1  

1,i  1j  and {1,4}Q      1, 5i j   and {1,4}Q   

11D̂  
11 11 14min{ ,min{ , }}d d d    15D̂  

15 11 14min{ ,min{ , }}d d d   

 
min{0,min{0,14}}

0




     

min{16,min{0,14}}

0




   

    

1, 2i j  and {1,4}Q      1, 6i j   and {1,4}Q   

12D̂  
12 11 14min{ ,min{ , }}d d d    16D̂  

16 11 14min{ ,min{ , }}d d d    

 
min{5,min{0,14}}

0




     

min{10,min{0,14}}

0




   

     

1, 3i j  and {1,4}Q      1, 7i j   and {1,4}Q   

13D̂  
13 11 14min{ ,min{ , }}d d d    17D̂  

17min{d ,
11 14min{ , }}d d  

 
min{7,min{0,14}}

0




     

min{7,min{0,14}}

0




  

1, 4i j  and {1,4}Q      1, 8i j   and {1,4}Q   

14D̂  
14 11 14min{ ,min{ , }}d d d    18D̂  

18min{d ,
11 14min{ , }}d d  
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min{14,min{0,14}}

0




     

min{5,min{0,14}}

0




   

   

1, 9i j  and {1,4}Q      1, 14i j   and {1,4}Q   

19D̂  
19 11 14min{ ,min{ , }}d d d    1D̂

14
 

1min{d 14
,

11 14min{ , }}d d  

 
min{3,min{0,14}}

0




     

min{10,min{0,14}}

0




   

    

1, 10i j  and {1,4}Q      1, 15i j   and {1,4}Q      

1D̂
10

 
1min{d 10

,
11 14min{ , }}d d    1D̂

15
 

1min{d 15
,

11 14min{ , }}d d  

 
min{5,min{0,14}}

0




     

min{7,min{0,14}}

0




   

      

1, 11i j  and {1,4}Q      1, 16i j   and {1,4}Q   

1D̂
11

 
1min{d 11

,
11 14min{ , }}d d    1D̂

16
 

1min{d 16
,

11 14min{ , }}d d  

 
min{10,min{0,14}}

0




     

min{10,min{0,14}}

0




   

     

1, 12i j  and {1,4}Q      1, 17i j   and {1,4}Q     

1D̂
12

 
1min{d 12

,
11 14min{ , }}d d    1D̂

17
 

1min{d 17
,

11 14min{ , }}d d   

 
min{7,min{0,14}}

0




     

min{12,min{0,14}}

0




   

    

1, 13i j  and {1,4}Q      1, 18i j   and {1,4}Q   

1D̂
13

 
1min{d 13

,
11 14min{ , }}d d    1D̂

18
 

1min{d 18
,

11 14min{ , }}d d   

 
min{10,min{0,14}}

0




     

min{17,min{0,14}}

0



  
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Therefore, the modified shortest distance for node 1 at i = 1, j = 1 is 0, i = 1, j = 2 is 0 and that of 

i = 1, j = 3 is also  0.
 

Table 4.4 below then summarizes the results of  into a modified shortest distance matrix. 

Column one representing demand nodes and all other columns representing the minimum 

interconnecting distance when demand nodes are compared with existing facilities nodes. Details 

of modified shortest distance is elaborated in appendix B 

Table 4.4   Modified Shortest Distance Matrix,  

Demand  

Nodes 
Potential location 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 5 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

3 7 2 0 7 7 6 3 7 7 7 7 7 7 7 7 7 7 7 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 

6 8 8 6 8 6 0 3 6 8 8 8 8 8 8 8 8 8 8 

7 7 5 3 7 7 3 0 7 7 7 7 7 7 7 7 7 7 7 

8 5 5 5 5 5 5 5 0 2 5 5 5 5 5 5 5 5 5 

9 3 3 3 3 3 3 3 2 0 3 3 3 3 3 3 3 3 3 

10 5 5 5 5 5 5 5 5 4 0 5 5 5 5 5 5 5 5 

11 10 10 10 10 10 10 10 10 10 8 0 3 2 6 6 9 10 10 

12 7 7 7 7 7 7 7 7 7 7 3 0 3 6 3 7 7 7 

13 10 10 10 10 10 10 10 10 10 10 2 3 0 4 6 7 10 10 

14 10 8 10 10 10 10 10 10 10 10 6 6 4 0 3 3 7 10 

15 7 7 7 7 7 7 7 7 7 7 6 3 6 3 0 6 7 7 

16 10 5 7 10 10 10 10 10 10 10 9 9 7 3 6 0 4 9 

17 10 7 9 10 10 10 10 10 10 10 10 10 10 7 10 4 0 5 

18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 

 

D̂

D̂



54 
 

Comparing various road distances with the existing nodes 1 and 4, the minimum distance is 

always zero. Hence, in the next table, the set of demand nodes and potential location of the 

existing facilities are removed from the modified shortest path distance matrix, in table 4.4  

Table 4.5      Modified Distance Matrix with Nodes 1 and 4 Removed.  

Demand 

Nodes 

Potential Location 

2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

2 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

3  2 0 7 6 3 7 7 7 7 7 7 7 7 7 7 7 

5 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 

6 8 6 6 0 3 6 8 8 8 8 8 8 8 8 8 8 

7 5 3 7 3 0 7 7 7 7 7 7 7 7 7 7 7 

8 5 5 5 5 5 0 2 5 5 5 5 5 5 5 5 5 

9 3 3 3 3 3 2 0 3 3 3 3 3 3 3 3 3 

10 5 5 5 5 5 5 4 0 5 5 5 5 5 5 5 5 

11 10 10 10 10 10 10 10 8 0 3 2 6 6 9 10 10 

12 7 7 7 7 7 7 7 7 3 0 3 6 3 7 7 7 

13 10 10 10 10 10 10 10 10 2 3 0 4 6 7 10 10 

14 8 10 10 10 10 10 10 10 6 6 4 0 3 3 7 10 

15 7 7 7 7 7 7 7 7 6 3 6 3 0 6 7 7 

16 5 7 10 10 10 10 10 10 9 9 7 3 6 0 4 9 

17 7 9 10 10 10 10 10 10 10 10 10 7 10 4 0 5 

18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 

 

Using table 4.4 above, the optimal new location is found using the objective function; 

D̂



55 
 

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i


  

 

With  and 
 

For 𝑿 = 𝟐
 

     

 

     

     

     

     

 

     

{1,4}Y  {2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18}X 

1,

min{ (2,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







7,

min{ (2,7), (1,7), (4,7)}

min{5,7,7}

5

i

d d d







2,

min{ (2,2), (1,2), (4,2)}

min{0,5,5}

0

i

d d d







8,

min{ (2,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d







3,

min{ (2,3), (1,3), (4,3)}

min{2,7,7}

2

i

d d d







9,

min{ (2,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







4,

min{ (2,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d







10,

min{ (2,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d







5,

min{ (2,5), (1,5), (4,5)}

min{2,2,2}

2

i

d d d







11,

min{ (2,11), (1,11), (4,11)}

min{10,10,10}

10

i

d d d







6,

min{ (2,6), (1,6), (4,6)}

min{8,8,8}

8

i

d d d







12,

min{ (2,12), (1,12), (4,12)}

min{7,7,7}

7

i

d d d






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Therefore, at 𝑋 =2, the maximum is 10, the maximum at 𝑋 =3 is 10 and that of 𝑋 =5 is 10.The 

results are then summarized in table 4.6 below with column 18 representing the maximum 

distance on each row. Details of the calculation are presented in appendix C. 

 

 

 

 

 

 

 

 

 

13,

min{ (2,13), (1,13), (4,13)}

min{10,10,10}

10

i

d d d







16,

min{ (2,16), (1,16), (4,16)}

min{5,10,10}

5

i

d d d







14,

min{ (2,14), (1,14), (4,14)}

min{8,10,10}

8

i

d d d







17,

min{ (2,17), (1,17), (4,17)}

min{7,10,10}

7

i

d d d







15,

min{ (2,15), (1,15), (4,15)}

min{7,7,7}

7

i

d d d







18,

min{ (2,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d






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Table 4.6 Optimal Location𝑀𝑖𝑛(𝑔(𝑥)) using D̂   

Demand 

Nodes 

Potential Location 

2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Maximum 

2 0 2 2 8 5 5 3 5 10 7 10 8 7 5 7 5 10 

3 2 0 2 6 3 5 3 5 10 7 10 10 7 7 9 5 10 

5 5 7 0 6 7 5 3 5 10 7 10 10 7 10 10 5 10 

6 5 6 2 0 3 5 3 5 10 7 10 10 7 10 10 5 10 

7 5 3 2 3 0 5 3 5 10 7 10 10 7 10 10 5 10 

8 5 7 2 6 7 5 2 5 10 7 10 10 7 10 10 5 10 

9 5 7 2 8 7 2 0 4 10 7 10 10 7 10 10 5 10 

10 5 7 2 8 7 5 3 0 8 7 10 10 7 10 10 5 10 

11 5 7 2 8 7 5 3 5 0 3 2 6 6 9 10 5 10 

12 5 7 2 8 7 5 3 5 3 0 3 6 3 9 10 5 10 

13 5 7 2 8 7 5 3 5 2 3 0 4 6 7 10 5 10 

14 5 7 2 8 7 5 3 5 6 6 4 0 3 3 7 5 8 

15 5 7 2 8 7 5 3 5 6 3 6 3 0 6 10 5 10 

16 5 7 2 8 7 5 3 5 9 7 7 3 6 0 4 5 9 

17 5 7 2 8 7 5 3 5 10 7 10 7 7 4 0 5 10 

18 5 7 2 8 7 5 3 5 10 7 10 10 7 9 5 0 10 

Minimum 8 

 

4.7 DISCUSSION OF RESLUTS 

With the algorithm from Berman and Drezner, considering the eighteen node network depicted 

in Figure 4.1 and solving the conditional 1- centre problem with the existing facilities at node 1 

and node 4 (ie Berekum and Jinijini respectively), Table 4.3,Table 4.4 and Table 4.5 are the all 

pair shortest paths distance matrix, the modified shortest distance matrix and the modified 

shortest distance matrix with nodes 1 and 4 removed respectively. 

Table 4.6 above clearly indicates that using Berman and Drezner (2008) algorithm on the 

modified shortest distance matrix, the optimal new location is at node 14 (Akrofro). Therefore 

the new library can arbitrary be located at Akrofro with an objective function value of 8.   
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

Floyd-Warshall’s algorithm was used to find all pair shortest path between nodes using table 4.1 

which resulted in eighteen by eighteen (18×18) matrix in Table 4.2. 

The formulation of the model for location of an additional library facility in the Berekum 

Municipality is indicated on page 49. The model was solved using Berman and Drezner (2008) 

algorithm as shown in page 50. 

Considering the objective function 𝑀𝑖𝑛(𝐺(𝑥)) from Berman and Drezner (2008), the library 

facility from table 4.6 should be located at Akrofro. 

The minimum objective function value obtained was 8 kilometres which means that, the 

minimum distance travelled by the farthest library user to the new library facility at Akrofro is 8 

kilometres. 

 

5.2 RECOMMENDATIONS 

The following recommendations are made from the study; 

This work should serve as basis for further research in the area of conditional p-centre problem. 

Finally, since Berekum Municipality was used as case study, the researcher recommends that 

Berekum Municipal Assembly, Municipal Education Directorate, Non Governmental 

Organizations (NGOs) and individuals who would like to locate an additional library facility in 

Berekum Municipality should locate it at Akrofro. 
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APPENDICES 

APPENDIX A: Matlab code for all pair shortest path. (Floyd-Warshall Algorithm) 

functionfloy() 
% solving the whole network 
C = load( 'matrixx.m' ); 
 n = size (C, 1); 
D = repmat ( inf, n, n ); % Direct path are infinite at first 
P = repmat ( -1, n, n ); % (-1) pointer matrix to shortest intermediate 

node 
% Create initial matrix with direct path 
for k = 1 : n; 
v = find (C ( k, : ) > 0); % column vector with non zero entries on row k 
D (k, v) = C ( k, v ); % Copy real direct path to this matrix 
D (k, k) = 0; % zero path on diagonal nodes 
P ( k, v ) = k; % Direct shortest linked paths, point to the destination 

node 
end 
% Calculate shortest distances and path matrix 
for k = 1 : n; 
for i = 1 : n; 
for j = 1 : n; 
if (D ( i, k ) + D (k, j)) < D ( i, j ); 
            D ( i, j ) = D ( i, k ) + D ( k, j ) 
P( i, j ) = k; % Last intermediate node on the shortest path 
end 
end 
end 
end 
end 
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APPENDIX B: MODIFIED SHORTEST DISTANCE MATRIX, D̂  

By defining a modified shortest distance matrix D̂  where  

ˆ
ijD = min{𝑑𝑖𝑗 mink∈Q{𝑑𝑖𝑘}} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐶 (Center). 

For node 1  

1,i  1j  and {1,4}Q      1, 5i j   and {1,4}Q   

       

        

     

and      and  

        

       

        

and      and  

     ,  

         

     

and      and  

     ,  

        

  

 

11D̂
11 11 14min{ ,min{ , }}d d d 15D̂

15 11 14min{ ,min{ , }}d d d

min{0,min{0,14}}

0





min{16,min{0,14}}

0





1, 2i j  {1,4}Q  1, 6i j  {1,4}Q 

12D̂
12 11 14min{ ,min{ , }}d d d 16D̂

16 11 14min{ ,min{ , }}d d d

min{5,min{0,14}}

0





min{10,min{0,14}}

0





1, 3i j  {1,4}Q  1, 7i j  {1,4}Q 

13D̂
13 11 14min{ ,min{ , }}d d d 17D̂

17min{d 11 14min{ , }}d d

min{7,min{0,14}}

0





min{7,min{0,14}}

0





1, 4i j  {1,4}Q  1, 8i j  {1,4}Q 

14D̂
14 11 14min{ ,min{ , }}d d d 18D̂

18min{d 11 14min{ , }}d d

min{14,min{0,14}}

0





min{5,min{0,14}}

0







67 
 

   

and      and  

     ,  

        

     

and      and     

 ,     ,  

         

      

and      and  

 ,     ,  

       

       

and      and    

 ,     ,   

         

    

and      and  

 ,     ,   

       

     

 

1, 9i j  {1,4}Q  1, 14i j  {1,4}Q 

19D̂
19 11 14min{ ,min{ , }}d d d 1D̂

14 1min{d 14 11 14min{ , }}d d

min{3,min{0,14}}

0





min{10,min{0,14}}

0





1, 10i j  {1,4}Q  1, 15i j  {1,4}Q 

1D̂
10 1min{d 10 11 14min{ , }}d d 1D̂

15 1min{d 15 11 14min{ , }}d d

min{5,min{0,14}}

0





min{7,min{0,14}}

0





1, 11i j  {1,4}Q  1, 16i j  {1,4}Q 

1D̂
11 1min{d 11 11 14min{ , }}d d 1D̂

16 1min{d 16 11 14min{ , }}d d

min{10,min{0,14}}

0





min{10,min{0,14}}

0





1, 12i j  {1,4}Q  1, 17i j  {1,4}Q 

1D̂
12 1min{d 12 11 14min{ , }}d d 1D̂

17 1min{d 17 11 14min{ , }}d d

min{7,min{0,14}}

0





min{12,min{0,14}}

0





1, 13i j  {1,4}Q  1, 18i j  {1,4}Q 

1D̂
13 1min{d 13 11 14min{ , }}d d 1D̂

18 1min{d 18 11 14min{ , }}d d

min{10,min{0,14}}

0





min{17,min{0,14}}

0




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For Node 2 

and      and  

     
  

 

         

      

and      and  

 ,      

      

       

and      and  

      

       

        

and      and  

      

       

        

and      and  

     ,  

         

    

2, 1i j  {1,4}Q  2, 6i j  {1,4}Q 

21D̂
21 21 24min{ ,min{ , }}d d d 26D̂

26 21 24min{ ,min{ , }}d d d

min{5,min{5,9}}

5





min{8,min{5,9}}

5





2, 2i j  {1,4}Q  2, 7i j  {1,4}Q 

22D̂
22min{d 21 24min{ , }}d d 27D̂

27 21 24min{ ,min{ , }}d d d

min{0,min{5,9}}

0





min{5,min{5,9}}

5





2, 3i j  {1,4}Q  2, 8i j  {1,4}Q 

23D̂
23 21 24min{ ,min{ , }}d d d 28D̂

28 21 24min{ ,min{ , }}d d d

min{2,min{5,9}}

2





min{10,min{5,9}}

5





2, 4i j  {1,4}Q  2, 9i j  {1,4}Q 

24D̂
22 21 24min{ ,min{ , }}d d d 29D̂

29 21 24min{ ,min{ , }}d d d

min{9,min{5,9}}

5





min{8,min{5,9}}

5





2, 5i j  {1,4}Q  2, 10i j  {1,4}Q 

25D̂
25 21 24min{ ,min{ , }d d d 1D̂

10 1min{d 10 21 24min{ , }}d d

min{11,min{5,9}}

5





min{10,min{5,9}}

5




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and      and    

 ,     ,   

         

              

and      and     

 ,     ,   

        

           

and      and  

 ,     ,   

        

    

and     For Node 3 

 ,     and   

       

          

and      and  

 ,      

      

        

2, 11i j  {1,4}Q  2, 16i j  {1,4}Q 

2D̂
11 2min{d 11 21 24min{ , }}d d 2D̂

16 2min{d 16 21 24min{ , }}d d

min{14,min{5,9}}

5





min{5,min{5,9}}

5





2, 12i j  {1,4}Q  3, 2i j  {1,4}Q 

2D̂
12 2min{d 12 21 24min{ , }}d d 2D̂

17 2min{d 17 21 24min{ , }}d d

min{12,min{5,9}}

5





min{7,min{5,9}}

5





2, 13i j  {1,4}Q  2, 18i j  {1,4}Q 

2D̂
13 1min{d 13 21 24min{ , }}d d 2D̂

18 2min{d 18 21 24min{ , }}d d

min{12,min{5,9}}

5





min{12,min{5,9}}

5





2, 14i j  {1,4}Q 

2D̂
14 1min{d 14 21 24min{ , }}d d 3, 1i j  {1,4}Q 

min{8,min{5,9}}

5




31D̂

35 31 34min{ ,min{ , }}d d d

min{7, min{7,7}}

7





2, 15i j  {1,4}Q  3, 2i j  {1,4}Q 

2D̂
15 1min{d 15 21 24min{ , }}d d 32D̂

32 31 34min{ ,min{ , }}d d d

min{11,min{5,9}}

5





min{2, min{7,7}}

2




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and      and  

 ,      

      

        

and      and  

 ,      

      

        

and      and  

 ,     ,  

      

        

and      and     

     ,  

      

       

and      and  

 ,    ,  

        

3, 3i j  {1,4}Q  3, 8i j  {1,4}Q 

33D̂
33min{d 31 34min{ , }}d d 38D̂

38 31 34min{ ,min{ , }}d d d

min{0, min{7,7}}

0





min{12, min{7,7}}

7





3, 4i j  {1,4}Q  3, 9i j  {1,4}Q 

34D̂
34min{d 31 34min{ , }}d d 39D̂

39 31 34min{ ,min{ , }}d d d

min{7, min{7,7}}

7





min{10, min{7,7}}

7





3, 5i j  {1,4}Q  3, 10i j  {1,4}Q 

35D̂
35min{d 31 34min{ , }}d d

3D̂ 10 3min{d 10 31 34min{ , }}d d

min{9,min{7,7}}

7





min{12, min{7,7}}

7





3, 6i j  {1,4}Q  3, 11i j  {1,4}Q 

36D̂
36 31 34min{ ,min{ , }}d d d

3D̂ 11 3min{d 11 31 34min{ , }}d d

min{6, min{7,7}}

6





min{16, min{7,7}}

7





3, 7i j  {1,4}Q  3, 12i j  {1,4}Q 

37D̂
37min{d 31 34min{ , }}d d 3D̂

12 3min{d 12 31 34min{ , }}d d

min{3,min{7,7}}

3





min{14, min{7,7}}

7




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and      and    

 ,     ,   

          

        

       For Node 4 

and      and  

 ,      

       

        

and      and  

 ,      

         

     

and      and  

 ,      

         

     

and      and  

 ,      

       

3, 13i j  {1,4}Q  3, 18i j  {1,4}Q 

3D̂
13 3min{d 13 31 34min{ , }}d d 3D̂

18 3min{d 18 31 34min{ , }}d d

min{14, min{7,7}}

7





min{12, min{7,7}}

7





3, 14i j  {1,4}Q  4, 1i j  {1,4}Q 

3D̂
14 3min{d 14 31 34min{ , }}d d 41D̂

41 41 44min{ ,min{ , }}d d d

min{10, min{7,7}}

7





min{14,min{14,0}}

0





3, 15i j  {1,4}Q  4, 2i j  {1,4}Q 

3D̂
15 3min{d 15 31 34min{ , }}d d 42D̂

42 41 44min{ ,min{ , }}d d d

min{15,min{7,7}}

7





min{9,min{14,0}}

0





3, 16i j  {1,4}Q  4, 3i j  {1,4}Q 

3D̂
16 3min{d 16 31 34min{ , }}d d 43D̂

43 41 44min{ ,min{ , }}d d d

min{7, min{7,7}}

7





min{7,min{14,0}}

0





3, 17i j  {1,4}Q  4, 4i j  {1,4}Q 

3D̂
17 3min{d 17 31 34min{ , }}d d 44D̂

44 41 44min{ ,min{ , }}d d d

min{9,min{7,7}}

7





min{0,min{14,0}}

0




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and      and  

 ,     ,  

       

   

and   and  

   ,  

       

         

and   and  

   ,  

       

         

and   and  

    ,  

       

         

and      and  

 ,   ,  

       

4, 5i j  {1,4}Q  4, 10i j  {1,4}Q 

45D̂
45min{d 41 44min{ , }}d d 4D̂

10 4min{d 10 41 44min{ , }}d d

min{2,min{14,0}}

0





min{19,min{14,0}}

0





4, 6i j  {1,4}Q  4, 11i j  {1,4}Q 

46D̂
46 41 44min{ ,min{ , }}d d d 4D̂

11 4min{d 11 41 44min{ , }}d d

min{8,min{14,0}}

0





min{23, min{14,0}}

0





4, 7i j  {1,4}Q  4, 12i j  {1,4}Q 

47D̂
47 41 44min{ ,min{ , }}d d d 4D̂

12 4min{d 12 41 44min{ , }}d d

min{10,min{14,0}}

0





min{21,min{14,0}}

0





4, 8i j  {1,4}Q  4, 13i j  {1,4}Q 

48D̂
48 41 44min{ ,min{ , }}d d d 4D̂

13 4min{d 13 41 44min{ , }}d d

min{14,min{14,0}}

0





min{21,min{14,0}}

0





4, 9i j  {1,4}Q  4, 14i j  {1,4}Q 

49D̂
49min{d 41 44min{ , }}d d 4D̂

14 4min{d 14 41 44min{ , }}d d

min{16,min{14,0}}

0





min{17,min{14,0}}

0




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and      and  

 ,    

        

  

and      and    

,       

       

 

and   and  

 ,    

       

          

and   and  

 ,    

       

         

and      and  

 ,    

       

         

 

4, 15i j  {1,4}Q  5, 2i j  {1,4}Q 

4D̂
15 4min{d 15 41 44min{ , }}d d 52D̂

52 51 54min{ ,min{ , }}d d d

min{20, min{14,0}}

0





min{11,min{16,2}}

2





4, 16i j  {1,4}Q  5, 3i j  {1,4}Q 

4D̂
16 4min{d 16 41 44min{ , }}d d 53D̂

53 51 54min{ ,min{ , }}d d d

min{14,min{14,0}}

0





min{9,min{16,2}}

2





4, 17i j  {1,4}Q  5, 4i j  {1,4}Q 

4D̂
17 4min{d 17 41 44min{ , }}d d 54D̂

54 51 54min{ ,min{ , }}d d d

min{10,min{14,0}}

0





min{2, min{16, 2}}

2





4, 18i j  {1,4}Q  5, 5i j  {1,4}Q 

4D̂
13 4min{d 18 41 44min{ , }}d d 55D̂

55 51 54min{ ,min{ , }d d d

min{5,min{14,0}}

0





min{0,min{16,2}}

0





5, 1i j  {1,4}Q  5, 6i j  {1,4}Q 

51D̂
51min{d 51 54min{ , }}d d 56D̂

56 51 54min{ ,min{ , }}d d d

min{16,min{16,2}}

2





min{6,min{16,2}}

2







74 
 

and      and  

     ,  

      

       

and      and  

     ,  

      

       

and      and  

     ,  

      

       

and      and  

 ,     ,  

      

       

and      and  

 ,     ,  

     

       

5, 7i j  {1,4}Q  5, 12i j  {1,4}Q 

57D̂
57 51 54min{ ,min{ , }}d d d 5D̂

12 5min{d 12 51 54min{ , }}d d

min{9,min{16,2}}

2





min{23, min{16, 2}}

2





5, 8i j  {1,4}Q  5, 13i j  {1,4}Q 

58D̂
58 51 54min{ ,min{ , }}d d d 5D̂

13 5min{d 13 51 54min{ , }}d d

min{12,min{16,2}}

2





min{23, min{16, 2}}

2





5, 9i j  {1,4}Q  5, 14i j  {1,4}Q 

59D̂
59 51 54min{ ,min{ , }}d d d 5D̂

14 5min{d 14 51 54min{ , }}d d

min{14,min{16,2}}

2





min{19,min{16,2}}

2





5, 10i j  {1,4}Q  5, 15i j  {1,4}Q 

5D̂
10 5min{d 10 51 54min{ , }}d d 5D̂

15 5min{d 15 51 54min{ , }}d d

min{18,min{16,2}}

2





min{22, min{16, 2}}

2





5, 11i j  {1,4}Q  5, 16i j  {1,4}Q 

5D̂
11 5min{d 11 51 54min{ , }}d d 5D̂

16 5min{d 16 51 54min{ , }}d d

min{25, min{16, 2}}

2





min{16,min{16,2}}

2




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and      and  

 ,     ,  

        

     

and      and  

 ,     ,  

       

 

For Node 6 

and      and  

 ,
   

  

       

 

and      and  

      

        

    

and      and  

     ,  

      

       

5, 17i j  {1,4}Q  6, 4i j  {1,4}Q 

5D̂
17 5min{d 17 51 54min{ , }}d d 64D̂

64min{d 61 64min{ , }}d d

min{12,min{16,2}}

2





min{8,min{10,8}}

8





5, 18i j  {1,4}Q  6, 5i j  {1,4}Q 

5D̂
18 5min{d 18 51 54min{ , }}d d 65D̂

65min{d 61 64min{ , }}d d

min{7, min{16, 2}}

2





min{6,min{10,8}}

6





6, 1i j  {1,4}Q  6, 6i j  {1,4}Q 

61D̂
61min{d 51 54min{ , }}d d 66D̂

66 61 64min{ ,min{ , }}d d d

min{10,min{10,8}}

8





min{0,min{10,8}}

0





6, 2i j  {1,4}Q  6, 7i j  {1,4}Q 

62D̂
62 61 64min{ ,min{ , }}d d d 67D̂

67 61 64min{ ,min{ , }}d d d

min{8,min{10,8}}

8





min{3,min{10,8}}

3





6, 3i j  {1,4}Q  6, 8i j  {1,4}Q 

63D̂
63 61 64min{ ,min{ , }}d d d 68D̂

68min{d 61 64min{ , }}d d

min{6,min{10,8}}

6





min{6,min{10,8}}

6




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6, 9i j  {1,4}Q  6, 13i j  {1,4}Q 

69D̂
69 61 64min{ ,min{ , }}d d d 6D̂

13 6min{d 13 61 64min{ , }}d d

min{8,min{10,8}}

8





min{20, min{10,8}}

8





6, 10i j  {1,4}Q  6, 14i j  {1,4}Q 

6D̂
10 6min{d 10 61 64min{ , }}d d 6D̂

14 6min{d 14 61 64min{ , }}d d

min{12,min{10,8}}

8





min{16,min{10,8}}

8





6, 11i j  {1,4}Q  6, 15i j  {1,4}Q 

6D̂
11 6min{d 11 61 64min{ , }}d d 6D̂

15 6min{d 15 61 64min{ , }}d d

min{20, min{10,8}}

8





min{17,min{10,8}}

8





6, 12i j  {1,4}Q  6, 16i j  {1,4}Q 

6D̂
12 6min{d 12 61 64min{ , }}d d 6D̂

16 6min{d 16 61 64min{ , }}d d

min{17,min{10,8}}

8





min{13,min{10,8}}

8




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6, 17i j  {1,4}Q  7, 4i j  {1,4}Q 

6D̂
17 6min{d 17 61 64min{ , }}d d 74D̂

74min{d 71 74min{ , }}d d

min{15,min{10,8}}

8





min{10,min{7,10}}

7





6, 18i j  {1,4}Q  7, 5i j  {1,4}Q 

6D̂
18 6min{d 18 61 64min{ , }}d d 75D̂

75min{d 71 74min{ , }}d d

min{13,min{10,8}}

8





min{9,min{7,10}}

7





7, 1i j  {1,4}Q  7, 6i j  {1,4}Q 

71D̂
71min{d 71 74min{ , }}d d 76D̂

76 71 74min{ ,min{ , }}d d d

min{7, min{7,10}}

7





min{3,min{7,10}}

3





7, 2i j  {1,4}Q  7, 7i j  {1,4}Q 

72D̂
72min{d 71 74min{ , }}d d 77D̂

77 71 74min{ ,min{ , }}d d d

min{5,min{7,10}}

5





min{0,min{7,10}}

0





7, 3i j  {1,4}Q  7, 8i j  {1,4}Q 

73D̂
73min{d 71 74min{ , }}d d 78D̂

78 71 74min{ ,min{ , }}d d d

min{3,min{7,10}}

3





min{9,min{7,10}}

7




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7, 9i j  {1,4}Q  7, 14i j  {1,4}Q 

79D̂
71 71 74min{ ,min{ , }}d d d 7D̂

14 7min{d 14 71 74min{ , }}d d

min{10,min{7,10}}

7





min{13,min{7,10}}

7





7, 10i j  {1,4}Q  7, 15i j  {1,4}Q 

7D̂
10 7min{d 10 71 74min{ , }}d d 7D̂

15 7min{d 15 71 74min{ , }}d d

min{12,min{7,10}}

7





min{14,min{7,10}}

7





7, 11i j  {1,4}Q  7, 16i j  {1,4}Q 

7D̂
11 7min{d 11 71 74min{ , }}d d 7D̂

16 7min{d 16 71 74min{ , }}d d

min{17,min{7,10}}

7





min{10,min{7,10}}

7





7, 12i j  {1,4}Q  7, 17i j  {1,4}Q 

7D̂
12 7min{d 12 71 74min{ , }}d d 7D̂

17 7min{d 17 71 74min{ , }}d d

min{14,min{7,10}}

7





min{12,min{7,10}}

7





7, 13i j  {1,4}Q  7, 18i j  {1,4}Q 

7D̂
13 7min{d 13 71 74min{ , }}d d 7D̂

18 7min{d 18 71 74min{ , }}d d

min{17,min{7,10}}

7





min{15,min{7,10}}

7




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8, 1i j  {1,4}Q  8, 6i j  {1,4}Q 

81D̂
81min{d 81 84min{ , }}d d 86D̂

86 81 84min{ ,min{ , }}d d d

min{5,min{5,14}}

5





min{6,min{5,14}}

5





8, 2i j  {1,4}Q  8, 7i j  {1,4}Q 

82D̂
82min{d 81 84min{ , }}d d 87D̂

87 81 84min{ ,min{ , }}d d d

min{10,min{5,14}}

5





min{9,min{5,14}}

5





8, 3i j  {1,4}Q  8, 8i j  {1,4}Q 

83D̂
83min{d 81 84min{ , }}d d 88D̂

88 81 84min{ ,min{ , }}d d d

min{12,min{5,14}}

5





min{0,min{5,14}}

0





8, 4i j  {1,4}Q  8, 9i j  {1,4}Q 

84D̂
84min{d 81 84min{ , }}d d 89D̂

89 81 84min{ ,min{ , }}d d d

min{14,min{5,14}}

5





min{2,min{5,14}}

2





8, 5i j  {1,4}Q  8, 10i j  {1,4}Q 

85D̂
85min{d 81 84min{ , }}d d 8D̂

10 8min{d 10 81 84min{ , }}d d

min{12,min{5,14}}

5





min{6,min{5,14}}

5




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        For Node 9 

and      and    

 ,      

      

             

and      and  
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8, 11i j  {1,4}Q  8, 16i j  {1,4}Q 

8D̂
11 8min{d 11 81 84min{ , }}d d 8D̂

16 8min{d 16 81 84min{ , }}d d

min{14,min{5,14}}

5





min{15,min{5,14}}

5





8, 12i j  {1,4}Q  8, 17i j  {1,4}Q 

8D̂
12 8min{d 12 81 84min{ , }}d d 8D̂

17 8min{d 17 81 84min{ , }}d d

min{12,min{5,14}}

5





min{17,min{5,14}}

5





8, 13i j  {1,4}Q  8, 18i j  {1,4}Q 

8D̂
13 8min{d 13 81 84min{ , }}d d 8D̂

18 8min{d 18 81 84min{ , }}d d

min{15,min{5,14}}

5





min{19,min{5,14}}

5





8, 14i j  {1,4}Q  9, 1i j  {1,4}Q 

8D̂
14 8min{d 14 81 84min{ , }}d d 91D̂

91 91 94min{ ,min{ , }}d d d

min{15,min{5,14}}

5





min{3,min{3,16}}

3





8, 15i j  {1,4}Q  9, 2i j  {1,4}Q 

8D̂
15 8min{d 15 81 84min{ , }}d d 92D̂

92 91 94min{ ,min{ , }}d d d

min{12,min{5,14}}

5





min{8,min{3,16}}

3




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9, 3i j  {1,4}Q  9, 8i j  {1,4}Q 

93D̂
93min{d 91 94min{ , }}d d 98D̂

93 91 94min{ ,min{ , }}d d d

min{3,min{3,16}}

3





min{2,min{3,16}}

2





9, 4i j  {1,4}Q  9, 9i j  {1,4}Q 

94D̂
94min{d 91 94min{ , }}d d 99D̂

99 91 94min{ ,min{ , }}d d d

min{16,min{3,16}}

3





min{0,min{3,16}}

0





9, 5i j  {1,4}Q  9, 10i j  {1,4}Q 

95D̂
95min{d 91 94min{ , }}d d 9D̂

10 9min{d 10 91 94min{ , }}d d

min{14,min{3,16}}

3





min{4,min{3,16}}

3





9, 6i j  {1,4}Q  9, 11i j  {1,4}Q 

96D̂
96min{d 91 94min{ , }}d d 9D̂

11 9min{d 11 91 94min{ , }}d d

min{8,min{3,16}}

3





min{12,min{3,16}}

3





9, 7i j  {1,4}Q  9, 12i j  {1,4}Q 

97D̂
97min{d 91 94min{ , }}d d 9D̂

12 9min{d 12 91 94min{ , }}d d

min{10,min{3,16}}

3





min{10,min{3,16}}

3




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9, 13i j  {1,4}Q  9, 18i j  {1,4}Q 

9D̂
13 9min{d 13 91 94min{ , }}d d 9D̂

18 9min{d 18 91 94min{ , }}d d

min{13,min{3,16}}

3





min{20, min{3,16}}

3





9, 14i j  {1,4}Q  10, 1i j  {1,4}Q 

9D̂
14 9min{d 14 91 94min{ , }}d d 10D̂

1 10min{d 1 10min{d 1 10d 4

min{13,min{3,16}}

3





min{5,min{5,19}}

5





9, 15i j  {1,4}Q  10, 2i j  {1,4}Q 

9D̂
15 9min{d 15 91 94min{ , }}d d 10D̂

2 10min{d 2 10min{d 1 10d 4

min{10,min{3,16}}

3





min{10,min{5,19}}

5





9, 16i j  {1,4}Q  10, 3i j  {1,4}Q 

9D̂
16 9min{d 16 91 94min{ , }}d d 10D̂

3 10min{d 3 10min{d 1 10d 4

min{13,min{3,16}}

3





min{12,min{5,19}}

5





9, 17i j  {1,4}Q  10, 4i j  {1,4}Q 

9D̂
17 9min{d 17 91 94min{ , }}d d 10D̂

4 10min{d 4 10min{d 1 10d 4

min{15,min{3,16}}

3





min{19,min{5,19}}

5







83 
 

        

and     and  

 , , }}  , , }} 

        

     

and     and  

 , , }}  , , }} 

        

    

and     and  

 , , }}  , ,  

        

        

and     and  

 , , }}   , , }} 

       

      

and      and  

, , }}   , , }} 

      

       

10, 5i j  {1,4}Q  10, 10i j  {1,4}Q 

10D̂
5 10min{d 5 10min{d 1 10d 4 10D̂

10 10min{d 10 10min{d 1 10d 4

min{18,min{5,19}}

5





min{0,min{5,19}}

0





10, 6i j  {1,4}Q  10, 11i j  {1,4}Q 

10D̂
6 10min{d 6 10min{d 1 10d 4 10D̂

11 10min{d 11 10min{d 1 10d 4

min{12,min{5,19}}

5





min{8,min{5,19}}

5





10, 7i j  {1,4}Q  10, 12i j  {1,4}Q 

10D̂
7 10min{d 7 10min{d 1 10d 4 10D̂

12 10min{d 12 10min{d 1 10d

min{12,min{5,19}}

5





min{11,min{5,19}}

5





10, 8i j  {1,4}Q  10, 13i j  {1,4}Q 

10D̂
8 10min{d 8 10min{d 1 10d 4 10D̂

13 10min{d 13 10min{d 1 10d 4

min{6,min{5,19}}

5





min{10,min{5,19}}

5





10, 9i j  {1,4}Q  10, 14i j  {1,4}Q 

10D̂
9 10min{d 9 10min{d 1 10d 4 10D̂

14 10min{d 14 10min{d 1 10d 4

min{4,min{5,19}}

4





min{14,min{5,19}}

5




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10, 15i j  {1,4}Q  10, 18i j  {1,4}Q 

10D̂
15 10min{d 15 10min{d 1 10d 4 10D̂

18 10min{d 18 10min{d 1 10d 4

min{12,min{5,19}}

5





min{22, min{5,19}}

5





10, 16i j  {1,4}Q 

10D̂
16 10min{d 16 10min{d 1 10d 4

min{15,min{5,19}}

5




11, 1i j  {1,4}Q 

11D̂
1 11min{d 1 11min{d 1 11d 4

min{22, min{5,19}}

5





10, 17i j  {1,4}Q 

10D̂
17 10min{d 17 10min{d 1 10d 4

min{17,min{5,19}}

5




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11, 2i j  {1,4}Q  11, 7i j  {1,4}Q 

11D̂
2 11min{d 2 11min{d 1 11d 4 11D̂

7 11min{d 7 11min{d 1 11d 4

min{14, min{10, 23}}

10





min{17, min{10, 23}}

10





11, 3i j  {1,4}Q  11, 8i j  {1,4}Q 

11D̂
3 11min{d 3 11min{d 1 11d 4 11D̂

8 11min{d 8 11min{d 1 11d 4

min{16, min{10, 23}}

10





min{14, min{10, 23}}

10





11, 4i j  {1,4}Q  11, 9i j  {1,4}Q 

11D̂
4 11min{d 4 11min{d 1 11d 4 11D̂

9 11min{d 9 11min{d 1 11d 4

min{23,min{10,23}}

10





min{12, min{10, 23}}

10





11, 5i j  {1,4}Q  11, 10i j  {1,4}Q 

11D̂
5 11min{d 5 11min{d 1 11d 4 11D̂

10 11min{d 10 11min{d 1 11d 4

min{25,min{10,23}}

10





min{8,min{10,23}}

8





11, 6i j  {1,4}Q  11, 11i j  {1,4}Q 

11D̂
6 11min{d 6 11min{d 1 11d 4 11D̂

11 11min{d 11 11min{d 1 11d 4

min{20,min{10,23}}

10





min{0, min{10, 23}}

0




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       For  Node 12      

and      and     

, , }}  , , }}  

        

   

and      and     

, , }}  , , }} 

    
 

and      and  

, , }}  , , }} 

    
 

11, 12i j  {1,4}Q  11, 17i j  {1,4}Q 

11D̂
12 11min{d 12 11min{d 1 11d 4 11D̂

17 11min{d 17 11min{d 1 11d 4

min{3,min{10,23}}

3





min{13, min{10, 23}}

10





11, 13i j  {1,4}Q  11, 18i j  {1,4}Q 

11D̂
13 11min{d 13 11min{d 1 11d 4 11D̂

18 11min{d 18 11min{d 1 11d 4

min{2, min{10, 23}}

2





min{18, min{10, 23}}

10





11, 14i j  {1,4}Q  12, 1i j  {1,4}Q 

11D̂
14 11min{d 14 11min{d 1 11d 4 12D̂

1 12min{d 1 12min{d 1 12d 4

min{6, min{10, 23}}

6





min{7, min{7, 21}}

7





11, 15i j  {1,4}Q  12, 2i j  {1,4}Q 

11D̂
15 11min{d 15 11min{d 1 11d 4 12D̂

2 12min{d 2 12min{d 1 12d 4

min{6, min{10, 23}}

6





min{12, min{7, 21}}

7





11, 16i j  {1,4}Q  12, 3i j  {1,4}Q 

11D̂
16 11min{d 16 11min{d 1 11d 4 12D̂

3 12min{d 3 12min{d 1 12d 4

min{9, min{10, 23}}

9





min{14, min{7, 21}}

7







87 
 

 

 

and      and  

, , }}   , , }}  

      

     

and      and    

, , }}   , , }}  

     

and      and   

, , }}   , , }} 

 
    

 

and      and   

, , }}   , , }} 
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12, 4i j  {1,4}Q  12, 9i j  {1,4}Q 

12D̂
4 12min{d 4 12min{d 1 12d 4 12D̂

9 12min{d 9 12min{d 1 12d 4

min{21, min{7, 21}}

7





min{10, min{7, 21}}

7





12, 5i j  {1,4}Q  12, 10i j  {1,4}Q 

12D̂
5 12min{d 5 12min{d 1 12d 4 12D̂

10 12min{d 10 12min{d 1 12d 4

min{23, min{7, 21}}

7





min{11,min{7,21}}

7





12, 6i j  {1,4}Q  12, 11i j  {1,4}Q 

12D̂
6 12min{d 6 12min{d 1 12d 4 12D̂

11 12min{d 11 12min{d 1 12d 4

min{17, min{7, 21}}

7





min{3,min{7,21}}

3





12, 7i j  {1,4}Q  12, 12i j  {1,4}Q 

12D̂
7 12min{d 7 12min{d 1 12d 4 12D̂

12 12min{d 12 12min{d 1 12d 4

min{14, min{7, 21}}

7





min{0, min{7, 21}}

0





12, 8i j  {1,4}Q  12, 13i j  {1,4}Q 

12D̂
8 12min{d 8 12min{d 1 12d 4 12D̂

13 12min{d 13 12min{d 1 12d 4

min{12, min{7, 21}}

7





min{3,min{7,21}}

3




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, , }}  , , }} 

      

       

and      and  
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and      and   
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12, 14i j  {1,4}Q  13, 1i j  {1,4}Q 

12D̂
14 12min{d 14 12min{d 1 12d 4 13D̂

1 13min{d 1 13min{d 1 13d 4

min{6, min{7, 21}}

6





min{10, min{10, 21}}

10





12, 15i j  {1,4}Q  13, 2i j  {1,4}Q 

12D̂
15 12min{d 15 12min{d 1 12d 4 13D̂

2 13min{d 2 13min{d 1 13d 4

min{3,min{7,21}}

3





min{12, min{10, 21}}

10





12, 16i j  {1,4}Q  13, 3i j  {1,4}Q 

12D̂
16 12min{d 16 12min{d 1 12d 4 13D̂

3 13min{d 3 13min{d 1 13d 4

min{9, min{7, 21}}

7





min{14, min{10, 21}}

10





12, 17i j  {1,4}Q  13, 4i j  {1,4}Q 

12D̂
17 12min{d 17 12min{d 1 12d 4 13D̂

4 13min{d 4 13min{d 1 13d 4

min{13,min{7,21}}

7





min{21, min{10, 21}}

10





12, 18i j  {1,4}Q  13, 5i j  {1,4}Q 

12D̂
18 12min{d 18 12min{d 1 12d 4 13D̂

5 13min{d 5 13min{d 1 13d 4

min{18,min{7,21}}

7





min{23, min{10, 21}}

10




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13, 6i j  {1,4}Q  13, 11i j  {1,4}Q 

13D̂
6 13min{d 6 13min{d 1 13d 4 13D̂

11 13min{d 11 13min{d 1 13d 4

min{20,min{10,21}}

10





min{2, min{10, 21}}

2





13, 7i j  {1,4}Q  13, 12i j  {1,4}Q 

13D̂
7 13min{d 7 13min{d 1 13d 4 13D̂

12 13min{d 12 13min{d 1 13d 4

min{17, min{10, 21}}

10





min{3,min{10,21}}

3





13, 8i j  {1,4}Q  13, 13i j  {1,4}Q 

13D̂
8 13min{d 8 13min{d 1 13d 4 13D̂

13 13min{d 13 13min{d 1 13d 4

min{15, min{10, 21}}

10





min{0,min{10,21}}

0





13, 9i j  {1,4}Q  13, 14i j  {1,4}Q 

13D̂
9 13min{d 9 13min{d 1 13d 4 13D̂

14 13min{d 14 13min{d 1 13d 4

min{13, min{10, 21}}

10





min{4, min{10, 21}}

4





13, 10i j  {1,4}Q  13, 15i j  {1,4}Q 

13D̂
10 13min{d 10 13min{d 1 13d 4 13D̂

15 13min{d 15 13min{d 1 13d 4

min{10, min{10, 21}}

10





min{6,min{10,21}}

6




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, , }}   , , }} 

       

      

and      and    
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13, 16i j  {1,4}Q  14, 3i j  {1,4}Q 

13D̂
16 13min{d 16 13min{d 1 13d 4 14D̂

3 14min{d 3 14min{d 1 14d 4

min{7, min{10, 21}}

7





min{10, min{10,17}}

10





13, 17i j  {1,4}Q  14, 4i j  {1,4}Q 

13D̂
17 13min{d 17 13min{d 1 13d 4 14D̂

4 14min{d 4 14min{d 1 14d 4

min{11,min{10,21}}

10





min{17, min{10,17}}

10





13, 18i j  {1,4}Q  14, 5i j  {1,4}Q 

13D̂
18 13min{d 18 13min{d 1 13d 4 14D̂

5 14min{d 5 14min{d 1 14d 4

min{16, min{10, 21}}

10





min{19, min{10,17}}

10





14, 1i j  {1,4}Q  14, 6i j  {1,4}Q 

14D̂
1 14min{d 1 14min{d 1 14d 4 14D̂

6 14min{d 6 14min{d 1 14d 4

min{10, min{10,17}}

10





min{16, min{10,17}}

10





14, 2i j  {1,4}Q  14, 7i j  {1,4}Q 

14D̂
2 14min{d 2 14min{d 1 14d 4 14D̂

7 14min{d 7 14min{d 1 14d 4

min{8,min{10,17}}

8





min{13, min{10,17}}

10




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14, 8i j  {1,4}Q  14, 13i j  {1,4}Q 

14D̂
8 14min{d 8 14min{d 1 14d 4 14D̂

13 14min{d 13 14min{d 1 14d 4

min{15, min{10,17}}

10





min{4,min{10,17}}

4





14, 9i j  {1,4}Q  14, 14i j  {1,4}Q 

14D̂
9 14min{d 9 14min{d 1 14d 4 14D̂

14 14min{d 14 14min{d 1 14d 4

min{13, min{10,17}}

10





min{0,min{10,17}}

0





14, 10i j  {1,4}Q  14, 15i j  {1,4}Q 

14D̂
10 14min{d 10 14min{d 1 14d 4 14D̂

15 14min{d 15 14min{d 1 14d 4

min{14, min{10,17}}

10





min{3,min{10,17}}

3





14, 11i j  {1,4}Q  14, 16i j  {1,4}Q 

14D̂
11 14min{d 11 14min{d 1 14d 4 14D̂

16 14min{d 16 14min{d 1 14d 4

min{6,min{10,17}}

6





min{3,min{10,17}}

3





14, 12i j  {1,4}Q  14, 17i j  {1,4}Q 

14D̂
12 14min{d 12 14min{d 1 14d 4 14D̂

17 14min{d 17 14min{d 1 14d 4

min{6,min{10,17}}

6





min{7,min{10,17}}

7




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and      and  
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and      and   
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and      and  

, , }}   , , }}  

       

        

and      and  

, , }}   , , }} 

     

        

14, 18i j  {1,4}Q  15, 5i j  {1,4}Q 

14D̂
18 14min{d 18 14min{d 1 14d 4 15D̂

5 15min{d 5 15min{d 1 15d 4

min{12, min{10,17}}

10





min{22,min{7, 20}}

7





15, 1i j  {1,4}Q  15, 6i j  {1,4}Q 

15D̂
1 15min{d 1 15min{d 1 15d 4 15D̂

6 15min{d 6 15min{d 1 15d 4

min{7, min{7, 20}}

7





min{17, min{7, 20}}

7





15, 2i j  {1,4}Q  15, 7i j  {1,4}Q 

15D̂
2 15min{d 2 15min{d 1 15d 4 15D̂

7 15min{d 7 15min{d 1 15d 4

min{11, min{7, 20}}

7





min{14, min{7, 20}}

7





15, 3i j  {1,4}Q  15, 8i j  {1,4}Q 

15D̂
3 15min{d 3 15min{d 1 15d 4 15D̂

8 15min{d 8 15min{d 1 15d 4

min{13, min{7, 20}}

7





min{12, min{7, 20}}

7





15, 4i j  {1,4}Q  15, 9i j  {1,4}Q 

15D̂
4 15min{d 4 15min{d 1 15d 4 15D̂

9 15min{d 9 15min{d 1 15d 4

min{20,min{7, 20}}

7





min{10, min{7, 20}}

7




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15, 10i j  {1,4}Q  15, 15i j  {1,4}Q 

15D̂
10 15min{d 10 15min{d 1 15d 4 15D̂

15 15min{d 15 15min{d 1 15d 4

min{12, min{7, 20}}

7





min{0, min{7, 20}}

0





15, 11i j  {1,4}Q  15, 16i j  {1,4}Q 

15D̂
11 15min{d 11 15min{d 1 15d 4 15D̂

16 15min{d 16 15min{d 1 15d 4

min{6, min{7, 20}}

6





min{6, min{7, 20}}

6





15, 12i j  {1,4}Q  15, 17i j  {1,4}Q 

15D̂
12 15min{d 12 15min{d 1 15d 4 15D̂

17 15min{d 16 15min{d 1 15d 4

min{3, min{7, 20}}

3





min{10, min{7, 20}}

7





15, 13i j  {1,4}Q  15, 18i j  {1,4}Q 

15D̂
13 15min{d 13 15min{d 1 15d 4 15D̂

18 15min{d 18 15min{d 1 15d 4

min{6, min{7, 20}}

6





min{15, min{7, 20}}

7





15, 14i j  {1,4}Q 

15D̂
14 15min{d 14 15min{d 1 15d 4

min{3, min{7, 20}}

3




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and      and   
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16, 1i j  {1,4}Q  16, 6i j  {1,4}Q 

16D̂
1 16min{d 1 16min{d 1 16d 4 16D̂

6 16min{d 6 16min{d 1 16d 4

min{10, min{10,14}}

10





min{13, min{10,14}}

10





16, 2i j  {1,4}Q  16, 7i j  {1,4}Q 

16D̂
2 16min{d 2 16min{d 1 16d 4 16D̂

7 16min{d 7 16min{d 1 16d 4

min{5,min{10,14}}

5





min{10, min{10,14}}

10





16, 3i j  {1,4}Q  16, 8i j  {1,4}Q 

16D̂
3 16min{d 3 16min{d 1 16d 4 16D̂

8 16min{d 8 16min{d 1 16d 4

min{7,min{10,14}}

7





min{15, min{10,14}}

10





16, 4i j  {1,4}Q  16, 9i j  {1,4}Q 

16D̂
4 16min{d 4 16min{d 1 16d 4 16D̂

9 16min{d 9 16min{d 1 16d 4

min{14, min{10,14}}

10





min{13, min{10,14}}

10





16, 5i j  {1,4}Q  16, 10i j  {1,4}Q 

16D̂
5 16min{d 5 16min{d 1 16d 4 16D̂

10 16min{d 10 16min{d 1 16d 4

min{16, min{10,14}}

10





min{15, min{10,14}}

10




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      For Node 17 

and      and  
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and      and  
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16, 11i j  {1,4}Q  16, 16i j  {1,4}Q 

16D̂
11 16min{d 11 16min{d 1 16d 4 16D̂

16 16min{d 16 16min{d 1 16d 4

min{9,min{10,14}}

9





min{0,min{10,14}}

0





16, 12i j  {1,4}Q  16, 17i j  {1,4}Q 

16D̂
12 16min{d 12 16min{d 1 16d 4 16D̂

17 16min{d 17 16min{d 1 16d 4

min{9,min{10,14}}

9





min{4,min{10,14}}

4





16, 13i j  {1,4}Q  16, 18i j  {1,4}Q 

16D̂
13 16min{d 13 16min{d 1 16d 4 16D̂

18 16min{d 18 16min{d 1 16d 4

min{7,min{10,14}}

7





min{9,min{10,14}}

9





16, 14i j  {1,4}Q  17, 1i j  {1,4}Q 

16D̂
14 16min{d 14 16min{d 1 16d 4 17D̂

1 17min{d 1 17min{d 1 17d 4

min{3,min{10,14}}

3





min{12, min{12,10}}

10





16, 15i j  {1,4}Q  17, 2i j  {1,4}Q 

16D̂
15 16min{d 15 16min{d 1 16d 4 17D̂

2 17min{d 2 17min{d 1 17d 4

min{6,min{10,14}}

6





min{7,min{12,10}}

7




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, , }}   , , }} 

      

        

and      and  

, , }}   , , }} 

      

        

17, 3i j  {1,4}Q  17, 8i j  {1,4}Q 

17D̂
3 17min{d 3 17min{d 1 17d 4 17D̂

8 17min{d 8 17min{d 1 17d 4

min{9,min{12,10}}

9





min{17, min{12,10}}

10





17, 4i j  {1,4}Q  17, 9i j  {1,4}Q 

17D̂
4 17min{d 4 17min{d 1 17d 4 17D̂

9 17min{d 9 17min{d 1 17d 4

min{10, min{12,10}}

10





min{15, min{12,10}}

10





17, 5i j  {1,4}Q  17, 10i j  {1,4}Q 

17D̂
5 17min{d 5 17min{d 1 17d 4 17D̂

10 17min{d 10 17min{d 1 17d 4

min{12, min{12,10}}

10





min{17, min{12,10}}

10





17, 6i j  {1,4}Q  17, 11i j  {1,4}Q 

17D̂
6 17min{d 6 17min{d 1 17d 4 17D̂

11 17min{d 11 17min{d 1 17d 4

min{15, min{12,10}}

10





min{13, min{12,10}}

10





17, 7i j  {1,4}Q  17, 12i j  {1,4}Q 

17D̂
7 17min{d 7 17min{d 1 17d 4 17D̂

12 17min{d 12 17min{d 1 17d 4

min{12, min{12,10}}

10





min{13, min{12,10}}

10




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and      and  

, , }}  , , }} 

       

       For Node 18      

and      and  

, , }}  , , }} 

      

        

and      and  

, , }}  , , }}

       

        

and      and  

, , }}  , , }} 

       

     

and      and  

, , }}  , , }} 

      

        

 

17, 13i j  {1,4}Q  17, 18i j  {1,4}Q 

17D̂
13 17min{d 13 17min{d 1 17d 4 17D̂

18 17min{d 18 17min{d 1 17d 4

min{11,min{12,10}}

10





min{5,min{12,10}}

5





17, 14i j  {1,4}Q  18, 1i j  {1,4}Q 

17D̂
14 17min{d 14 17min{d 1 17d 4 18D̂

1 18min{d 1 18min{d 1 18d 4

min{7,min{12,10}}

7





min{17,min{17,5}}

5





17, 15i j  {1,4}Q  18, 2i j  {1,4}Q 

17D̂
15 17min{d 15 17min{d 1 17d 4 18D̂

2 18min{d 2 18min{d 1 18d 4

min{10, min{12,10}}

10





min{12,min{17,5}}

5





17, 16i j  {1,4}Q  18, 3i j  {1,4}Q 

17D̂
16 17min{d 16 17min{d 1 17d 4 18D̂

3 18min{d 3 18min{d 1 18d 4

min{4,min{12,10}}

4





min{12,min{17,5}}

5





17, 17i j  {1,4}Q  18, 4i j  {1,4}Q 

17D̂
17 17min{d 17 17min{d 1 17d 4 18D̂

4 18min{d 4 18min{d 1 18d 4

min{0,min{12,10}}

0





min{5,min{17,5}}

5




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and      and  

, , }}   , , }} 

      

        

and      and  

, , }}   , , }} 

     

        

and      and  

, , }}   , , }} 

     

        

and      and  

, , }}   , , }} 

     

        

and      and  

, , }}   , , }} 

     

         

18, 5i j  {1,4}Q  18, 10i j  {1,4}Q 

18D̂
5 18min{d 5 18min{d 1 18d 4 18D̂

10 18min{d 10 18min{d 1 18d 4

min{7,min{17,5}}

5





min{22, min{17,5}}

5





18, 6i j  {1,4}Q  18, 11i j  {1,4}Q 

18D̂
6 18min{d 6 18min{d 1 18d 4 18D̂

11 18min{d 11 18min{d 1 18d 4

min{13,min{17,5}}

5





min{18,min{17,5}}

5





18, 7i j  {1,4}Q  18, 12i j  {1,4}Q 

18D̂
7 18min{d 7 18min{d 1 18d 4 18D̂

12 18min{d 12 18min{d 1 18d 4

min{15,min{17,5}}

5





min{18,min{17,5}}

5





18, 8i j  {1,4}Q  18, 13i j  {1,4}Q 

18D̂
8 18min{d 8 18min{d 1 18d 4 18D̂

13 18min{d 13 18min{d 1 18d 4

min{19,min{17,5}}

5





min{16,min{17,5}}

5





18, 9i j  {1,4}Q  18, 14i j  {1,4}Q 

18D̂
9 18min{d 9 18min{d 1 18d 4 18D̂

14 18min{d 14 18min{d 1 18d 4

min{20, min{17,5}}

5





min{12,min{17,5}}

5




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and     

, , }}  

   

 

and  

, , }}        

         

and  

, , }}    

   

     

and  

, , }}    

                 

 

 

 

 

 

18, 15i j  {1,4}Q 

18D̂
15 18min{d 15 18min{d 1 18d 4

min{15,min{17,5}}

5





18, 16i j  {1,4}Q 

18D̂
16 18min{d 16 18min{d 1 18d 4

min{9,min{17,5}}

5





18, 17i j  {1,4}Q 

18D̂
17 18min{d 17 18min{d 1 18d 4

min{5,min{17,5}}

5





18, 18i j  {1,4}Q 

18D̂
18 18min{d 18 18min{d 1 18d 4

min{0,min{17,5}}

0




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APPENDIX C: OPTIMAL NEW LOCATION 

For optimal new location, use the objective function, 
 

 

With and ,  

where𝑖 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 

For 𝑿 = 𝟐
 

     

     

     

     

     

 

     

1,...,
[ ( ) max min{ ( , ), ( , )}]

i n
Min G x d X i d Y i




{1,4}Y  {2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18}X 

1,

min{ (2,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







7,

min{ (2,7), (1,7), (4,7)}

min{5,7,7}

5

i

d d d







2,

min{ (2,2), (1,2), (4,2)}

min{0,5,5}

0

i

d d d







8,

min{ (2,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d







3,

min{ (2,3), (1,3), (4,3)}

min{2,7,7}

2

i

d d d







9,

min{ (2,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







4,

min{ (2,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d







10,

min{ (2,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d







5,

min{ (2,5), (1,5), (4,5)}

min{2,2,2}

2

i

d d d







11,

min{ (2,11), (1,11), (4,11)}

min{10,10,10}

10

i

d d d







6,

min{ (2,6), (1,6), (4,6)}

min{8,8,8}

8

i

d d d







12,

min{ (2,12), (1,12), (4,12)}

min{7,7,7}

7

i

d d d






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For 𝑿 = 𝟑 

     

13,

min{ (2,13), (1,13), (4,13)}

min{10,10,10}

10

i

d d d







2,

min{ (3,2), (1,2), (4,2)}

min{2,5,5}

5

i

d d d







14,

min{ (2,14), (1,14), (4,14)}

min{8,10,10}

8

i

d d d







3,

min{ (3,3), (1,3), (4,3)}

min{0,7,7}

0

i

d d d







15,

min{ (2,15), (1,15), (4,15)}

min{7,7,7}

7

i

d d d







4,

min{ (3,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d







16,

min{ (2,16), (1,16), (4,16)}

min{5,10,10}

5

i

d d d







5,

min{ (3,5), (1,5), (4,5)}

min{2,2,2}

2

i

d d d







17,

min{ (2,17), (1,17), (4,17)}

min{7,10,10}

7

i

d d d







6,

min{ (3,6), (1,6), (4,6)}

min{6,8,8}

6

i

d d d







18,

min{ (2,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d







7,

min{ (3,7), (1,7), (4,7)}

min{3,7,7}

3

i

d d d







1,

min{ (3,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







8,

min{ (3,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d






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       For 𝑿 = 𝟓 

    

    

    

 

    

 

9,

min{ (3,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







16,

min{ (3,16), (1,16), (4,16)}

min{7,10,10}

7

i

d d d







10,

min{ (3,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d







17,

min{ (3,17), (1,17), (4,17)}

min{9,10,10}

9

i

d d d







11,

min{ (3,11), (1,11), (4,11)}

min{10,10,10}

10

i

d d d







18,

min{ (3,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d







12,

min{ (3,12), (1,12), (4,12)}

min{10,10,10}

10

i

d d d







1,

min{ (5,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







13,

min{ (3,12), (1,12), (4,12)}

min{7,7,7}

7

i

d d d







2,

min{ (5,2), (1,2), (4,2)}

min{5,5,5}

5

i

d d d







14,

min{ (3,14), (1,14), (4,14)}

min{10,10,10}

10

i

d d d







3,

min{ (5,3), (1,3), (4,3)}

min{7,7,7}

7

i

d d d







15,

min{ (3,15), (1,15), (4,15)}

min{7,7,7}

7

i

d d d







4,

min{ (5,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d






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5,

min{ (5,5), (1,5), (4,5)}

min{0,2,2}

2

i

d d d







12,

min{ (5,12), (1,12), (4,12)}

min{7,7,7}

7

i

d d d







6,

min{ (5,6), (1,6), (4,6)}

min{6,8,8}

6

i

d d d







13,

min{ (5,13), (1,13), (4,13)}

min{10,10,10}

10

i

d d d







7,

min{ (5,7), (1,7), (4,7)}

min{7,7,7}

7

i

d d d







14,

min{ (5,14), (1,14), (4,14)}

min{10,10,10}

10

i

d d d







8,

min{ (5,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d







15,

min{ (5,15), (1,15), (4,15)}

min{7,7,7}

7

i

d d d







9,

min{ (5,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







16,

min{ (5,16), (1,16), (4,16)}

min{10,10,10}

10

i

d d d







10,

min{ (5,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d







17,

min{ (5,17), (1,17), (4,17)}

min{10,10,10}

10

i

d d d







11,

min{ (5,11), (1,11), (4,11)}

min{10,10,10}

10

i

d d d







18,

min{ (5,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d






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For 𝑿 = 𝟔 

     

     

     

     

     

     

     

 

1,

min{ (6,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







8,

min{ (6,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d







2,

min{ (6,2), (1,2), (4,2)}

min{5,5,5}

5

i

d d d







9,

min{ (6,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







3,

min{ (6,3), (1,3), (4,3)}

min{6,7,7}

6

i

d d d







10,

min{ (6,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d







4,

min{ (6,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d







11,

min{ (6,11), (1,11), (4,11)}

min{10,10,10}

10

i

d d d







5,

min{ (6,5), (1,5), (4,5)}

min{2,2,2}

2

i

d d d







12,

min{ (6,12), (1,12), (4,12)}

min{7,7,7}

7

i

d d d







6,

min{ (6,6), (1,6), (4,6)}

min{0,8,8}

0

i

d d d







13,

min{ (6,13), (1,13), (4,13)}

min{10,10,10}

10

i

d d d







7,

min{ (6,7), (1,7), (4,7)}

min{3,7,7}

3

i

d d d







14,

min{ (6,14), (1,14), (4,14)}

min{10,10,10}

10

i

d d d






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For 𝑿 = 𝟕 

     

     

 

      

       

15,

min{ (6,15), (1,15), (4,15)}

min{7,7,7}

7

i

d d d







4,

min{ (7,4), (1,4), (4,4)}

min{0,0,0}

0

i

d d d







16,

min{ (6,16), (1,16), (4,16)}

min{10,10,10}

10

i

d d d







5,

min{ (7,5), (1,5), (4,5)}

min{2,2,2}

2

i

d d d







17,

min{ (6,17), (1,17), (4,17)}

min{10,10,10}

10

i

d d d







6,

min{ (7,6), (1,6), (4,6)}

min{3,8,8}

3

i

d d d







18,

min{ (6,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d







7,

min{ (7,7), (1,7), (4,7)}

min{0,7,7}

0

i

d d d







1,

min{ (7,1), (1,1), (4,1)}

min{0,0,0}

0

i

d d d







8,

min{ (7,8), (1,8), (4,8)}

min{5,5,5}

5

i

d d d







2,

min{ (7,2), (1,2), (4,2)}

min{5,5,5}

5

i

d d d







9,

min{ (7,9), (1,9), (4,9)}

min{3,3,3}

3

i

d d d







3,

min{ (7,3), (1,3), (4,3)}

min{3,7,7}

3

i

d d d







10,

min{ (7,10), (1,10), (4,10)}

min{5,5,5}

5

i

d d d






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       For 𝑿 = 𝟖 

    

      

    

    

    

   

 

 

18,

min{ (7,18), (1,18), (4,18)}

min{5,5,5}

5

i

d d d
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