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ABSTRACT

For quite a long time students have been using linear programming models without
understanding the details of the theory. Most students even find it difficult to explain solutions of

linear programming question they have solved on their own.

This thesis reviewed the theory and solution methods of linear programming. These methods
include the graphical method, the simplex method, the revised simplex method, the dual simplex
method, Karmarkar’s algorithm, the degbmposition pfin€iple, the bounded variable technique
and the column generation method. All the algorithmS inv61ved in the application of the methods
mentioned above were systematically given. JAll the necessary steps to be followed in the

formulation of linear programming models were also explained.

Users of this thesis will, therefore, be provided with easy to understand and logical review of

essentials of linear programmiing theory with'illustrations.

It was found out that errors are avoided when linear programming models are formulated

properly and also when the details,of the theory of linear programming are applied.
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CHAPTER 1
INTRODUCTION
1.1IBACKGROUND OF THE STUDY
1.1.1 THE ORIGIN OF LINEAR PROGRAMMING

In spite of its wide applicability to everyday problems, linear programming was not
known before 1947 .Fourrier may have begh aware of its potential in 1823. In 1939, Kantorovich
of U.S.S.R, made proposals that were néglected diifing"the two decades that witnessed the

discovery of linear programming and its firm establishment elsewhere.

After World War 1II the US Air Force consolidated the statistical control, programming and
budgeting functions under the staff of the Air force-Comptroller, General E W Rawlings who
was the president of Mills foundation. It became clear to members of this organization that
efficiently coordinated the energies of whole nations in the event of total war would require
scientific programming techniques. Undoubtedly this need had occurred many times in the past,
but this time there were-two concurrent developments that had a profound influence: (a) the
development of large scale electronic comp-uters and (b)the development inter-industry model.
The latter is a method of describingintér-industry relation of an economy and was originated by
Leontief (1951). According to Dantzig(1963), intensive work began in June 1947, in a group that
later (October 4914_8) was given the official title of project SCOOP (Scientific Computation of

e

Optimum Programs). Principals in this group were Marshall Wood and author and soon

thereafter John Norton and Murray Geisler.

The simplex computational method for choosing the optimal feasible program was developed

by the end of smamer of 1947. Interest in linear programming began to spread rapidly. During



this period the Air Force sponsored work at the U.S Bureau of standards on electronic computers
and on mathematical techniques for solving such models. John Curtiss and Albert Cahn of the
Bureau played an active role in generating interest in the work among economics and

mathematicians.

Contact with Tjalling Koopmans of the Cowles Commission, then at the University of
Chicago and Robert Dorfman, then of the Air Force and the interest of such economics as Paul
Samuelson of the Massachusetts Institutepof [[échnplegy, =imitiated an era of intense re-
examination of classical economic theory" using ‘reSults=and' ideas of linear programming

(Dantzig, 1963).

Contact with john von Neumann at the Institute of Advanced Study gave fundamental
insight into the mathematical theory and sparked the interest of A.W Tucker of Princeton
University and 2 group of his student who.attacked problems in lnear inequality theory and

game theory. Since that time his group has been a focal point.of work in these related fields.

Since 1948, theAir Force Staff has been making more and more active use of mechanically
computed programs. The triangular models are-in constant use for the.computation of detailed
programs, while the generai Imear programming models have-been aﬁplied in certain areas such
as (a) contract binding, (b) balanced air crafi, crew training and wing employment procedures,
(c) scheduling of maintenance overhaul cycles, and (d) personnel assignment and (e) airlift

routing problems (U.S.A Air Force, 1954; Jacobs and Natrella, 1951).

Mathematical Origins and Developments

The linear programming model, when translated into purely mathematical terms requires a

method for finding a solution of simultaneously linear equations and linear inequalities which



minimizes a linear form. This central mathematical problem of linear programmingwas not
known to be an important one with many practical applications until the advent of linear

programming in 1947.

The literature of mathematics contains thousands of papers concerned with techniques for
solving linear equation systems, with the theory of matrix algebra with linear approximation
methods, etc. on the other hand, the study of linear inequality systems excited virtually no
interest until the advent game theory in 1944 and linear programming in1947. For example T
Motzkin, in his doctoral thesis on lineaf inequalitfes in1936;was’able to cite after diligent search
only some thirty references for the period 1900-1936, and about forty two in all (Motskin, 1936).
In the 1930’s, four papers dealt with the building of a eomprehensive theory linear inequalities
and with an appraisal of earlier worksd These were by R. w. Stokes (1931), Dines-McCOY
(1931-1), H .Weyl (1935), and. T. Motzkin (1933). As evidence that mathematicians were
unaware of the importance of the problem of seeking a solution to an inequality system that also
minimized a linear form, we maynote that none of these papers made any mention of such a

problem, although there had been €arlier instances in the literature.

The famous mathematician, Fourrier (1826), while not going into the subject deeply, appears
to have been the first to study linear.inequalities systematicallyand to point out their importance
to mechanics and probability theory. He was interested in finding the least maximum deviation
fit to a system of linear equations, which he reduce to the problem of finding the lowest point of
a polyhedral set. He suggested a solution by a vertex-to vertex descent to a minimum, which is
the-principle behind the simplex method used today. This is probably the earliest knwon instance

of a linear programming problem. Lather another famous mathematician, de la ValleePoussin

(1911), considered the sameproblem and proposed a similar solution.



A good part of the early mathematical literature is concerned with finding conditions under
which a general homogeneous linear inequality system can be solved. All the results obtained
express, in one form or another, a relationship between the original (or primal) system and
another system (called the dual) which uses the column s of the original matrix of coefficients to
form a new linear equations or inequalities according certain rules. Typical is the derived
theorem of P Gordan (1873) showing that a solution with at least one variable positive if the dual
possesses no solution with strict inequalities. Siemke (1915) added a theorem on the existence of
a solution with all variables positive. These results are expressed in a sharper form in Motskin’s
Transportation Theorem (1936) and theorems onydual Systems by Tucker (1956). Specifically
designed for algebraic proof of the Minimaxtheorem are the results of Ville (1938) and of (von
Neumann and Mergenstern, 1944). Essentially, these theorems stated that either the original
(primal) possesses a nontriyial solution or the dual system possesses a strict inequality solution.

Because of this “’either-or;’* von Neumann and Morgenstern called their result the Theorem of

the Alternative for Matrices.

The work of Kantorovich

The Russian mathematician L. V-Kantoroyich had for number of years been interested in the
application of mathematics to programming problems. He published an extensive monograph in

1939 entitled_]\_@tilematical Methods-in-the Organization and Planning of Production (1939).

~_In his introduction Kantorovich states, “’There are two ways of increasing efficiency of the
work of a shop, an enterprise, or a whole branch of industry. One way is by various
improvements in technology, that is, new attachments for individual machines, changes in
technological processes, and the discovery of new, better kinds of raw materials. The other way,

4



thus for much less used, is by improvement in the organization of planning and production. Here
are included such questions as the distribution of work among individual machines of the
enterprise, or among mechanisms, orders among enterprises, the correct distribution of different

kinds of raw materials, fuels and other factors’’ (Kantorovich, 1939).

Kantorovich should be credited with being the first to recognize that certain important broad
classes of production problems had well defined mathematical structures which, he believed,

were amendable to practical numerical évaludhion farid cauldBeTummerically solved.

In the first part of his work Kantorovich is concerned with what he now calls the weighted
two index distribution problems. These were generalized first to include a single linear side
condition, then a class of problems with processes having several simultaneous outputs
(mathematically the latter is equivalent to general linear program). He outlined a solution
approach based on having on hand an initial feasible solution to the dual. (For the particular
problems studied, the latter did notpresent any difficulty). Although the dual variables were not
called ‘’prices,’’ the gener;a.l idea is that the assigned values of these resolving multipliers for
resources in short supply can be increased to a point where it pays to shift to resources that are in
surplus. Kantorovich showed onsimple exarﬁpl'es how tomake the shifts to surplus resources. In
general however how to shift turns-out to-be a linear program in-itself forwhich no computational
method was given. The report contains an outstanding collection of potential applications. His
1942 paper ’On the Translation of masses’” (Kantorovich, 1942) is the forerunner of his joint

= i
paper with M.K Gavurin on ** The Application of Mathematical Methods to problems of Freight
Ffow Analysis’’ (Kantorovich and Gavurin, 1948). Here can be found a very complete theory of
the transshipment problem, the relations the primal and the dual price system, the use of the

linear graph of the network, and-the important extension to capacitated networks. Moreover, it 1s

clear that the authors had developed considerable facility with the adjustment of freight flow
5



patterns from nonoptimal to optimal patterns for elaborate systems of the kind commonly
encountered in practice. However, again, incomplete computational algorithm was given. It 1s
commendable that the paper is written in a nontechnical manner, so as to encourage those

responsible for routing freight to use the proposed procedures.

In 1959, twenty years after the publication of his first work, Kantorovich published a second
entitled Economic Computation of the Optimal Utilization of resources, a book primarily
intended for economists (1959). If Kantore¥igh’s gatlierfefforts™had been appreciated at the time
they were first presented, it possible that Yinear programrming would be more advanced today.
However, his early work in this field remained unknewn both in the Soviet Union and elsewhere
for nearly two decades while linear programmingbecame a highly developed art. According to
The New Times, “’The scholar, professor L .V-Kantoroyvich, said in a debate that, Soviet
economists had been inspired by.a_fear of mathematics that left the Soviet Union far behind the
United States in applications of mathematics to-economic problems. If'Could have been a decade

ahead’’ (New York Times, 1959).

The National Bureau of standards played an important role in the development of linear
programming theory. Not only. did it arraﬁgethrough John H.Curtiss and Albert Kahn the
important initial contact between workers.in the field, but it provided for the testing of a number
of computational proposals in their laboratories. In the fall of 1947, Laderman of the

Mathematical Tables Project in New York computed the optimal solution of Stigler’s diet
S .’/’-—,—/—

problem Stiglel: (1945)in a test of the newly proposed simplex method. At the institute of
Numerical Analysis, Professor Theodore Motzkin, whose work on the theory of lnear
inequalities has been mentioned earlier, proposed several computational schemes for solving
linear programming problems such as the Relaxation ¢ Method’’ Motzkin and Scheonberg

(1954) and the Double Description Method (Motzkin et al., 1953). Alex Orden of the Air Force
6



worked actively with National Bureau of Standards (N.B.B.S) group who prepared codes on the
SEAC(National Bureau of Standards Eastern Automatic Computer) for the general simplex
method and for the transportation problem. Alan J. Hoffiman, with a group at the N B S , was
instrumental in having experiments run on a number of alternative computational methods
(Hoffiman et al., 1953). He was also the first to establish the cycling can occur in simplex

algorithm without special provisions for avoiding degeneracy (Hoffiman, 1953).

In June 1951, the first symposium injlin€afyprdgiamming wasgheld in Washington under the
joint auspices of the Air Force and the N B-S. By this*tinfesintetest in linear programming was
widespread in government academic circles. A Charmness and W Cooper had just begun their
pioneering work on industrial applications..Aside from this work, they published numerous
contributions to the theory of linear jprogramming. Their lectures were published in An

Introduction to Linear Programming (Charness.et al., 1953).

Electronic Computers Codes

The special simplex method'developed for the transpottation problemDantzig (1951) was first
coded for the SEAC in 1950 and the general simplex method in*1951 under the general direction
of A. Orden of the Air Force and A. J-Hoffiman-ofthe Bureau of Standards. In 1952, W.
Orchard-Hays of The RAND Corporation worked out a simplex code for the IBM-C.P.C, and for
the 701 and 704 in 1954 mmectively. The later code was remarkably flexible and

solved problems of two hundred equations and a thousand or more variables in five hours or so

with great accuracy (Ochard-Hays, 1955).



Extension of Linear programming

If we distinguish between those types of generalizations on mathematics that have led to
existence proofs and those that have led to constructive solutions of practical problems, then the
period following the first decade marks the beginning of several important constructive
generalizations of linear programming concepts to allied fields. These are: Network Theory:A
remarkable property of a special class of linear programs, the transportation the equivalent
network flow problem, is that their extreme peint solutions=are integer valued when their
constant terms are integers (Birkhoff,1946;"Dantzig, 1951 )~Fhis has been a key fact in an elegant
theory linking certain combinatorial problems of topology with the continuous processes of
network theory. The field has many contributors. Of special mention is the work of Kuhn (1955)
using an approach of Egervary on the problem of finding a permutatrion of ones in a matrix

composed of zeros and the rélated work of Ford.and Fulkerson (1954) for network flows.

Convex Programming: A natural extension linear programming occurs when the linear part of
the inequality constraints and the objective are replaced by convex functions. Early work
centered about a quadratic objective Dorfman (1951), Barankin and Dorfman(1959), Marowitz
(1956) and culminated in-an elegant, procedure developed independently by Beale (1959),
Houthakker (1959), and Wolfe (1959)who_showed how aminor variant of the simplex procedure
could be used to solve such problems. Also studied earlier was the case where the convex

objective could be separated a nonnegative sum of terms, each convex in a single variable

E /,—-"""-_ ' '
(Dantzig, 1956; Charnes and Lemke, 1954). The general case has been studied in fundamental by

Kuhnmand Tucker (1950) and Arrow et al. (1958)

Integer programming: important classes of nonlinear, nonconvex, discrete, combinatorial

problems can be shown to be for?nally reducible to a linear programming type of problem, some



or all whose variables must be integer valued. By the introduction of the concept of cutting
planes, linear programming methods were used to construct an optimal tour for a salesman
visiting Washington, D.C. and forty eight state capitals of the United States (Dantzig, Fulkerson,
and Johnson, 1954). The theory was incomplete. The foundations for a rigorous theory were first

developed by Gomory (1958)

Programming under Uncertainty: it has been pointed out by Madansky (1960) that the area of
programming under uncertainty cannotybgrusefullyystatedras assmgle problem. One important
class considered is a multistage where ':the téchn'élogicral matrix of input-output coefficients 1s
assumed known, the values of the constant terms.are uncertain, but joint probability distribution
of their possible values is assumed to be kmown. A promising approach based on the

decomposition principle was discussed by Dantzig and Madansky (1960).

Industrial Applications of Linear Programming

The history of the first years of linear programming would be mcomplete without a brief survey
of its use in business and industry. These applications began in1951 but have had such a
remarkable growth in the years 1955-1960 that this use is now morg¢ important than its military

predecessor.

Linear programming has been serving industrial users in several ways. First, it has provided a
novel view of operations; second, it induced research in the mathematical analysis of the
structure of industrial systcﬁﬁ;’”and’ tl;ird, it has become an important tool for business and
industrial management for improving the efficiency of their operations. Thus the application of
linear programming to a business or industrial problem has required the mathematical
formulation of the problem and an implicit statement of the desired objectives. In many instances

such rigorous thinking about business problems has clarified aspects of management decision

9 I.IBIIIT
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making which previously had remained hidden in a haze of verbal arguments. As a partial
consequence some industrial firms have stated educational programs for their manageral
personnel in which the importance of the definition of objectives and constraints on business
policies is being emphasized. Moreover, scheduling industrial production traditionally has been,
as in the military, based on intuitive and experience, a few rules, and the use of visual aids.
Linear programﬁling has induced extensive research in developing quantitative models of
industrial systems for the purpose of scheduling production. Of course many complicated
systems have not as yet been quantified, but sket¢hes of Gonceptual models have stimulated
widespread interest. An example of this is in the seheduling of job shop production, where M. E
Salveson (1953) initiated research work with a linear programming-type tentative model.
Research on job-shop scheduling is now being performed by several academic and industrial
research groups (Jackson, 1957). Sayings by business and industry through the use of linear

programming for planning and scheduling operations are occasionally reported (Dantzig, 1957).

The first and the most fruitful industrial applications of linear programming have been to the
scheduling of petroleum refineries:. Mellon et al. started their pioneering work in this field in
1951 (Mollen et al., 1952)."Two books have been written on the.subject, one by Gifford
Symonds (Symonds, 1955) and another.by Alan Manne (Manne, 1956). So intense has been the
development that a survey by Garvin, Crandall, John, and Spellman (1957-1) showed that there

are applications by the oil industry in exploration and production and distribution as well as in

refining. — <=

“Fhe food processing industry is perhaps the second most active user of linear programming. In
1953 amajor producer first used it to determine shipping of catchup from six plants to seventy
warehouses (Henderson and Schlaifer, 1954) and producer has considered applying it to a similar

problem, except that in this case the number of warehouses is several hundred. A major meat
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packer determines by means of linear programming the most economical mixture of animals

feeds (Fisher and Schruben, 1953).

In the iron and steel industry, linear programming has been used for the evaluation of various
iron ores and of the pelletization of low grade ores (Fabian, 1955). Additions to coke ovens and
shop loading of rolling mills have provided additional applications Fabian (1955), a linear
programming model of an integrated steel mill is being developed (Fabian, 1958). It is reported
that the British industry has used linear programming topdectde=what products their rolling mills

should make in order to maximize profit:

Metalworking industries use linear programming for shop loading (Morin,1955) and for
determining the choice between producing and buying a part (Lewis, 1955;Mynard, 1955). Paper
mills use it to decrease the amount of trim losses (Eisemann, 1957; Land and Doig, 1957; Paul

and Walter, 1955;Doig and Belz, 1956).

The optimal routing of messages in a communication network (Kalabaet al., 1956), contract
award problems Goldstein (1952), Gainen (1955), and the routing of aircraft and ships Dantzig
and Fulkerson(1554), Ferguson and Dantzig(1954; 1956)are problems that' have been considered
for application of linear programming methods by the military and are under consideration by
industry. In France the best program of investment in.electric power has been investigated by

linear programming methods (Masse and Gibrat, 1957)

—
-

Since 1957 the number oﬁa’ﬁmﬁs has grown so rapidly that it is not possible to give an

adequate treatment.
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1.1.2 THE DEVELOPMENT OF LINEAR PROGRAMMING UP TILL NOW

The development of linear programming has been ranked among the most important scientific
advances of the mid-20" century and we must agree to this assignment. Its impact since just
1950’s has been extraordinary. Today it is a standard tool that has saved many thousands or
millions of dollars for most companies or business of even moderate size in the various
industrialized counties of the world; and its used in other sectors of society has been spreading
rapidly. A major proportion of all scieptific gomputatigng=on-epmputers are devoted to use of
linear programming. Dozens of textbooks have”been” written about linear programming and

published articles describing the important applications now number in the hundreds.

Briefly, the most common type of application of linear programming involves the general
problem of allocation limited resources among competing activities in a best possible (that is
optimal) way. More preeisely, this problem involves seleeting the level of certain activities that
complete for scarce resources that are necessary to perform those activities. The choice of
activity levels then dictates l:l()W much of each resource will be consumed by each activity. The
variety of situations to_which this description applies is diverse, indeed, ranging from the
allocation of production facilities to preduets-to the allocation of natural resources to domestic
needs from portfolio selection to-the selection of shipping pattems, from agricultural planning to
the design of radiation therapy, and so on. However, the one common ingredient in each of these
situations is the necessity for allocating resources to activities by choosing the levels of those

activities.

A
Linear programming uses mathematical model to describe the problem of concern. The adjective

linear means that all the mathematical functions in this model are required to be linear functions.

The word programming does not refer here to a computer programming; rather, it is essentially
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the synonym for planning. Thus, linear programming involves the planning of activities to obtain
an optimal results, that is a result that reaches the specific goal best (according to the

mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application, linear
programming has numerous other important applications as well. In fact, any problem whose
mathematical model fits the very general format for the linear programming model is a linear

programming problem.
1.1.3 METHODS OF SOLUTION OF LINEAR PROGRAMMING

There are many available methods for solvinglinear programming problems. Some of

these methods are described below.

1. The simplex method: the simplex algorithm is a basis-exchange algorithm that solves linear
programming problems by constructing a feasible solution at'a vertex of the polytope and then
walking along a path on the edges of the polytope to vertices with non-decreasing values of the

objective function until an optimum is reached

2. Revised simplex method: “The revised=simplex methodis<acscheme for ordering the

computations required for the simplex algerithm so that.unneeessary calculations are avoided.

3. Dualsimplex method: The dual simplex method is based on the duality theory. It can be
thought of as the minor image of the-simplex method. It deals with a problem as if the simplex

method were being applied simultaneously to its dual problem.

4. Decomposition Principle: For solving problems of large size, it is not advisable to use the

simplex or the revised simplex method. For such problems, the decomposition principle is the

appropriate method to use.
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1.2 PROBLEM STATEMENT

Students have been using linear programming models without understanding the details of the
theory. This thesis will, therefore, provide easy to understand and logical review of essentials of

linear programming theory with illustrations to students.
1.3 OBJECTIVES OF THE STUDY
The specific objectives of this thesis are:

a) To review the theory of linear programmifg ahd’solution method.

b) To illustrate solution methods with examplesiand solve a real life problem.

1.4 METHODOLOGY

lllustrative examples of-lingar programming will.be used in this thesis. linear programming
models will be formulated from“the illustrative examples. The Graphical method, Simplex
method, Revised Simplex ~method, - Dual Simplex" method, Karmarkar’s algorithm,
Decomposition Principle and the Bounded Variable Technique will be used to solve the given
linear programming example. Solution method.in this-thesis will be by hand calculations and
matlab software. The Information. on this thesis will be obtained from Kwame Nkrumah
University of Science and Technology'libraty,.interfict,and College of Science library, K. N. U.
S.T.The following books will be used in writing this thesis;Amponsah, K. O. (2007),
Optimization E_¢&iques 1.IDL T, Kumasi, pages 25-70,Dantzig, G.B. (1963), Linear

Programming and Extensions. Princeton University Press Princeton, pages 1-166, Winston,

et

e —

W.L. (2003), Operations Research — Applications and Algorithms, pages 24-341,Jiri, M and
Gartner, B, (2007), Understanding and Using Linear Programming. Springer, Berlin. pagesl-

184, Kasana, H. S. and Kumar, K.D. (2004), Introductory Operations Research — Theory and
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Applications, pages 1 — 192, Lueberberg, D.G. and Ye, Y (2008), Linear and Non-Linear
Programming. Springer, New York, pages 11-175, Micheal, C. F. etal. (2007), Linear
Programming withMatlab.Mathematical. Society and Society for Industrial and Applied
Mathematics, Philadelphia, pagesl-252, Primal-Dual Interior-Point Methods, pages 1-63,

Vanderbei, J.R. (2008), Linear Programming-Foundations and Extensions, pages 1-160, etc.
1.5 JUSTIFICATION OF THE STUDY

For quite a long time, students in/Ghana have been using linear programming models
without understanding the details of the linear programming theory. Most students even find it

difficult to explain solutions of linear programming questions that they have solved on their own.

This thesis will contribute to the academic development of Ghanaian students by providing
them with something that.can be understood and can be used easily. Students will be provided
with easy to understand -and logical review of essentials of linear programming theory with

illustrative examples.

1.6 THESIS ORGANISATION

This thesis contains five.chapters. Chapter 2 provides the literature review on the views
that other people have on lineas programming and the different methods of solving linear
programming problems. Chapter 3 contains the methodology. Here, we discuss the algorithms
that will be employed to solve the linear programming illustrative examples given. It includes

S ’,/‘—'
how to construct mathematical models out of linear programming examples. In chapter 4,
mathematical models will be constructed from the linear programming problem given.Different

methods of solving linear programming problems will be used to solve the linear programming

problem given. All the computational procedures in getting the required results will also be

15



outlined. Data from Express Savings and Loans Company Limmited would be analysed. A loan
policy would be formulated for (ESLCL).Chapter 5 talks about the conclusions and the
recommendations that would come out of this thesis. Here, we find out whether the title of the
thesis is adequate and whether the objectives of this thesis are met. Other findings from the thesis

would be discussed. Based on these findings recommendations would be made.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the work that other people have done on linear programming and the

viewes that other people have on linear programming.

Linear programming problems have been intensively studied by a diverse group of researchers
including mathematicians, statisticians, economics, engineers, and computer scientists. Linear
programming is applied in variety of fields such as enérdy, transportation, telecommunication,

planning, assignment etc. Linear programming problems can be solved using different methods.

Dantzig (1963), cited that Kantorovich (1939), wasthe first to make proposals on linear
programming which were neglected during the two decades that witriessed the discovery of
linear programming and_its first establishment elsewhere. The method was kept secret until
Dantzig (1947) published the simplex method that allowed problems with linear constraints and
linear objective to be solved in theory. The history.of lincarprogramming can be traced back to
the 1930’s and 1940°s.McCloskey (1987) described the earlier part of the history while Gass and
Assad (2005) provided the-recent authoritative acecount. An interesting.collection of personal
reminiscences is found in Lenstra et al. (1991) including Dantzig’s (1991) contributions. After
early precursors that mostly dealt with linear-inequalities’by Fourier (1826), more closely related
work on the subject began in the mid-1930s. Motzkin’s (1936) solutions of systems of linear
inequalities, Lem_ifief’s (1936)work on input-output models, Kantorovich’s (1936) production
assignments, and Hitchcock’s(1941) transportation problem are the main contributions that dealt

with still isolated attempts to quantify and solve practical problems that could be reached to

linear systems.
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In linear programming, Manne (1953) and Orchard-Hays (1955) dealt with parametric
programming (the later author’s results were based on his unpublished Master’s Thesis three
years prior) while Orden (1952) described the product form of the inverse. Charnes(1952) dealt
with an aberration of linear programming called degeneracy, and 1953 saw the emergence of the
computational efficient revised simplex method of linear programming by Dantzig and Ochard-
Hays(1953). The same year saw one of the first tests on linear programming written by Charnes
et al. (1953). Other ground break through development of linear programming were the
development of the dual simplex method®by LemKe (954), the deSign of cutting planes for integer
programming problems by Dantzig et al. (1954) and the use of branch and bound by Land and
Doig (1960) also for integer programming problems, seemingly straightforward and extensions

of standard linear programming problems:

Progress was however “net, confined to improyements of the existing tool. Markowitz
(1952)applied mathematical programming to portfolio selection in‘finance, Charnes et al.(1952)
dealt with application of linear programming in the blending of aviation fuels, Ford and
Fulkerson (1954)described a linear programming problem that would enable a planner to ship as
many units as pcssible from,an origin to a-destination through a network, and Koopmans and
Beckmann(1957) were the“firstto ‘describe the quadratic_assignment problem, and a nonlinear

structure, that was found to be applicable to facility layout preblems.

Eiselt and Sandblom (2007), cited that the 1960s saw more developments in many fields related
to linear programming, parfMeger programming, nonlinear programming, and flow
problems. In addition, computers were beginning to make their mark in the increase problem
sizes that could be solved. This was the driving force of progress for linear programming models

and applications as well as for operations research in general. Edmonds (1965) introduced the
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notion algorithms that require a number of operations that is some polynomial function in the

length of the input in the worst case should be considered efficient.

In the 1970s, the issue of algorithmic efficiency began to be taken seriously with the contribution
by Cook (1971) and Karp (1972). Starting with automata theory, Cook (1971) described a
probably difficult problem called Satisfiability or SAT for short and Karp (1972) described a
reduction theme, according to which problem may be reduced to satisfiability. In case such a
reduction exists the problem under considesation is proved tesbe-at-least as difficult as SAT. This
allowed scientists to classify some problems as diffieults’ while others would be easy even in the
worst case. Given that distinction, it was of speeial interest to researchers and users of linear
programming when Klee and Minty (1972) determined that at least one version of the simplex

method was not efficient in the worst case:

Based on earlier work by Shor (1970), Khachtan (1979) described an “’ellipsoid method’” that
was able to solve linear programming problems even in the worst ease. The method turned out to
be painfully slow in practice, so the achievement was largely theoretical. This change with the
work by Karmarker (1984) whose ¢’ interior point methods’* had the property that computational
effort they required would increase only marginallyias the size of the problem increased. This
makes them uniquely suited to large scale practical ‘preblems. Work on improvements to
methods in this class and the search for more effietent implementations of interior point methods

continues to this day.
- ’_/“'—’—__
The first known instant of the diet problem actually predated development of linear

_\__'_—.___,_.--—'

programming. A solution to a small problem was first calculated without linear programming by

Stigler (1945) whose guess was shown to be very close to optimal.
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Gallile and Gass {1981) provided an interesting account. The basic idea behind the diet problem
is simple: choose quantities of food so as to satisfy nutritional requirements and ensure that
prices of the resulting diets are within reason. The theory behind this is either we minimize the
cost of the diet and ensure by way of the constraints that some nutritional constraints are satisfied
, or we maximize the nutritional content of the diet subject to a budget constraint Gallile and
Gass (1981). Walford (2007) considered nine nutrients that are among the standard nutritional

components typically considered in diets.

Cutting stock problems were first describedfin the ‘eazrly days of linear programming. Gilmore
and Gomory (1961) were the first to formulate cutfing stock problems using linear programming.
This problem is described by Gilmore and Gomory (1961) as, given materials that are available
in certain shape and sizes, cut them in order to'generate certain desire sinape and sizes, so as to
minimize some objective Stieh.as costy-Blending problems have a long history in the application
of linear prograinming. One..of the_first descriptions of blending problems deals with the
blending of gasoline (Charnes et al., 1952). Their paper described a linear programming that
blends airlines fuels and adds chemicals, so as to ensure that prespecified performance levels are

attained, example, vapour. pressure, lead ‘andsulphur _content and other specifications. The

objective was to maximize profit.

Hitchock (1941) worked on transportation problems; bt his work was later shown to be aspecial
case of it. Dantzig and Thapa (1997, 2003), Eiselt et al. (1987) also worked on a very
largetransportadtfc;n problemm;ial techniques referred to as modified distribution
technigue (MODI) or stepping stone method. Routing problems are discussed in Eiselt and
Sandblom (2003). Transportation problems with reshipments using linear programming were
first introduced by Dwyer (1975) and have subsequently been discussed by F inke (1977). Finke

(1983) outlined conditions under which reshipments yield saving beyond the optimal solution of
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the standard transportation problems. The simple existence conditions derived by the author
require dual variables. Another extension of the standard transportation problem is referred to as
a problem with over shipments. It allows additional units to flow through the network beyond
those presently available at the origins and those demanded at the destinations, (Finke, 1983).
Such shipments may actually result in cost savings, sometimes dubbed more -for-less paradox.
The paradox is due to Swarc (1971), Charnes and Klingman (1971). Eiselt and Sandblom (2000),
Ahuja et al.(1993) and Murty(1992) described most transportation scenarios. They put models

that deal with transportation in the conteX{ of netpork flow Teodels.

Early work on assignment problems started with Bgervary’s (1931) combinatorial theorem and
Kuhn’s (1955) ‘’Hungarian algorithm’’, so.called in honour of Egervary’s contribution. A story
that was used tc sell the problem soonsafteritsiappearance in the 1.9505 is the ‘’Marriage
problem’’. Eiselt et al.(1987),.Dantzig-and Thapa (2003) described the standard solution method
for assignment problems which exploits the special structure of the formulation and is highly
efficient. Historical accounts, of this method were given by Kuhn (1991) and Frank (2005). A
generalization of the standard assignment problem is what is lc:rn::ﬂ.wmnI %%Eigeneralized

| yniveaniTy o
assignment problem (GAP), (Frank, 2005). pulus “:U::; TECRNOL AT

| -ﬁ.uc“;sl-t;ﬂhﬂl
Dantzig (1951) proved that if the feasible set is nonempty and‘bounded, then at least one optimal
solution is located at an extreme pointand no-mterior point can be optimal. Many attempts were
made in the 19§O_sand 1990s to find one of the shortest paths, as this will certainly minimize
computational effort. Howem these attempts proved successful. One of the reasons 1s

that none of the methods hasforesight much beyond what happens when moving from one

extreme point to an adjacent extreme point (other than actually making the moves), for feature
required to find short paths between the present solution and the optimal points. Hirsch

conjecture (1957), states that it is generally possible to form any extreme point to any other in at
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most m steps where m is the number of constraints. Klee and Walkup (1968) proved the Hirsch
conjecture, Hirsch (1957) for problems with n-m<5, where n is the number of variables, and

disproved it for problems with unbiased polytopes.

Eiselt et al. (1987) described a good collection of rules for the primal simplex method. One of
the popular methods described is the *’greatest change method”, which determines pivot
elements for each pivot-eligible column and chooses the pivot that results in the largest increase
of the value of the objective function. Extgnsive test reyealed that.some pivot column selection
rules result in savings in terms of iterations;fisuch sayings.are however, achieved at the cost of
additional computations required to apply. Dantzig (1963) referred to a phenomenon in which for
a number of iterations the value of the objective functionidoes not change as circling, but most
authors nowadays call it cycling. Dantzig alsovindicated. that the cyclring, if not avoided or
properly dealt with will prevent the simplex algorithm from being finite.-Hoffman (1953) was
the first to report the occurrence of eycling. The smallest linear programming problem known to
us in which cycling occurs was described by Beale (1955) and Dantzig (1963) restated it.
Dantzig (1963) devised one of the first techniques to prevent cycling called the lexicographic
selection rule or perturbation technique.However, nowadays most authors suggest the use of the

Bland’s rule which is simple.and straightforward to implement:

Simply speaking, the rule chooses the entermg-variable as the pivot-eligible variable with the
smallest subscri;{t_, ‘and in case of a tie for the variable that leaves the basis; it selects the one with
the smallest sﬁﬁbript as wm%l) developed another well-known simple rule, the
LIFQ (Last In, First Out) for preventing cycling. This rule selects as entering variable the pivot-
eligible variable that most recently left the basis and a tie for the leaving variable is broken by
choosing the variable that entered the basis most recently,(Zhang, 1991).Dantzig and Thapa

(1998) gave some further details on this subject. Dantzig and Thapa (1997) stated that primal
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degeneracy occurs frequently in practice, e.g.; in network flow problems, transportation
problems, etc. It is of utmost importance that commercial software codes for linear programming

that are based on the simplex method properly treats degeneracy.

Linear programming is based on the theory of duality. The origin of duality dates back to John
von Neumann (1947) and independently by Gale et al (1951), followed by the contribution due
to Dantzig (1953). The *'optimaleGeltungszalal’’ of Schmalenbach (1948) represents yet another
independent development of the lhcc-ryaquualiqg i a fnmm.l context. Dantzig (1982) has
given a historical perspective of this dm%;ﬁmﬂ '[Mf’cq;npctﬁix-u system of duality allows a
glimpse at the strong connection between linear programming in general on one hand and, game
theory on the other hand (Dantzig, 1982): Eiselt and Sandblom (2004) described the further
details of the competitive system. The roots of dual simplcx method da-tc back to the work by
Lemke (1954). The dual simplex method maintains dual feasibility and complementary slackness
throughout the computations, and terminates once primal feasibility is reached (Lemke, 1954). In
addition to the dual simplex method, many other simplex based methods exist. Most
prominently, Dantzig et al. (1956) described the primal dual simplex method, the popular revised
simplex method with the added and space-saving feature of product form of the inverse. Ziont
(1969) also described the criss-eross method. Eiselt et al (1987), Rardin (1998), Sierksma(2002)
and Dantzig and Thapa (1997; 2003) gave the fusther details of these methods which are mostly

of technical interest.

- /,,.—-—-'""____

In most linear programming problems, many of the variables are bounded from below or from
above. Such additional restrictions are referred to as secondary constraints Dantzig and van

Slyke (1967). Dantzig and van Slyke (1967) orginally suggested techniques known as
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generalized upper bounding technique that are used for solving linear programming problems
with variables bounded from above. Cooper and Steinberg (1974) elaborated upon the
generalized upper bounding techniques. Eiselt et al. (1987) and Dantzig and Thapa (2003) have

summarized all information on the upper bounding technique.

The upper bounding technique is based on the work by Charnes and Lemke (1954) and Dantzig
(1954). Many pfactical problems lead to linear programming models of a large scale with
thousands or even tens of thousands of rows. Worse, the number. of columns (i.e., variables) may
easily reach millions or even billions. Invasiably,\arger scale problems possess special structures
and have coefficient matrices with a sparsity of only a few percent, often just a fraction of a
percent. The revised simplex method is then preferable to the regular simplex methods since it
has lower storage requirements and is computationally more efficient, hoﬁrevar, for really large —
scale problems, not morewspecialized. techniquessare-needed (Eiselt and' Sandblom, 2007).
Considering the computational capability at the time, the decompesition method by Dantzig and
Wolfe (1960; 1961) held the promise of being able to solve quite large linear programming
problems quickly and efficiently..But the method turned out to be more successful numerically
than had first been hoped, while at the same time the simplex method had been improved (e.g. by
virtue of the inverse in product from LU decomposition, ¢te:).and major linear programming
software packages refined to such an-extent that the Dantzig ~Wolfe decomposition method was
never really able to compute. The decomposition or partitioning method of Benders (1962),
which can be _g_gjérﬁlﬂas a dual}t,g,ﬁe—Bantzig-Wolfe method met with the same fate. Eiselt et al.
(1987) treated the Dantzig — Wolfe decomposition method and the decomposition or partitioning
m_eﬂl_—#;;lﬂof Benders (1962) in full. A method that withstood the test of time and which appears to
be the only workable strategy for very large-scale problems with millions or even billions of

columns is the column-generation technique. Gilmore and Gomory (1961, 1963) described a
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cutting stock problem that canbe used to illustrate this technique. Sierksma (2002) and Eiselt et

al.(1987) provided the details accounts of the column generation technique.

The best known successful application of the column generation is the airline industry, where
airplane flight crews are assigned to sequences of flights. Anbil et al. (1991)described a situation
in which savings in the order of thirteen million dollars per year were reported by one major
airline when improved schedules were computed. In general column generation procedures have
been found as a widespread applications in,seftware, forsolving.large-scale linear programming

problems in the area of vehicle routing andscheduling, Anbil.éet al (1991).

Eiselt and Sandblom (2007) stated that one of the assumptions in linear programming is that all
parameters are deterministic, i.e., assumed to be known with certainty and one popular way to
get around the problem, i.e., dealing with uncertainty while keeping the simple structureand
efficient solution methods of linéar-programming, are seusitivity analysis. In essence, sensitivity

analysis deals with the effects of ehanges.on the optimal solution:

Manne (1953) originally worked on  postoptimality analysis. Manne (1953) described
postoptimality as investigations that deal with the changes in the-optimal solution due to
variation in the data. From the. original work of Manne (1953), Gass and Saaty (1955),
Dinkelbach (1969) and others have ;miade-important contributions on this topic. Bradley
etal.(1977) also described another possibility to perform sensibility analysis. In contrast to the
standard sensitivity, analysis, Bradley et al (1977) method allows simultaneous changes of the
right hand values or, similarly, of the objective function coefficient. In order to initialize their

hmﬁercent rule, the interval of the allowable changes are calculated first.

While being extremely successful in practice for the last half century, the simplex method is by

no means the only solution method for linear programming. Interestingly enough, Brown and
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Koopmans (1951) published the first alternative solution technique to the simplex method. Since
then, a variety of methods have been suggested, none of which were able to compete with the
simplex method as far as computational speed and general practicability was concerned. This
changed in 1984, when Karmarker (1984) proposed a technique that has turned out efficient not
only in the worst case, but is also able to solve large-scale methods within a reasonable amount
of time. The idea of the transversal method by Brown and Koopmans (1951) is fairly simple. It
works directly on the primal problem. It starts with some interior point x%and moves in the
direction of the gradient of the objectiveifunction, througih the interior of the feasible set until it

reaches its boundary at some x*on source H;.

De Marr (1983) was the first to suggest another attempt that allows movements through the
interior of the feasible region. Later, Eiselt and Sandblom (1985, 199ﬁ) elaborated upon it.
Interestingly, the external piveting method “*tricks’” the simplex method inte moving through the
interior even though the method is-designed to follow the boundary-of the feasible set. According
to Eiselt and Sandblom (1990), the.advantage of this approach is that it enables the user to move
through the interior of the feasible set to its boundary, rather than along its boundaries, thus
potentially saving computational efforts. Furthermore; the'method can easily be incorporated in
the existing software that “uses .the-simplex method. The~disadvantage is that, due to its
construction, the external column will-create some degree-of dual degeneracy. Murty (1986)
proposed a different approach. Murty (1986) gravitational method is modeled after a physical
equivalent, usingj; idea from Eeurierin the 1820s. Again, the method works directly on the
primal problem. In particular, it first rotates the space of decision variables, so that the gradient

By

points directly downwards. The method starts with an interior solution, which is thought of as a

ball of a liquid that follows the path of gravity.

=
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This means that the ball will first fall onto one of the hyperplanes that bounds the feasible set,
and from that point on, it will follow a path along the hyperplanes that define the feasible set to
the lowest point. This point is the optimal solution. Eiselt and Sandblom (2000) proposed another
technique that is also based on a physical technique. Their bounce method mimics the path of a
ball that bounces of inside of the surfaces of that define the feasible set. Ignoring friction the ball
will also come to rest at the lowest point of the feasible set, which is the optimal. The ellipsoid
method, proposed by Khachian (1979) made quite a stir in the scientific community. Its major
contribution was that, for the first tinie, it \was|ptoved that it was possible to solve linear
programming problems in polynomial time in the worst case. However, once it became
implemented, it soon turned out that the method; while making a significant theoretical
contribution by performing efficiently in the worst case, did not perform on average and thus was
not suitable for the solution of linear programming problems in practice. Still based on its
landmark contribution, the ellipsoid method is designed to first find feasible solutions toa set of
simultaneous linear equations efficiently."Khachian (1979), Nerhauser and Wolsey (1988) have
provided the details the ellips‘ﬂid method. Unfortunately, this initial ellipsoid is extremely large
even for small problems, This feature, coupled with a slow rate of shrinkage of the ellipsoids, is
responsible for the exceeding slew ratesof convergence-of the ellipsoid method. However, the
method will converge in a numbeér-of steps.that is polynomial,in-the size of the problem, making

it an efficient method in the worst case.

Although the si_t_ﬁplex method is still-deminant for solving linear programming problems, it has a

major shortcoming;: it cannot be guaranteed to find an optimal solution in polynomial time. On
L

average, a problem with m structural constrains will require = (3m) iterations until an optimal

solution is reached. Vanderbei (2001) specifies the number as % (m+n), which for a square

27



problemwith m=n with slack variables amounts to % (3m). Dantzig and Thapa (2003) have

provided further details on this topic. While this number may apply on ‘average, there are
problems for which much iterationis required. For example, Klee and Minty (1972) provided an
example in which the feasible region is a distorted hypercube in R™, will force the simplex
method to visit all 2™ extreme points of the feasible region before reaching optimum. This is the
reason why researchers have been trying to find methods that can be proved to exhibit
polynomial behavior. Apparently, this was already accomplished by the logarithmic potential
method of Frisch (1956), which was further developed by Parisot (1961); the simplex splitting
technique due to Levin (1965) as well as the center method of Huard (1967) which was fully

developed by Reneger (1988).

However, it was the ellipsoid method by Khachian (1979) that was the first widely known

polynomial-time algorithm for general linear programming problems.

The simplex method was thus untivalled for the solution.of practical linear programming
problem, until the modern de;uelopment of interior point methods. They were first rediscovered
by Karmarker (1984), whose projectivescaling method was able to compete with the simplex
method as applied to realistic;preblemss: A remarkable feature of .computer implementations of
the interior point methods is that-the number of iterations.required by the method does not
increase very rapidly with the size of the problem Karmarker (1984). As a matter of fact, it

-

appears that less than one hundred iterations are sufficient even for the solution of very large
. /,—r""’————_.__-
problems with millions of variables. This is in stark contrast to the number of iterations required

by tiie simplex method. The simplex method moves along the boundary of the feasible region

from one extreme to an adjacent extreme point. Typically, real-life problemsinclude an
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astronomical number of extreme points McMullem (1970) has shown that for a linear
programming problem with n variables and m constraint, there could be as many as

b n+l1 e Lo [ 11 +2
2 o+ 2 | |extreme points. Even for small problems with n and m in
m— n m— n

the hundreds, this number can easily surpass10°°, a number of extreme points that is far too
large to be examined, even if only a tiny fraction would have to be dealt with. It is one of the

great achievements of the simplex methodthat, on averag€, it generally agreed that it needs to
3 : . i : . .
explore no more than about Sm of the existing extreme points. Since that time, the class of

interior point methods has been developed to the extentithat some commercial software packages
for large scale linear programming now' offer interior point methods. as alternatives to the
simplex method. Padberg (1995), Saigal (1995), Radin (1998), Bhatti (2000), Vanderbei (2001),
Sierksma (2002), Dantzig and Thapa (2003), and Roos et al. (2006) have treated the interior
point methods in details. According to Roos.et al (2006); interior point methods approach an
optimal point through a sequénce of interior points. Starting with some initial interior point, the
method moves through the interior of the feasible set along some improving direction to another
interior point. There, a newrimproving direetion is found, along winch a move made to yet
another interior point. This process is repeated, resulting”in a“sequence of interior points that
converge to an optimal boundary point. There are essentially two different approaches. Dikin
(1967) used an approach of interior point method called affine scaling method. Dikin (1967)
rescaled the ;blem n orml; the current point stay some distance away from any

boundary constraint and then restrict the step length, so that the next move will not reach the

boundary.
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The other possibility is used in what is known as the Newton step barrier method. Although the
affine scaling method does not have a polynomial worst case bound, Karmaker (1984) used a
similar method which has a polynomial worst-case bound. With that method, Roos et al. (2006)
have described versions with a complexity ofO(n®° L), where L is the length of a binary
encoding of the problem. For an instructive survey regarding barrier methods, Fiacco (1979)
used the barrier method to ensure that he stayed away from the boundary of the feasible set.
Fiacco and McMormick (1968) showed that when using the barrier method, the resulting
maximal point will depend on the choig¢€ of [Ujand if U were t0 be allowed to parametrically
approach zero, the optimal point would tend to the true optimum for the original for the original
objective function z = cx. Although the affine sealing and primal-dual interior point methods are
used in matrix version, Choleski and Bunch Parlet (1971) avoided this in'practice by solving the
related set of simultaneous linear equations by efficient numerical techniques known from linear
algebra. Dantzig and Thapa (2003) and Roes et al (2006) have ttcated the details on this
approach. Roos et al. (2006) reported that implementations of variants of the primal-dual interior
point method rarely use more than 50 and mostly around 20 iterations for convergence to optimal

solutions with 8-digit accuracy.

Eiselt et al. (1987) and Cooperand. Steinberg (1970) have deseribed*in.detail about variables that
are unrestricted in sign problems. It has been explained that; in linear programming, variables
that do not fit into the standard or canonical form, constraint and objective functions that do not

appear to lend | themselves to_linear-programming can be transformed to fit into standard or

canonical form. These variables are said to be unrestricted in sign Eislet (1987). Appa and Smith
(1973), Norback and Morris (1980) stated that applications of variable found in the reshipment
models of transportation problems can be found in the reshipment models of transportation

problems. A survey by Hobso_n and Weinkam (1979) also indicated that application of
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reformulations can be found in the area of curve fitting. It has been explained further that the
actual formulation of the objective will depend on the definition of proximity. One possibility is
to minimize the sum of absolute deviations of the observed points from the hyperplane

(Weinkam, 1979).

Basow (1959) ig the first author to describe bottleneck programming problems.Eiselt and
Sandblom (2007) defined Bottleneck linear programming problems as mathematical
formulations with a special type of gbjective functigns_that_minimizes the maximal cost
coefficient of any variable with strictlyf pasitive\value /Glicksberg and Gross (1953) were the
first to describe a special case of bottleneck problemis and then by Gross (1959). Hammer (1969)

later made a new variety of theoretical and methodelogical developments about bottleneck

programming.

Edmond and Fulkerson (1970), Galfinkel and Rao (1971; 1976), Kaplan (1976) and Posner and
Wu (1981) stated that applications of boettleneck linearprogramming problems are found in areas
such as political districting and location medels: Wu (1981) formulated two simple numerical
problems on bottleneck linear programming. Simmons (1972) put forwardMinimaxandMaximin
linear programming models; Minimax and. Maximin, linear programming models have certain
remembrance to the bottleneck problems. They also have a.Minimax or Maximin objective
functions, but in the basic model, the objective-is-to either minimize the maximal value of any of
the given decisionﬁ_variables; while bottleneck problems minimize the attribute of the variable
with the largest subscript Sin’ﬁﬁmﬁ. Simmons (1972) stated that application of minimax
problems in general are found in fields such as the routing towards emergency facilities where

the most congestion in the system is districts, so as to maximize the district with the smallest

number of potent:al customers.

31



Frenk and Schaible (2004) gave a more general and in-depth treatment of fractional
programming. A useful transformation from a nonlinear to a linear programming problem 1s
possible if the objective is fractional Frenk and Schaible (2004). They used a popular application

of this transformztion to derive a linear programming problem on data envelopment analysis.

Multi-objective linear programming problems are very useful areas in optimization (Cohon,
1998). Eiselt and Sandblom (2004) and Cohon(1998) summarized multi-objective linear
programming models and techniques and described the following terminologies: multi-criteria-
decision making or MCDM occurs xx-'heuﬂcr".itn;‘;llﬁpic concerns (:bbjccliw or criteria) exist. The
field of multi-criteria decision making is commonly subdivided into multi attribute decision
making or MADM on the one hand and multi-objeetive (linear) programming or MO(L)P on the
other hand. The difference is that in multi-attribute deeision making, the decision maker is to
choose between a finite-numbers of already existing solutions, while multi- objective decision
programming problems include a number of objectives that are to be optimized, typically in
continuous space. Ballestero and Romero (1998) provided 2 brief account of the history multi-
objective optimization methods. The origins of the field can be traced back to Koopmans (1951)
and Kuhn and Tucker (1951). The formal contribution introduces the niotion of domination in the
field; while the second paper develops optimality conditions.Geoffrion (1967) was the first to
discuss Bicfiterion models, i.e., models with two objectives. A major impact was the first
conference on multi-criteria decision making at the University of South Carolina in 1972.

Cochrane and Zeleny (1973) published- the proceedings of conference. After that milestone,

activity in the field increased tremendously, witnessed by the thousands of references collected

——-——-__—-

Sadler (1984) who already collected about 1,700 references in the mid-1980s.

One important feature of optimization models with multi-objectives is that the concept of

optimality, in the way it is for single-objective optimization problems, does no longer
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applyEiselt and Sandblom (2007). Usually, decision makers employ the concept of parato-
optimality first put forward by the Italian economics Parato (1906). Yu (1973) appears to be the
first to determine parato-optimaal solutions for multi-objective programming problems. Yu
(1973) stated that a solution or decision is called parato-optimal, if there is no other feasible
solution that 1s equal or better to all objectives included in the model. One possibility to generate
all efficient extreme points is the multi-objective simplex method. This technique is due to Evans
and Steuer (1973), Philip (1972) and Zeleny (1973). Ehrgott (2005) gave a more recent account
of the multi-objective simplex method}As Ballgstéro andwRomero (1998) report, the multi-
objective simplex method has been to solve problems to about 50 decision variables and three
objective functions by the ADBASE problem developed by Steuer (1995). A variety of methods
exist that approximate the efficient frontier. Most prominently among them are the weighting
method and the constraint method. Zedeh (1963) suggested that in case the decision maker i1s
able to specify a finite ‘tradeoff between any pair of objectives, it is_possible to apply the
weighting method. Collette and Siarry (2003) give a good-description of the weighting method.
Collette and Siarry (2003) in&icated that the drawbacks of the weighting method are that; first,
the decision maker has to make some very strong statements regarding the ranking of the
objectives, and secondly, the lower- ranking objectives are highly unlikely to be considered at
all. The constraint method dates back'to-Marglin (1967).~Margln (1967) stated that the basic

idea is to transform all but one objective to constraints with unknown right-hand side value

which represent different target values or achievement levels.

Benayoun et al. (1971) developed another multi-objective simplex methods called the interactive

—_—

o1t
methods which were used in order to incorporate the decision maker’s input in a procedure that

shuttles back and forth between the decision maker, who specifies some input and the analyst,

who incorporate the decision maker’s input in the model and resolves it. Steuer (1986), Shin and
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Ravindran (1991) and Hussein and Al-Ghaffer (1996) offered reviews of the interactive
procedures. Reeves and Franz (1985) provide a good summary of interactive methods while
Sakawa (2002) and Chen et al. (2005) are the recent references. Eiselt and Sandblom (2004)
describe another method call the Reference point programming. Eiselt and Sandvion (2004)
indicated that the Reference point programming methods require that the decision maker
specifies ideal or least ideal points for each of the objectives, as well as a metric that measures

the distance between the actual achievement and the yardstick, defined by the ideal point.

Buchanan and Gardiner (2003) is the recentreference that appliesithe concept of Reference point

programming method.

Bellman and Zedeh (1970) introduced Fuzzy programming which they described as a concept in
which desired achievements of the given objectives are assumed to be stated in an ambiguous
way and the appioach attempts to-reconcile them. Much of the early work on the use of Fuzzy
programming was done by Zimmerman (1976, 1978), This is an active area that even has its own
journal “’Fuzzy Set and Systéms’’. Good surveys can be found in Zedeh (1979) and Inuiguchi
and Ramik (2000) where the concept of fuzzy sets and a basic model that allows us to
incorporate fuzziness in, a linear optimization model are introduced. Vasant et al. (2005)
presented a nonlinear fuzzy member funetions which had fo be dealt with by techniques from
nonlinear optimization, while the inclusion of fuzzy parameters lead to possibility programming.
Pawlak (1991) introduced other extension of fuzziness which is derived from the theory of rough
sets. Their use in linear pm or optimization in general has, however, not been
established. Chamnes et al. (1955) and Charnes and Cooper (1961) described goal programming
which is another way to address optimization problems in case the decision maker has provided

some guidelines concerning values of objective functions. ljiri (1965) used a preemptive priority

structure for the individual goals. Ignizio (1982) summarized his work in the 1960s and 1970s,
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which included many applications of goal programming. Other milestones are the books by Lee
(1972) and Schniederjans (1984). Newer contributions are thebooks by Ignizio and Cavalier
(1994), Schniederjans (1995), and the edited collections by Trzaskalik and Michnik (2002) and
Tanino et al. (2003). Simon (1957) is the first to provide the underlying concept in the goal
programming approach which is the concept of satisficing. Simply speaking, the main idea of

satisficing

(= satisfying + sufficing) is that the decision makers do not necessary maximize their utility, but
instead, are satisfied when a predetermined tangent yalde has been achieved. Many extensions
and practical approaches have been suggested to théibasic goal programming model. Dyer (1972)
discussed the early interactive techniques while Reeves and Hedin (1993) and Zykina (2004)
described more recent interactive approachesssAceording to Eiselt énd Sandblom (2007)
interactive techniques are“in.order to incorporate.inia deeision maker’s inputin a procedure that
shattles back and forth between the decision maker, who specifies:some input and the analyst,
who incorporates the decision maker’s input in the model and resolve it. Jones and Tamiz
(2002) provided a survey of the field in years up to 2000. The journal INFOR (2000) devoted

two issues to a variety of aspects of goal programming.

Bilevel programming problems have a long historywin economics. The economist Von
Stackelberg (1934) was the first to describe-bilevel programming and McGill (1973) introduced
the problems into operations research field. He gave the following explanation; the structure of

bilevel programming includem on which decisions are made. On the upper level, there

is the leader while the follower occupies the lower level.

Dempe (2002) provideda comprehensive account of bilevel programming.Vicentte (2001),

Colson et al. (2005) and Fliege and Vicentte (2006) provided up-to-date surveys of bilevel
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programming. Vicentte (2006) gave the basic idea in bilevel programming as ‘’the leader is able
and willing to make his decision first, not knowing what the followers will do and how they will
react. Once the leader has made his decision, the followers will take the leaders decision as given

and react in a way that optimizes their own objective’’.

Feylizedeh and Bagherpour (2011) applied optimization techniques in production planning.
They then proposed extended approach in which Multi Period Multi-Product (MPMP) problem
was converted into a project management as an extension of MPMP modeling considering both
network concepts and multi-objective modelingy Two objectivel functions were proposed by
Feylizedeh and Bagherpour (2011). The first ongiwas to minimize the cost which included
inventory holding, lost sale, network crushing and overhead cost and the second one was to
minimize the time completion of the, planningeperiod. The appfoach they proposed
simultaneously integrated-beth project.management network and linear programming modeling

through a production planning context.

According to Feylizedeh and Bagherpour (2011) planning is one of the most important activities
in a production factory. Also it represents the beafing heart of any manufacturing process. Its
purpose is to minimize production time and costs, efficiently organize the use of resources and
maximize efficiency in the wark places Production planfingtincerporates a multiplicity of
production elements, ranging from the everyday activities of staff to the ability to realize
accurate delivery for the customer (Feyhlizedeh and Bagherpour, 2011). Feylilzedeh et al. (2008)
stated that Mul’fFPeﬁod-MulMﬂﬁPMP) problems consist of matching production levels
of individual products to the fluctuation of demand for a number of periods, subject to the
capacity constraints. However, the machine centers capacity constraints and predecessor
relationship may not correctly represent the actual solution in practical cases and can lead to an

infeasible solution (Feylizedeh et al., 2011). To overcome this issue, an MPMP problem can be

36



transformed to ir;to project work. It is thus possible to determine the sequence of operations
considering the dependencies and precedence logics. These models generally can be divided into
deterministic and uncertain ones. Deterministic models are analyzed by optimization techniques,

usually based on linear programming

According to Feylizedeh and Baghpour (2011) many linear programming models had been
carried out in several areas of production planning and control such as traditional material
requirement planning. These models usually consider single_objective function that minimizes
total costs including production costs, lifiyentory: cests; and! shortage costs subject to some
constraints. For example, inventory balance, demand quantity, and capacity constraints at each
period of time during production planning horizon. According to Chen and Ji (2007) traditional
Material Requirement Planning (MRP) started.wathwMaster Production Schedule (MPS) which
showed the quantity required to deliver to a customer within specific dates.-.The MPS was then
translated into specific planstarted with and due dates for all subassemblies and components on
the basis of the product and subsequently a detailed scheduling problem was solved to meet
those due dates (Chen and Jil, 2007). However, MRP normally was not considered capacity
constraints that do not consider operation sequences.of items (Billington-et al., 1983; Taal and
Wartmann, 1997). This created_many. problems on the shop_flow.for later production, such as
varying workloads, changing bottleneck; etce Moreover, the ‘main problem was to face with

infeasible production plan which caused that commitment to a customer would not be delivered

-""-ﬂ-.
-

on time. T N S

In _t_lg_s___w_ay, Faaland and Schmit (1987) proposed a two stage heuristic model to generate feasible
schedule. Sum and Hill (1993) proposed a framework to plan manufacturing processes and
scheduling systems. Agrawal et al. (1996) applied precedence network to consider operation

sequence and developed a heuristic algorithm based on critical path concept. According to
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Feylizedeh and Bagherpour (2011) most researches have been focused on applying optimization
techniques or developing efficient heuristics approaches to overcome issues available in MRP
context in order to generate a feasible plan. Shanthikumar and Sargent (1983) discussed an
integrated approach namely hybrid simulation/analytical modeling tempting to use advantages of
both simulation and analytical modeling throﬁgh a unique system. Many investigations carried
out incorporated optimization models in MPMP problem. As a good example, initially, Bryne
and Bakir (1999) developed a hybrid algorithm by combining mathematical programming and
simulation model of a manufacturing sysfem) Bhey pointedsout analytical methods working in
co-operation with the simulation model results a better solution in comparison with the
individual ones. The obtained production plan ean'be simultaneously both mathematically

optimal and practically feasible.

Also in this respect, Kim-and Kim (2001) proposed.an extended linear programming model for
hybrid problems. At each-simulation run, actual workload of:the jobs and utilization of the
resources are identified. Information is .then passed ‘to" the shnear programming model for
calculating the optimal production plan with the minimal total cost. Bryne and Hosian (2005)
proposed an extended linear programming model over (Bryne and Kakig, 1999; Kim and Kim,
2001). In their model, in order-to. intcoduce the umt load concept of JIF, work load of jobs was
sub-divided. While an optimal plan‘is 'sought, due-to,this umt load concept, the model takes
account of the requirement of small lot sizes which is one factor of the JIT approach.
Incorporation of tﬁe unit lqilgl/mnnept-and the modification of resource requirements and

constraints in the proposed linear programming formulation are expected to help the

e

e

improvement of the planning model by reducing the level of Work in Process (WIP) and total

flow time (Feylizadeh et al., 2008).
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As a related work in considering project and production principle through an analyzing unique
system, Noori et al. (2008) proposed a fuzzy control chart application to MPMP problems.
However, they considered uncertainty associated with fuzzy control chart and implemented their
approach by using earned value analysis. Although, there are some works regarding crushing,
this concept has not been applied in production planning or especially in MPMP problem
directly. However some of the studies are as follows: Goyal (1996) gave a procedure for
shortening the duration of a project at low cost. This procedure allows shortening of activities
which may have been shortened initially and theéy Rappenitosbe extlusively in the path which has
been shortened excessively. Taraghian and Taheri (2006) developed a solution procedure to
study the tradeofts of time, cost and quality ingymanagement of a project. This problem assumes
the duration of tasks and quality of project activities to be discrete, non-increasing functions of a
single non-renewable resource as normally assumed. Three inter-related mathematical models
were developed such that each model optimized one of the given entities'by assigning desired

bounds on the other hand.

Feylizadeh and Bagherpour (2011) studied different forms of quality aggregations and effect of
activity model reductions. Deineko and Woeginger (2001) considered the discrete modeling of
the well-known time-cost tradeoff-problem for project networksswhich had been extremely
studied. Bagherpour et al. (2006) presented a new,approachito adapt linear programming to solve
cost time tradeoff problems. The proposed approach used two different modeling flow shops

scheduling into a ;lgvel-ed proWent network. The first model minimized make-span

subject to budget limitation and the second model minimized total cost to determine optimum

__-—-""—'-F—_

make span over production planning horizon (Feylizadeh et al., 2008). Abbassi and Mukattash
(2001) introduced and developed a method for investigating the application of mathematical

programming to the concept of crushing in Programme Evaluation and Review Technique. The
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main objective was the maximization of the pessimistic time estimate in Programme Evaluation
and Review Technique network by investing additional amounts of money in the activities on the
critical path. Azaron et al. (2007) developed a multi-objective model for the time-cost tradeoff
problem in a dynamic Programme Evaluation and Review Technique network using an

interactive approach.

Feylizadeh et al. (2007) presented an application of Fuzzy Goal Programming (FGP) in a flow
minimizing crashing costs were assumeéd fo ‘be ‘considergd Simultaneously. Laslo (2003)
described a stochastic extension of the critical path method time-cost tradeoff model. This
extension included fundamental formulations of time-cost tradeoff models that represented
different assumptions of the effect of the changing performance spéed on the frequency
distribution parametersrof-the activity duration, as well as the effect ot the random duration on

the activity cost (Feylizadehet al., 2008).

Coopersmith and Sumutka (2010) applied a linear programming model in tax-efficient retirement
withdrawal planning. Coopersmith and Sumutka (2010) stated that a common rule for
withdrawing retirement savings before tax-deferred savings, but thisstrategy can inflate required
minimum distributions and reduce tax efficiency and wealth. However, tax-efficient withdrawing
schemes can determine withdrawals that-maximize-the final total account balance over a
retirement horizqn_.f__With US population aging and baby boomers reaching retirement age,
attention focuseﬂ: on how nestmst provide income during retirement (Coopersmith and
Sumutka, 2010). Articles and papers such as Davis (2009) and Seibert and Meredith (2010)
discussed policies and procedures used in retirement planning. They included distribution (or

decumulation) plans that consist of sequencing withdrawing from retirement savings needed to

satisfy a desired lifestyle. Distribution planning is simple if one has only tax-deferred accounts
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and pension. However, nest eggs often consist of various accounts that often produce different

rates of return and tax liabilities (Seibert and Meredith, 2010).

Little et al. (1994) examined mathematically optimal tax- efficient withdrawals using linear
programming model. Ragsdale et al. (1994) referred to a withdrawals plan as heuristic when
based on a subjective rule. A tax-efficient plan is mathematically optimal when it provides the
best outcome for all possible plans (Ragsdale, 1994). Subsequent papers that used heuristic tax-
efficient methods expressed concern that the Ragsdale modgl was not applicable to the current
code. This concern was not valid because optimization models could easily be adapted to
changes in federal tax and estate laws. Guyton (2010) emphasized the need for tax efficiency on
both a short and long-term basis using Jlinear programming. Arvesen et al (2009) used
mathematical optimization to achieve tax-gfficieney. for retirement savingls that included taxable
and tax-deferred savings..Eeedback from this paper suggested comparing tax-efficient and
common rule plans for a wide range of variables. Sumutka et al. (2009) demonstrated this by
using linear programming models  which included taxable savings and social security and
allowed for tax deductions and tax brackets. The linear programming model used by
Coopersmith and Sumukta (2010) made it quite time efficient for generating many alternative
results. Spritzer and Singh*(20006) eonsidered mitial wealth divided between taxable and tax-
deferred savings and compared longevity for various portfolio scenarios assuming a flat rate of

taxation using linear programming.Horan (2006) included multiple tax brackets, deductions and

exemptions, but not require’dr/n,'nin.imum distributions, to evaluate six rules for sequencing
withdrawals.
A

Fletcher (2000) reviewed and applied linear programming to the Assessment Tools for Teaching
and Learning Projects. Fletcher’s (2000) paper reviewed the international research on linear

programming as applied to the issues of banking assessment items. He outlined the mathematical
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procedures needed to obtained feasible solutions to selection made by teachers and constraints
imposed by assessment developers. The various algorithms and heuristic procedures necessary
for feasible solutions in an item band of only 500 items with testlets were discussed and
exemplified. The following recommendations were made by Fletcher (2000). The use of detailed
items mapping, limiting the number of ability levels, use of the simultaneous selection of items
and sets method, use of the maximin model, and use of the optimal rounding method in finding

solutions.

Balistreri et al. (2008) looked at varions oil ymatket! simplation and optimization models
conducted to date with more emphasis on the optimization model. According to Balistreri et al
(2008), 1in 1990, Stephen Powel noted that most existing.oil market models were either inter-
temporal optimization or behavioural simulation.and listed three models as inter-temporal
optimization models. Baldwin and Presser(1998)eonducted a similar suryey and followed the
same classification as that-ef Powel (1990) and believed that most of the oil market models

belonged to either recursive simulation models or inter-temporal eptimization models.
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CHAPTER 3
METHODOLOGY

In this chapter, we review the theory of linear programming, some methods of solution of
linear programming, duality of linear programming and sensitivity analysis of linear

programming.

3.1THE LINEAR PROGRAMMING CONCERT
3.1.1DEFINITION OF LINEAR PROGRAMMING

Before defining linear programming, we first explain a linear function. A linear function is a
function in which the unknown quantity in the funetion has an exponent of 1, The mathematical
formulation to optimize profit, loss, production etc., under given set of conditions is called

mathematical programming. The mathematical programming problém is written as

Optimize {(X) (3.1a)
Subject to gi(X) =ib; e T m (3.1b)
hi(x) = bd =gmEl=up (3.1c¢)
qi(x) < bji= ptl,...,s (3.1d)
X 2 05
where X = (X1, X5 ,...,X,)" isthe column vector in n — dimensional real linear space R™.

Thus, XT = (x4, x5 , . . , X,) is the row vector.
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Now, from the mathematical formulation above;

(1) The functiﬁn f(X) to be optimized is termed as objective function.

(2) The relations g;(X) = b;h;(x)=b;, q; (x) < b;,1=1,2, ..., s are called constraints.
(3) The conditions X = 0 are nonnegativety restrictions.

(4) The vanablesx,, x5 , . . ., x, are decision variables.

(5) The terminology ( optimize ) stands for minimization or maximization.

If the objective function f(X) and all the gonstraints g; (X) ake linéar in a mathematical

programming problem, we call the problem a linear programming problem.

Linear programming involves the planning of activities to obtain optimal results, that is a
result that reaches the specific goal best (according to the mathematical model) among all
feasible alternatives.Linear programming 1§ a mathematical method for determining a way to
achieve the best outcome. (such as maximum profit or lowest cost) in'a given mathematical

model for some list of requirements represented as linear relationships.

Any linear programming has the general form:

Optimize z =ciX T, T+ .uireepnge—(3-2a)
Subject to
Bt O, Tl =D 1 = 152,60, 10 (3.2b)
s ARG et | 8
SR
where ¢,,k=1,2,...,nand b; ,i=1, 2, ..., m are real numbers.
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Standard form of linear programming.

The standard form of linear programming is written as

Optimize ZzZ=CyX; +CXx; + ...+ChXp

Subject to

Xy + QpXst...tapXy, = b ,1=1,2,...,m

or
Optimize z =yt G, +
. FINE ey Cnn
Subject to
or, in the matrix form: f
timize z =C"X
gl Optimize z =C
Subject to
» AX = b
45
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where
C=(cy,Cq,...,Cn)" (cost vector)
X =(x1,X,...,X,) (decision variables)
A = (a;;) coefficient matrix of order m by n and

b= (b, b, ,...,b, Ml ghthand side of functional constraints).
Converting to the standard form

The standard form of linear programming problem deals with nonnegativity decision variables
and linear equality constraints. Here we explain how to convert the linear programming problem
into the standard form m-easc any.or both of these conditions are not available in the linear

programming problem.

A linear inequality can easily be converted into an equation by introducing slack and surplus

variables.If the ith constraint has the form
AnXPE dipX; ... F QinXn S,
We can add a nonnegative variable s; = 0to-have

A1 Xy + Qpx7F ...+ Qpxn + S; =b;. (3.4)

Here, the variable s; is called slack variable. Similarly, if ith constraint has the form

-_—

m—

Ai1X1 T AipXy T ... T AipXy 2 b;,

A nonnegative variable s; = 0 is subtracted to have
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This time s; 1s termed as the surplus variable.

Terminologies of linear programming

We explain some terminologies that are often used in linear programming.

1. Decision variables: Decision variables are variables whose values are under our control
and influence the performance ofgthg-system.

2. Constraints: In most situations, lonly icertain*walues<of decision variables are possible.
Restrictions on the values of decision variables are constraints.

3. Objective function: In any linear programming problem, the decision maker wants to
maximize (usually revenue or prefit) or minimize (usually cost) some function of the
decision variables, Thefunctionto. be maximized or minimized is the objective function.

4. Feasible region: Feasible region is the set of all points that satisfies all the constraints and
sign restrictions.

5. Feasible solution: A feasible solution is the solution for.which all the constraints are
satisfied.

6. Infeasible solution: An infeasible solution is a solutionforswhich at least one constraint is
violated.

7. Basic feasible point: Abasic feasible point is a basic point that satisfies all the constraints
and sign;ésfﬁctions. e

8. Basic feasible solution: A basic feasible solution is a point in the feasible region which

does not give the largest objective function value.

9. Optimal solution: An optimal solution is a point in the feasible region with the largest

objective function value.
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10. Slack vanables: Slack vanables are vanables that represent the unused raw matenals that

do not contribute to the objective function.

1.1.2 FORMULATION OF LINEAR PROGRAMMING MODEL

In this section we discuss the general characteristicsof linear programming problems, including
the various legitimate forms of the mathematicalmode! for linear programming.

RE" | . | K INIL 1N
We begm with some basic lt:rnnnulug}-' a'lmaﬁndatfﬂ].

The key terms are resources and activities, where m. denotes the numberof different kinds of
resources that can be used and n denotes the number of activitiesbeing considered. Some typical
resources are money and particular kinds of machines, equipment, vehicles, and personnel.
Examples of activities include investng in particularprojects, advertising in particular media, and
shipping goods from a particular source toa particular destination. In aﬁy application of linear
programming, all the activities maybe of onc general kind (such as any one of these three
examples), and then the individualactivitics would be particular alternatives within this general

category.

The most common type of applicanonof hnear programming mvolves allocating resources to
activities. The amount availableof each resource i1s limited, so a careful aliocation of resources to

activities must bemade. Determining this allocation involves choosing the /evels of the activities
—— /’-"""_'_-' )

that achievethe best possible value of the overall measure of performance.

_-_-_-'-_

Certain symbols are commonly used to denote the various components of a linearprogramming
model. These symbols are listed below, along with their interpretation for the general problem of

allocating resources to activities.
LIBRERY
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Z = value of overall measure of performance.

x; = level of activity j (forj =1,2, ..., n).

C;= increase in Z that would result from each unit increase in level of activity j.

b;= amount of resource i that is available for allocation to activities (fori =1, 2, ..., m).
a;; = amount of resource i consumed by each unit of activity ;.

The models pose the problem in terms of thaking, decisions about the levels of the activities,
SO X1 , X3, . . . , Xpare called the decision variables.

The values of C;, b;, and a;;(fori =1, 2, . % ,;mandj =1, 2;. . . , n) are the input constantsfor

the model. TheCj, b;, and a;are also referred to as the parameters of the model.

We formulate the mathematieal model for the general problem of allocating resources to

activities as follows. In particu}ar, thismodel 1s-to select the'values x;, x5, ..., X, so asto
maximize.Z = Cy Xy T+ C2X5 ... +6ak;
Subject tothe restrictions
A1, X1 017 o o Qin%y S0y
Ap1X; + g +... tApXn S by
AmiX1 T Am2X2 ... T QupXn S bm

and %, 20,2, 20,...,%, 20
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Any situation whose mathematical formulation fits this model is a linear programming model.

The function being maximized ¢, x; + ¢x, +. . .

+ €y X, 15 the objective function. The

restrictions normally are referred to as constraints. The first m constraints (those with a function

of all the variables

a1 X; + QppXt ...+ aip X, on the left hand side) are sometimes called functional constraints or

structural constraints. Similarly, the x; = 0 restrictions are called nonnegativity constraints or

nonnegativity conditions. Table 3.1 shows the data needed for.a lingar programming model

involving the allocation of resources to activities.

Table 3.1: Data needed for a linear programming model involving the allocation of resources to

activities.
Resources Usage per Unit of Activity
Actii?itj;

Resources n Amount of Resources available

I a1 a2 A1n by

2 a, azz A2n b,
m Ama Am2 Amn b
Contribution _'}cl c{rf; Cn
to Z per-unit
of Activity
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3.1.3 ASSUMPT'ONS OF LINEAR PROGRAMMMING

All the assumptions of linear programming actually are implicit in the model formulation given.
However, it 1s good to highlight these assumptions so that we can moreeasily evaluate how well

linear programming applies to any given problem.
Proportionality assumption

Proportionality 1s an assumption about both the objective function and the functional constraints.
The contribution of each activity to the value afthelobjectivefunction Z is proportional to the

level of the activity x; as representedby the ¢;x; term in the objective function. Similarly, the

contribution ofeach activity to the lefi-hand side'of each functional constraint is proportionalto

the level of the activityx;, as represented by the.@;;X; term in the constraint.

When the function includesany cross-product terms (terms involving the product of two or more
variables),proportionality should be interpreted to mean that ¢hanges in the function value are

proportional to changes in each variable (¥;) individually, given any fixed values forall the other

variables. Therefore, a cross-produet. term satisfies proportionality as long as each variable in

theterm has an exponent.of 1. Howeyer,—any cross-product term.violates the additivity

assumption.

Consequently, this assumption rules out any expotient other than 1 for any variablein any term of

any function (whether the objective functions or the function the left-hand side of a functional

constraint) in a linear programming model.

e —

Additivity assumption

Although the proportionality assumption rules out exponents other than 1, it does not prohibit
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Cross-product terms (terms involving the product of two or more variables). The
additivityassumption does rule out this latter possibility.Everyfunction in a linear programming
model (whether the objective functions or the function on the left-hand side of a functional

constraint) is the sum of the individual contributions of the respective activities.

Divisibility assumption

]

This assumption concerns the values allowed for the decisi;m variables.Decision variables in a
linear programming model are allowed to have any values, including nonintegervalues, that
satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision vanable represents the level of some activity, it is being

assumed that the activities can be run at fractional levels.

In certain situations, the divisibility assumption does not hold because some of or allthe decision
variables must be restricted to integer values. Mathematical meodels with these restrictions are

called integer programming models.
Certainty assumption

The certainty assumption concerns-the paramerers of the model, namely, the coefficients in the

objective function ¢;, the coefficients in the functional constraints @;; and the right-hand sides of

the functional constraints b;. The value assigned to each parameter of a linear programming
model is assumed to be a known constant.In real applications, the certainty assumption is seldom
safisfied precisely. Linear programming models usually are formulated to select some future

course of action. Therefore,the parameter values used would be based on a prediction of future

conditions, which inevitably introduces some degree of uncertainty.
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3.1.4 GEOMETRIC INTERPRETATION OF LINEAR PROGRAMMING

Let R™ denote the n-dimensional vector space defined on a field of real numbers. Suppose X, Y

€ R™.
For X = (x4, X2, ..., Jnfﬂ)T and Y =(y1, ¥z, ..., yn)Twe define the distance between X and Y as
X = Y= ((x1-91)" Hxz - y2)° + ... H( 2 - yu)O)'

Neighbourhood.Let X,be a point in R™ | then g —ngighbourheed-efX ,, denoted by N,(X,) is

defined as the set of points satisfying
N,(Xo) = {X € R™|X — X,| < 0,0 > 0}.
N,(Xo)\Xo ={X € R™:0 < |X — X,| < o} is termed as the neibourhood of X,,.

In R?, N,(X,) is a cirele without circumference; andin R® , Ng(X,) isa sphere without

boundary, and for R, an opeminterval on'the line. Forn > 3, figures are hypothetical.
Let S € R". We give the following definitions.

Boundary point: A point X, is called a boundary point of S'if cach deleted neighbourhoodof

Xpintersects S and its compliment S¢

Interior point. A point X, € S is said to be-an4nterior point of S, if there exists a

neighbourhood of X, which is contained in S.

s //J—’
Open set: A set S is said to be open if for each X€ S there exist a neighbourhood of X which is

._.--7--""_-" :
contained in S.

Close set. A set S is closed if its compliment S¢ is open.
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Bounded set.A set S in R™ is bounded if there exists a constant M> 0 such that |X| < M for all

XinS.

Definition: A line joining X; and X, in R™ is a set of points given by the linear combination
L={X € R X =o¢; X; + x, X,,0¢;+0¢,= 1}.

Obviously,

LT = {X EX =o¢; Xy +; X, o +0ot=4, %2 0} 1s;a half;lme-esiginating from X, in the

direction of X,. For o<, = 0, X = X; and &, =1§ X = X5

Similarly,

L~ = {X:X =y X; +XpXy X+X= 1,062 0} 18 a half-line emanating from X, in the

direction of X;. For o¢; =0, X=X, and <3.= 1, X = X;.

Definition: A point X€ R™ is called a convex linear combination of two points X; and X,, 1f 1t

can be expressed as
X = 0C1 X1+ 0(2 Xz . 0(1.‘ DCZE 0, -0C1+' CCZ :1

Geometrically speaking, convex linear combinationof any points X; and X, is a line segment

joining X;andX,.
e /,—._
Convex sets
Cn G

Definition: A set S is said to be convex, if the linear combination of any two elements of S is

also an element of S. That is, if x, y € Sand A€ [0, 1], thenz=Ax + (1-4)y € S. Geometrically
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speaking, a set is a convex , if all points on a straight line segment that joints any pair of arbitrary

element of S are also elements of S. Figure 3.1 below gives more illustrations. -

Convex set Convex set non convex set

Figure 3.1(a) Figure 3.1 (b) Figure 3.1 (c)

Hyperplanes and Half- spaces: A hyperplane isa flat geometric shape in n- dimensional

space. A hyperplane in R™“is.the set ofipoints (2, %, , . ., x,) satisfying the linear
equation
Qi 0% +...TapXx, = Bolta®™X )= 8, wherelal— (@) -\ , a,)'. Thus, a

hyperplane in R™ is the set
H={X € R:a"X =}
A hyperplaneseparates the whole space into-two closed half-spaces

H ={X €R™ a"™X< B}, Hy = {XER" =B}

__--""-.--

Proposition: A hyperplane in R" is a closed convex set.

Proof: The hyperplanein R™ istheset S = {X € R™ a’ X =8}
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We prove that S is closed convex set. First, we show that S is closed. To do this we prove that S

ComplimentS® is open, where

S¢ = {XeR™a"X <a}U{X € R™: aTX >x} =S5,U S,. Let X, € SC. Then X,¢SC.
This implies

aTX, <xora’X, >o. Suppose a’X, <o . Let a’X,= < . Define

Ny (Xo)= {X € R™ |X - X,| <0, o = %’3} AT X E Ng (3, Hhen

CITXI B CITXO < IQTX]_ w QTXDI = IQ‘.’T(Xl._.XOI = |CIT||X1 —Xol < a _B

But a” X,= B. This implies a’X; <o« and hence X; € S;.«Since X; is arbitrary, we conclude

that N,(X,) <S;. This implies S, is open:
Similarly, it can be shown that S, = {X: @’ X, > o} is open.
Now, S¢ =S, U S, is open (being union of open sets) Which proves that S is closed.
Let X;, X, € S. then a”X; = «< and @®X, = o< and considering
X=p6:X:+B,X,;, B1, B> =0, By +L, =.1--Wenote that
a'X=pa"X, +Ba" X, = B1f + f2B-=B(BrtiBz) =P
Thus, X€ S and hence S is convex.
Proposition: Ahalf-space S={X € R™:a’X <«} is a closed convex set.

——l—'-'-'-.r--_-

Proof: Let S ={X € R™:a” <} . Suppose X, € S¢. Then a”X, > <. Now, a"Xp= f >

Consider the neighbourhood N,(X,) defined by
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<0,0= E} Let X, be an arbitrary point inN,(X,). Then

X—X
||

0

Neltp) = {X € R™:

a’Xo-a"X; < |a"X; —a"Xp| = |aT||X; — Xo| < B -a.
Since a’ X,= B, we have
Sl < —X=u'X, >x=X, €ES= N,(X,) = 5€.

This implies S¢ is open and hence S is closed. Take X;, X, € S. Hencea”X; <«, aTX, <« .

For

X=0c; Xq+ 0 Xy, ¢, 06,20, oy + ¢, =1.

We note that

a™X = a’(¢; Xyt o; Xp) = o a' Xy + @t X,
<o X +0C,0¢ = of(ocy + o) = K

This implies X€ S, and hence S is convex.

Polyhedral set. A set formed by the intersection of finite number of closed half-spaces 1s termed

as polyhedron or polyhedral.

If the intersection is nonempty and bounded,.it is called a polytope.

Remarks: =

-

1. Generally speaking we may observe that the sets in R™ are convex 1if they contain no
= o
“hole’’, “’indentation’’ or ‘’protrusion’’ and non-convex otherwise.

ii. The intersection of any family of convex sets in R™ is convex.

57



1il. A close half-space or an open half-space in R™ is convex. Hence a hyperplane, being

the intersection of two close half-space is convex.

iv. If A 1s an m X n matrix and b is an m-vector, then the set of solution of the linear
system Ax = b, being the intersection of finite number of hyperplanes in R™, is
convex. Hence the set of all x satisfying the condition AX =b, X = 0, is convex,

since it 1s the intersection of a convex set and a half-space, which is convex set.

Extreme points

Definition: For any convex set S, a point P in § 1§ an extreme point if each line segment that lies
completely in S and contains the point P has' P as‘an'end point.of the line seément. Extreme
points are sometimes called corner points because if the set S is a polygon, the extreme point of
S will be the vertices, or corners.of thepolygon. For example, each point on the circumference of

a circle is an extreme point of the cirele.

3.1.5 FUNDAMENTAL THEOREM. OF LINEAR PROGRAMMING

The maximum of the objective functionf{X) of‘a linear programming problem occurs at least

at onevertex of the feasible region Py, provided the feasible region Pris bounded.

Proof. Given that the linear programming problem is a maximization problem. Suppose that

maxismun of f(X) occurs at some point X, in feasible region Pr.

Thus,
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F(X) <f(X,) V X € P

We show that this X, 1s nothing but some vertex of the feasible region Pr. Since Pris bounded
and the problem is a linear programming problem, it contains finite number of vertices X;, X5, . .

. » X5, Hence,

FXy) = HXg), 1 =1,2,...,0. (3.6)
By linear combination,

Xo = a1 X; + aX; +ENF XS0, I3 a= 1.

Using linearity off, we have

1Xo) = ayffX,) + RS + o, f(X,).
Let

f(Xx) maxtf (Xe), f(X2), 5. o flX)ls
where f(Xy) is one of the value.s X ), X)), H X )s Then
f(Xy) < a;f(Xp)d &, f(Xy) . T api(Xy) = 1(Xy) (3.7)

Combining (3.6) and (3.7), we havé fiXp). =f(Xx). This.impliesthat X, is the vertexXyx and

hence the results.

The minimization case can be treated-in-on parallel lines just by reversing the inequalities.

Thus, we have proved that the optimum of a linear programming occurs at some vertex of the

__--""—__-_

feasible region P;, provided Py is bounded.
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Remark. The above theorem does not rule out the possibility of having an optimal solutionat a
point which is not vertex. It simply says among all optimal solutions to a linear programming

problem, at least one of them is a vertex.

Proposition. In a linear programming problem, if the objective function f(X) attains its
maximum at an interior point of the feasible region Py, them f'is constant , provided PF is

bounded.

Proof. Given that the problem is maximizagion, &ud let LX, Jbg"ah ififetior point of the feasible

region Pr, where maximum occurs, i.e.
f(X) < f(Xo)V X'E Py
Assume contrary that f(X) is not constant. Thus,sXsu€Pr such that
F(Xy)~#HXp),—H(Xy) <, {(Xp)

Since Pr is nonempty bounded closed convex set, it follow that X, can be written as a clc of two

points X; and X, of Pr
Xo—= aX;+ (1 "X, "0 <a< Il
Using linearity of f, we get
FXp) = a(X, ) + (1 - o)f(Xy) = f(Xp) <af(Xy) + (1 - a)f(X3).

-

Thus, f(X,) < fX;). Thisisa contradiction and hence the theorem.
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3.1.6 GRAPHICAL METHOD OF LINEAR PROGRAMMING

The graphical method is convenient in case of two variables. The optimum value of the
objective function occurs at one of the vertices of the feasible region. We exploit this result to
find an optimal solution of any linear programming problem. First, we sketch the feasible region
and identify its vertices. Compute the value of the objective function at each vertex and take
largest of these values to decide optimal value of the objective function, and the vertex at which

this large value occurs is the optimal solution. For a minimization problem, we consider the

smallest value.
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3.2 THE METHODS OF SOLUTION OF LINEAR PROGRAMMING

There are so many methods that can be applied to solve linear programming problems. Some of

these methods are described below.

3.2.1 THE SIMPLEX ALGORITHM

The simplex method is a basis-exchange algorithm that solves linear programming problem by
constructing a feasible solution a vertex of a pglytopeland then walking along a path on the edges

of the polytope to vertices with non-decreasing valuesiof the objective function until an optimum

is reached.

To find the optimal solution by simplex method one starts from some convenient basic
feasible solution (vertex), and goes te.anotheradjacent basic feasible solution (vertex) so that the

value of the objective function value 1s improved.

Consider the linear programming problemin standard form.as the basic feasible solution is

calculated in after writing the problem in.this format
maximize Z-=-6"X
e /‘_Sll]gjpect to AX =b
X =20
where

T
C= (Cla Ca, - ;,C-n)
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XL = (x].!xZ!« - . -:xn)T

A = (a;j)m x n, the constraint matrix of order m x n and
b = (bls bz: RN bm)T

The above linear programming problem can also be written in the form

maximize Z = CyX; +CXy +...+ CpXy, (3.8a)
Subject to x,4; + x, 454 . N X, 4,,=1 D (3.8b)
X1 X595 s X0 = Omb = 0.
Where A = (A,, A5, ..., A,) is mxn matrix and.A,, A; and 4,, are the first, .second and nth

columns of A respectively.

Let m be the rank of A, and every set of m column vectors is linearly independent. The
number of equations in the variables and n —m nonbasic variables. The total number of basic

feasible solutions of linear programming problem cannot exceed n!/m!(n — m)!.

Suppose a basic feasible solution's;, x3; .. ., X iS avairable at our disposal..This implies
Xm+1 = XmPoe s g ¥n= 0 (3:9)

' . T = . . . "
are left as nonbasic variables. Thus, Xg= (X1, X2...., X;m) is a basic vector with basis matrix
given as =53

S /-r""‘-——-’____

a1 Az ... Qim
e B=| @2 Azz ... Qzm
G Am2 ... %mm

USing 3.31n 34, we have x1A1 oh szg ST xmAmz b: or
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(Al,Az,...,Am) . =b,

Since, (44, Az, . .., Ap) = B, this has the compact form
BXB= b@XB —. B-Ib (310)

All column vectors of B are linearly independent ¢by assumption)),-and-hence , B is a
nonsingular matrix and all column vectors of Bsgénerate R, an.m —dimensional real linear
space. This ensures that each 4; ,j=1, 2, ..., A,, canuniquely be expressed as a linear

combination of the elements of ordered basis
(ATAL.. ., Ay ).
Am+1 = (I;n"'lAl 5 H?+1A2 + . T a$+1Am

2 e m+2 m+2
Am+2 F ﬂ’:l Al iF a'z A2+ Wl a'm Am

I

The compact form of the above system 1s

A = QA+ @Ay A, § = mTLm+2,. 0

G
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Aj = (A, 4z, ...,Ap) | i | A = Ba’, where a’/ = (af, a3, ..., a),)" is the coordinate

vector of A;. Thus we get the relation

a’ = B714; (3.11)
Also, in view of (3.5) we have
fiXg) = C1X, +CaX3 + ... + Cux;m = CiXg = ChBT! bs the yalue of objective function at
Xp,
where C; = (€4, €2, - .., Cp) is the cost of basic veetor Xig .
Proposition 1.If z; = Cla’,j = 1,2, ... nHeN zE=o =N for all basic variables.
Proof. Since Ay, A, , ... A;is an-ordered basis,the coordinate vectora’ of 4y, j= 1,2, ...,

mis (0,0,...,...,0), where 1 1s atjthplace."Hence

0
N i p B &
. p@l & (¢, 6% rerrre T < | =JC;
I—O-l

Here, the arrow toward 1 indicates that it is at jth place. From the above relation, z;- ¢;= 0.

Remark. We notethat z; - ¢; may or may not be zero for a nonbasic variable.

In order to introduce the simplex method in algebraic terms, we introduce some notations here.

For a given basic feasible solution X* , we can always denote it by
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- .

XN

where the elements of vector Xp represent the basic variables and the elements of vector Xj
represent nonbasic variables. Needless to mention Xz = 0 and Xy= 0 for the basic feasible

solution.

Also, for a given cost vector C (column vector) and the coefficient matrix A, we can always

denote these as

Cp

L3 =[a] and "A = [BIN],

where B i1s a mxm nonsingular matrix that is referred to as basis and N is referred to as nonbasis

with dimensionality m x (n — m).

Proposition 2. Let the linear progiammingproblem.be maximize C" X subjectto AX = b, X
> (0. If, for any basic feasible solution X3.all" z;- ¢; <0 then X is the'optimal solution of the

problem.

Proof. Once a basis is known, every-feasible solution X € Pr'is-arranged in an order as

leﬁ.

We note that both Xz and X are no ive. Hence the linear programming becomes
e maximizez = CEXp - ChXy (3.12a)
Subject to BByt NXy = b (3.12b)
Xp 20,_ Xn= 0 (3.12¢).
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Equation (3.12b) implies that
Xg= B~'b -B7INX, (3.13)

Substituting (3.8) back into (3.7a) results in

L o ey

Z =C;(B7' - BTINXy) + CTXy

=COB~* + (Cy - CEB™1N) Xy

I

CEB~'b 17 2] (3.14)

N

where h

- [
(- 4 r——

We observe that r is an n —dimensional vector. Its. m components, corresponding to basic
variables are set to be zero and the remaining n— m components correspond to nonbasic
variables. Also, note that objective value z* at current basic feasible solution X* is CFB~! b,

since Xz= B~'band Xy = 0. Consequently (7) becomes
z° - AW Ef-] foreach X €P¢
AAN

It is apparent that r™ > 0, i.e., every component-of CIB=IN"-C} is nonnegative, thenz® - z

> () for each feasible solution X € Pg. Hence z° is optimal value and X~ is optimal solution.

e __,,-—-"'"-——__
Equivalently, for optimal solution to exist, we write

———

=2 -¢ =CgB7 4 - =20,
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where j runs over nonbasic variables as z; - ¢; = 0 for all basic variables. This proves the

proposition.

Remark. For a minimization problem allz; - ¢; < 01n the last iteration table is the desired

condition for any basic feasible solution, X to be optimal.
Proposition3.Let B = (X;, X;, ..., Xy) be a basis in a linear space R™ and let X ¢ B such that

X =X; + aX; +...+ a,X,,. If a; =0 then the vector X; can not be replaced by X to form a

new basis of R™.

Proof. Given that B = (X,, X,, . . ., X,,) is a basis of R™ % For any vector X € B, we have the

unique representation
2X =a X1 + a, XS o Autar 1 5).
If a;= 0, then (3.10) becomes
X =1 X; + a Xo A . N X 1 - A, +\ 2, X,
By using commutativity and associativity repeatedly in the above, we have
@ Xy + azX; +...+ 0 W CLX T @ Xin T T 0. (3.16)

From (3.16), we conclude that (X;, X, . . ., X o1, X Xre1, - . , Xp) is linearly dependent, and
hence, it is not a basis. Thus, we have established that the vector whose coefficient is zero n

linear representation for X can bmform a new basis. LIBRARY
AWAME R RUMAR UNIVERBITY B¢

| S SOIENCE AND TECHNOLOAY
Rules for entering and leaving variables EUMASI-GHANA

Suppose we are considering maximization and the basic vector Xg= (X1, X2, . . ., Xp) 1S at our

disposal. With the help of proposition (2) we can check whether this basic feasible solution is
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optimal or not. If not our next step is to some other basic feasible solution (vertex) so that the
current value of the objective function improves (increases) or optimal basic feasible solution is

obtained. The basic matrix associated with Xj is
Bi= (‘A?AZ:*' :Am)

To go to other vertex one of the basic variables from x4, x,, . . ., x,, is suppose to leave and
other nonbasic variable will occupy its position. This is equivalent to saying that some of the
column vectors from B will leave the basis dnd/a gelummnl vedtor oA, 41, Ami2s -« « » Aman

occupies its place to form a new basis as showmin figtire 322 bélow.

Enters B
v |
Bi= (AI:AZa'--:IAr:'-*:Am) A= (Ala*"aAm5*-*3Aj=*'*:14n)
Leaves B Figure 3.2: B' leavang and. entering basis
A= alA, + aldpe s+ aldyrnlal Ay, (3.17)
Preposition 3 ensures that A, 4, , . . ., Ajy.i , Aprforms anew basis provided a:;f # (. From

the original basic feasible solution, we have

o
-

e ,,///
A Ead, R e A =D,

_—

e

We use equation (10) to replace 4, in the above equation by A,

I'.'Ij ﬂ:j xr L a_ﬂj_ -
(x; - %) A+ (x5 - xrj)Az ...+ EAJ- e o (e s ai) A =b.
r T

e e T

F » T 7 ea— L —— el
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The position ofA,. has been occupied byA,, and

a’ al v al
Xy - x,.;z, X, -x,.;z,..., 5,...,:(,“ -xr:} (3.18)

isa new basic solution, i.e., it satisfies AX =b when n — m variables are keep at zero level, and
(3.18) gives the new set of basic variables. Now, we have to choose A, such that the set in

(3.18) defines a feasible solution, ie, each term must be nonnegative. For this, the first
requirement is that in rth term of (11), a. must be positive (this is nonnegative by assumption).

Note that the first basic variable = 0 if a{ <%0,

To ensure that each term in (11) is nonnegative, ie,

J J J
a ¥F a
x1 = xr_}z 0, xz‘*xr_i.z 0‘ -,—12 0, . xm = Xrﬂ}.. :2 O
a,. a, a; a,
or

X1 Xr X2 Xr Xy Xm Xy

e e Ay — ZV =\ 7T

al aicx? ;,.l’ al : . ajm_ a,

Choose r(1 to m) such that x,. / rx;f is minimum of the right side entries inthe above inequalities,

ie,
= mind gl > 0) =G l=12 T m. (3.19)
a, a;
This determines r, ie, which variable x,—ereolumn A, leaves the basis, when its position is to

be occupied by A;( fixed ) so that the resulting set Ay, Ay, ..., A;,..., Ay forms a basis and

—

the set in (2.12) forms a basic feasible solution.
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In the above analysis A j 1s arbitrary but fixed. Now our main purpose is the selection of
proper 4;, 1.e, the entering variable so that there is maximum improvement in the value of the

objective function as compared to its value on the earlier basic feasible solution. Improving

condition (3.13), the new basic feasible solution is

o~ e —

xl =% - 9}“—{ X2 = X, - gjaés---: =SB S = Gja;’n.Thevalueofthe

objective function at this new basic feasible solution is

-—

X0 = c1x1 + €2x2 PN NG R T I §nxm.
Inserting the valuesof x; , x, , ..., X, , we have
- xr j .rr )I' x-r > X g }I'
Xo= C1X1 - —5C1@; T CXz - —5C2a; .. GG SS L Mt CiXm = —7Cm@®m + Cr Xy -
ﬂfr a: ﬂ,'r a:-
Xr 1
—fCrEIr
aT

Here we added and subtracted ¢, x,.

: : = i J J
SIcex, = Cyxq +Caxy +. ..+ G X aHde—Cgﬂj —£1 0, + Caa RNk
J J llows th

—_—

ey S Crlzr=TT

Since x, / a) = 6; = 0, for maximum Increase in x, , we select that A; as the entering variable

== ,/"/_——
for which

(z - ¢)
1s the most negative.
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Thus, theoretically we permit the entfy of the nonbasic variable determined by the most
negative (for maximization) or most positive (for minimization) nature of 8;(z;- ¢; ). But this is
not convenient because we have to compute ; for all nonbasic variables. This will make our task
time consuming. The only thing we do is to see the most negative or the most positive nature of

Zj - Cj.
SAMMARY OF THE SIMPLEX METHOD

The following points should be noted in thelapplicatian of the §impléx method.

1. Write the linear programming problem in standard form.
2. The coefficient matrix A must contain the identity submatrix. The variables constituting
the identity submatrix give the starting basis (BV), and the solution is b.

3. The objective function must be expressed in terms ef nonbasic variables.

After the all the above is done, we summarize here how to complete all simplex iterations to

reach at optimality for a maximization problem:.

1. the vaiiable (column) with the most negative coefficient will'enter as basic variable.
This ensures largest possible.increase:ifi objective function.

11. The leaving variable is decided by

—

q _ . { entries of the solution }
. o corresponding entering column entries > 0 ;

—

e —

This ensures feasibility.
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iii.  ifall the entries in the z —row are > 0, the optimality is reached, and the optimal

solution can be reached from the tableau.

The minimization problem can be solved by converting into maximization

problem as
Min f(x) = - maximize (- f(x)).

Therefore, we simply multiply the cost coefficients By -1 to/convert’a minimization problem
into maximization. But once maximization of the problem is found, remember to multiply the

maximization by - 1 for the original minimization.

Similarly,

Maximize f(x) = =minimize (- £ (X )):

We can also solve minimization problem direcily without converting into maximization problem.

The rules for minimization problem are

1. The variable (column) with the most positive coefficient will enteras a basic variable.

This ensures largest positive'deerease in objective function.

i1. The leaving variable is decided by the'samerule as for maximization problem which

ensures feasibility.

111, If all the entries in the in the z — row are < 0, the optimality is reached and the

___——optimal solution can be reached from the tableau.
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EXCEPTIONAL CASES IN THE APPLICATION OF THE SIMPLEX METHOD

Here, we discuss some situations which are encountered during the application of the simplex

method.

1. Unbounded solution. This may happen when the feasible region is unbounded. The
feasible region is unbounded if while applying the simplex method, it is observed that all
entries of the column body matrix corresponding to some nonbasic variable are
nonpositive. In other words, if in any simplexfitérationgthe Mifiimum ratio rule fails, the
linear programming problem has unboinded Solution, #=€”, appropriate nonbasic variable
desires to enter the basis but @/ < 0 do net permits its entry. The solution becomes
unbounded because the entering variable ean enter the basis at an arbitrary level.

2. Alternative optimal solution. If in the optimal tableau (obtained from any method), the

relative cost z;- ¢j=-0 for-at.least of the'nonbasic variables, then alternative optimal

solution exists provided PF is bounded. Bring this nonbassic variable into basis and find a
new optimal solution. Again, if the optimality oceurs at two or more vertices, then it also
occurs at convex linear combination of these vertices: However, convex linear
combination of optimal‘basic feasible solution may not be a basie solution.

3. Degeneracy. Oneof the reasons foridegeneracy may be«du€ to the presence of some
redundant constraint. The system is“redundant-if-ofic or more constraints in a linear
programming problem are not at all essential to find the optimal solution. Such
constraints should be eliﬁﬁﬁm_tzore proceeding for simplex iterations. However, in

~_the absence of redundant the degeneracy may occur in the linear programming problem.

If in any simplex tableau, there is a tie between two or more leaving variables we can

select any one of them to leave the basis but the new solution thus obtained will have
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remaining such variables (tied) at zero level in the next simplex tableau. It means new

basic feasible solution will degenerate.

Suppose at some stage of simplex iterations s, enters, and the minimum ratios for two
basic variables are same, 1.€., two basic variables are candidates for leaving at the same

time. This will give next basic feasible solution as degenerate.
The following table is self-explanatory in this regard.

Table 3.2: Degeneracy of feasible solution

Xy X sids, s Solution
BV
z o<
<X p '
& X2 |4 B
) Y
z 0
52 ! .Oi
(0.8
0
X2 . p==P o' /x=0
S1 ‘. Vf ! ' /o

—'-'—.-_-'_P‘-‘_'I - -
We summarize the above discussions.

Degeneracy due to tie among leaving variables causes three possibilities:
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i. Temporary degeneracy. After some iteration degeneracy disappears and

il. Nondegenerate optimal solution is obtained.
1. Permanent degeneracy. Degenerate optimal solution is obtained.
1v. Cyclic degeneracy. Simplex tableau starts repeating after some iterations.

In the case of permanent and temporary degeneracy the nonbasic variables which

have a tie

to leave the basis can be chosen at random as the basic variable. Hewever, it cannot be done

when cycle 1s detected. Cycling can be detected at early,stage by noting the fact that for tied

variables

?i”{x—j, a > O} — (i)
aj

Remark. Whatever type of degeneracy occurs in‘a linear programming problem, the Charne’s

perturbation method should be applied to solve the problem.

Considering the problem:
Optimize z-=CT'X

Subjectto AX = b
X =20,
e

The requirement vector b, perturbed to z is given by

b(e) = b+ Xy e/ 4 + X" M as,
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whereg, is the ith column corresponding to ith artificial variable. Since Xz= B~b, we have

Xp(e) = Blb + Y1 e/ B-14, + FiHsen+ip-ig

Now, we take the kth component of Xp (. aK N l ' ST

Xeke) = Xpk + 2f Ej“k
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If Qy, is not unique then cycling may occur. To avoid this, we examine

. EE._ Kk 0 %
minjoe, @ > (i)
. {I?’ k
mm{;};, a; > 0} (11)
L
Y a,;’1+5 K
mlﬂF,IIi} 0 (I'l+S)
L

If (i) is unique, then we stop and theleaving variable has been decided. In ease (i) is not unique

then we proceed to (ii) and so on until.uniqueness is-achieved: Charnes has claimed that in

proceeding like this way the uniqueness is necessarily obtained.

The Big M Method

After the linear programming problem is written in standard form and the coefficient matrix A in

e

X = b does not contain identity submatrix then we extend the idea of solving the problem by the

Big M method or the Two phase method.

e

e —

For any equation I that does not have the slack variable, we augment an artificial variable R;(=

0). With the induction of artificial variables the matrix A 1s modified and now, it contains
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identity submatrix. The artificial variables then become part of the starting basic feasible
solution. Because artificials are extraneous in linear programming model, we assign penalties to
them in objective function to force to come to zero level at later simplex iterations. As M is
sufficiently large positive number, the variable R; is penalized in the objective function using

-MR; in maximization problem, while by + MR; in minimization.
The Two Phase Method

As usual we write the linear programming problem in standarg=formeand seek the presence of
identity submatrix in coefficient matrix A. Wheén A does™met centain the identity submatrix, the
addition of artificial variable is used to do so. During phase — I, we find a basic feasible solution
of the system of constraint with the help of an auxiliary objective function to be minimized by

using simplex iterations.

Once Phase-1 is done, we go for Phase-II'that tests whether the basic feasible solution obtained in
Phase-I is optimal in reference to the main objective function. In €ase this basic feasible solution

is not optimal, we continue further simplex iterations to reach at optimality.

LIBRARY .
AWANE NFAUMAR UNIVERBITY §

3.2.2 THE REVISED SIMPLEX METHOD $CIENCE ARD 1E[:HI[IL!II
:UMP.SI-GBLHL

The revised simplex method is a scheme for ordering the computations required for the simplex
method so that unnecessary calculations are avoided. In fact, if pivoting is eventually required in

all columns, but the number of rows m is smaller compared to the number of columns n; the

revised-simplex method can frequently save computational effort.

The way of executing algorithm of the simplex method, either in algebraic or tabular form, is not

the most efficient computational procedure for computers because it computes and stores many

79

e NCE AND TFP~&
BMEFRa: = « r




numbers that are not needed at the current iteration and that may not even become relevant for
decision making at subsequent iterations. The only pieces of information relevant at each
iteration are the coefficients of the nonbasic variables, the coefficients of the entering basic
variable in the other equations; and the right-hand sides of the equations. It would be very useful
to have a procedure that could obtain this information efficiently without computing and storing
all other coefficients. These considerations motivated the development of the revised simplex
method. This method was designed to accomplish exactly the same things as the original simplex
method, but in a way that is more efficient for exécution on cémputer. Thus, it is a streamlined
version of the original procedure. It computes and stores only the information that is currently

needed, and it carries along the essential data in a more compact form.

The revised simplex method explicitly -uses matrix manipulations, so it is necessary to
describe the problem in matrix notations. Using matrices, the general linear programming model

becomes
Maximize Z=¢X

Subject to

Where ¢ is the row vector, ¢ = [¢y, €3, ..., Cx). X, b and O are column vectors such that
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xl bl_ 0
x2 b2 0
A7 Q12 Qqn] .
Ul * =] ° = |I* : - | Q21 Q22 Q;
X s D v 0O and A is the matrix A = n|

Am1 Am2 Amn

XN bm 0

To obtain the augmented form of the problem, we introduce the column vector of slack variables

[ xn+1 ]

xn+2

T
[

: X X :
so that the constraints become [A, L} % =b and - > 0, where I is the m x m
s s

xXn-—+m

identity matrix, and the null. matrix O new has the'n + m elements:

Solving for a Basic Feasible Solution

We recall that the general approach of the simplex method is to obtain a sequence of improving
basic feasible solutions until-an, optimal selution is‘reached. One of therkey features of the
revised simplex method involves the Way.in which it solves each-new basic feasible solution

after identifying its basic and nonbasic-variables.. Given these variables, the resulting basic

solution is the solution of the m equations

—
-

(A, 1] |:X3' = b, in which the n nonbasic variables from the n + m elements of [X ] are set to
s

zero. Eliminating these n variables by equating them to zero leaves a set of m equations in m

unknowns (the basic variables).
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This set of equations can be denoted by

XB,"
- h h - . Al XBZ . . N m .
BXg = b, where the vector of basic variables Xz = | "2 | is obtained by eliminating the
| XBp |
nonbasic variables from
By, B 12 Bim]
X : : =|B21 Bz ‘- Bam|: : DTN
e and the basic matrix B ... .M |1s obtained by eliminating the columns
[ Bmi Bmz Bmm.

corresponding to coefficients of nonbasic varfables from\[AJI]. In"addition, the elements of X,
and therefore, the columns of B may be placed in a different order when the simplex method is

executed.

The simplex method introduces only basi¢ variables such that b is nonsingular, so B~ always

will exist. Therefore, to solve By = b, both sides-are premultiplied by B2,
B~1BXj = B~1b.
Since B~1B = I, the desired solution forthe basic variables is Xz = B#'b.

Let Cy be the vector where elements are the objective function coefficients (including zeros for
slack variables) for the corresponding€lements of By. The value,ofthe objective function for

this basic solution is

e ' /’%.—_ CBXB = CBB_lb
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Matrix Form of the Current Set of Equations

The last preliminary before we summarize the revised simplex method is to show the matrix
form of the set of equations appearing in the simplex tableau for any iteration of the original

simplex method.

For the original set of equations, the matrix form is

o 4 NI 1S9

The algebraic operations performed by the simplexsmethed (multiply an equation by a constant

and add a multiple of one equation to anetheér equation) are expressed in matrix form by
premultiplying both sides of the original set of equations by the appropriate matrix. This matrix
would have the same elements as identity matrix, except that-each multiple for an algebraic
operation would go into the sport needed to have.the matrix multiplication perform this
operation. Even gﬁer a series of algebraic operations over several iterations, we still can deduce
what this matrix must be (symbolically) for the entire series by using what we already know

about the right-hand sides of the new set of equations, Inparticular, after any iteration,

Xz =B 'band Z = CgB~'b, so the right-handsides.of the new set,of equations have become

. Z - [1 CBB_I] 0 = I:CBB-le ]
s x| lo B=*1|b B~'b
Because we performed the same series of algebraic operations on both sides of the original set of

equations, we use this same matrix that premultiplies the ori ginal right-hand side to premultiply

the original left- hand side. Consequently, since
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, the desired matrix form of the set of

1 633—1] A TN a4 iCp BF5A —ic G B!
gmeidlo. a4 1|

0 B4 Bt

equation 1s

1 CsB 1A — -17[ Z
X -1
0 B~ 1A B~1 X B™"b

The overall procedure
There are two key implications from the matrix fomm of the current set of equations.

The first is that only B~' needs to be derived to be able to calculate all the numbers in the

simplex tableau original patameters of the problem.

The second is that any one of these numbers.can be obtained individually, usually by performing
only a vector multiplication (one/row times one column) instead of a complete matrix
multiplication. Therefore, the required.numbers to perform an iteration of the simplex method
can be obtained as needed without expending the computational effort.to.ebtain all the numbers.

These two key implications “aré “incorperated into the following summary of the overall

procedure.
Summary of the Revised Simplex Method
.

1. Iterations

Step 1. Determine the entering basic variable. This is the least right-hand-side ratio.
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Step 2.Determine the leaving basic variable. This is the most negative zj - ¢j value for
maximization problem and most positivetive z; - ¢; value for minimization problems.
Step 3. Determine the new basic feasible solution: Derive B~ and set Xz = B~'b.

2. Optimality test: Check if all thez; - ¢; values are zeros and positives for maximization and

zeros and negatives for minimization problems.

In step 3 of an iteration, B~* could be deriyed,each timg by,using a.standard computer routine for
inverting a matrix. However, since B (and théseforeB—).chianges a little from one iteration to the
next, it is much more efficient to derive the new B~ {(denoted it by B}, from B~? at the

preceding iteration (denote it by B,,5). For the'initial basic feasible solution,

The method for doing this 1s-described below:
Let x;, = entering basic variable

af, = coefficient of x;, in current equation (i), for I=1,2, ..., m (calculated in step 2 of an

iteration)
r = number of equation containing the leaving basic variable.

We recall that the new set of equations can be obtained from the preceding set by subtracting

a./a., times equation (r) from equation (i), for alli=1, 2, . . . ,m except i =, and then dividing

equation (r) byay

Therefore, the element in row i and column | of B4, is
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= o J Y 7 - - 7
(Bﬂlr{li)l.] e !k/a:_k(BDI%I)IJ s 151 =+ I,

(Bn_elw)ij o -<

1 B—l ] L
' r : ifi=r
/a_rk( ola)T]
These formulas are expressed in matrix notation.as
=1 =1
Bnew_ EBuEdﬂ

where matrix E is an identity matrix except that its rth column is replaced by the vector,

'
a; x :
— Ek/: ’ 1L 1
/ Qrg

/"
P
w2
w=| , where w; = <
LE |
. 1 -
/a;k’ iF1=r
— //”/

Thus E = [lq, oy «ves s ooy Pre1s By Hra1se--» Um), Where the m elements of each of the y; column

e —

vectors are 0 except for a 1 in the ith position.
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3.2 .3 THE BOUNDED VARIABLE TECHNIQUE

We consider the linear programming problem in which the variablesx; are bounded by their

lower bounds [; and upper bounds u; .

Maximize z = CT X

Subject to
A Xy T QX3 ot pint Gndn 2 Sy Sl
==, " 1= 1,2, ,m, =12, D)
Sincex; =2 [j=y; = x; - [ = 0, it follows that the lower bounds may be converted to 0 just

replacing x; by y; + [; . Wenote that 0 SS aly- Iy and the simplex method is not
applicable directly. Suchitype.of linear programming problem'in which some or-all of the
variables are having lower pound 0 and upper bound a finite number are solved using the

bounded variable technique described as follows:

Assume that we have a basic feasible solution of the above system which satisfies the upper

bounds. We note that no upper bound is mentioned for'slack or surplus/orartificial variable, and

is taken at infinity. Suppose that-basicfeasible solution

Xp = [xBl. xBz, ..., xﬂm}

—
-

1s available by intfroducing slack;’éﬁfprmaatlzl artificial variables. Suppose x; is the nonbasic
variable with most negative relative cost z; - ¢; . Then x; enters. To decide the leaving variable

the following conditions are desired.

1. the next solution must be basic feasible solution.
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ii. All basic variables in next basic feasible solution must satisfy the upper bound limits.

Table 3.3: Initial Bounded Variable Technique Tableau

BV X, or A, Xj or A; solution
/4 Z1 - Cq Zj & Cj f(XB)
x; or A; ai cx{ XB1
X, or A, ar a:;f XBr
- :
X, Or Ap 7 0 XBm

The basic matrix corresponding to Xz, from the table above is given by

B = (AgqysAx, ., 4y ), where Ay are the.colummis of the coefficient

matrix A and r.rf is the coordinate vector of the column 'A; of Aswith respect to B.

A, = A+, vl + oo+ ab A

J

We have assumed that x; entersi(column™#;) the basis and x,(columnd,.) leaves. The new

basis is

B = (A, . s A= 1,40 Ayt L A ).

-

So far we are performing simplex iterations. The value of the basic variables are given by

__._-—-'-"'--.-

J

ol il Sl
Tpil=Xpy = @ ~— Xgp = @ a (3.20)
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From the above, the leaving variables xB, should be determined so that the desired conditions
(i) and (i1) are satistied. From the theory of the simplex method, we know that the next solution

will be a basic feasible solution if the leaving variable is decided by the minimum ratio rule, i.e.,

0; = xE; = min{xii a{:b U} S X=X (3.21)

jr
(44 a:i

The variable enters at level ;. This satisfies (1), but we have the additional condition that no

variable must exceed its upper limit. This is achieved by (1) as
Xl xB; -alx; <ul @22)
If ag > 0, then condition (i1) is met since xB; <u;. In case agi < 0, then the bound may

exceed. The relation (3) holds true in this situation, provided

L ¢ B - :
Xj < u} £ , for all those 1 sueh.that a:f V.

This means that

= {1_& ol < 0} =6, (3:23)

Thus, x; should not exceed its upper limit, 1.¢,,
o Xj < ui-/__.__———— o (3.24)
From (3.23), (2) and (3.24), it follows that the largest value of x; which meets conditions (1) and
(1) is
6= min (61; 02, u; ). (3:25)
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Now, we discuss all three possibilities:

Situation 6= 6;, since minimum is 6, and x; entersat 6; and 6; <6, and 6 < u;, the

conditions (i) and (i1) will be met. Thus, iteration after deciding leaving and entering variables is

nothing but simplex iteration.

Situation 8 = 6, ensures that minimum in (3.25) is 8,. Hence 6; > 0, and x; enters at 6,

level such that

Ur - X8y J
INF S 0.

T

Since 6; = 65, the solution may not be a basic solution. The next solution will be a basic

feasible solution provided x; enters at 6 level. It can be made basic by the substitution
= u - xb, 0 X P, . (3.26)
The substitution (3.26) means replacing %, by x,-and the column to the solution column.

Situation @ = wu; implies that x; enters at its upper bound. To make x; at its upper bound,

make the substitution

S l I _
o= - X, 0 X; = U

In fact x; does not enter the basis but remains nonbasic at its upper limit u; . Since 6= u; <
6., the new solution will not be basic. If it enters at 6, then the new solution will be a basic

- e /——_—
feasible solution.
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1.2.4 THE DECOMPOSITION PRINCIPLE

In many linear programming problems, the constraints and variables may be decomposed in the

following manner:
Constraints in set 1 only involve variables in variable set 1.

Constraints in set 2 only involve variables in variable set 2.

KNUST
3
Constraints in set k only involve variables in variable ;% lg*w‘; .

Constraints in set k+1 may involve any variable.

The constraints in set k+1 are referred to as the cential constraints. The linear programming

problems that can be decomposed. in this fashion can often be solved efficiently by the Dantzig -

- _3"

Wolfe decomposition principl'e;;

|

The decomposition algorithm proceeds as follows:

Step 1: Let the variables in variable set 1'be Xq,X;, ..., Xpe il o™ i

» _?'-;_- L . "'l.r.. r
Express the variables as a convex combination of the extreme points of the feasible region for

constraint set 1 (the constraints that involve only the vamables i variable set 1).

That is, if we let Py, P,,. . ., Px be the extreme points of this feasible region, then any point
I /—f

X
?linjhc-foasible region for constraint set 1 may be written as
Xn
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= WPy +u,Pr+...+ U Pr(3.32)

Whﬂl'elil1+ﬂ2+-'-+uk= 1,311(1,!1,:20(1—_-1,2,...,1()

Step 2: express the variables in variable set 2, Xp,;411,Xn142, - - - ;X S @ convex combination of
the extreme points of constraint set 2’s feasible region. If we let the extreme points of the
feasible region be @4, @3, . . ., @, then any point in constraint set 2’s feasible region may be

written as

[ Xn1+1]

X
T8 = 7101 + ¥202 + YO (3.33)

iz, |
Wherey; 20(1=1,2,...,m)and y; + ¥, s ¥on —J.

Using (3.32) and (3.33), we express the linear programming problems’ objective function and
centralized constraints in terms of y;,.and ¥;’s..After adding the constraints (called convexity
constraints) Uy + Uy +...+ y, = ‘1 and ¥, + ¥, t.u + ¥, = 1 and sign restrictions y; = 0(1
=1,2,...,k)andy; = 0(1=1,2, ..., m), weobtain the following linear programming, which is

referred to as the restricted master:

Max (or min) [objective function in terms of y;;s and y;’s]

——— /,/—————

Subject to [central constraint in terms of g;’s and y;’s ].
w;=20G1=1,2,.. .0+ +... .+ =1

e A | = ( convexity constraints)
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a=0r=11,2, 0. ym (sign restrictions)

Step 4: Assume that a basic feasible solution for the restricted master is readily available, then

we solve the restricted master by the standard techniques available for the optimal values of y;’s

and Yi ’3;

Step 5: Substitute the optimal value of y;’s and y;’s found in step 4 into (3.32) and (3.33). This

will yield the optimal values of xq, x,, . . ., %4

3.2.4 KARMARXAR INTERIOR POINT ALGORITHM

An increase in the number of variables or constraints causes an increase inmultiplications and

additions required for any iteration. The complexity of the simplex method is exponential.

In 1984, Karmarkar proposed an algorithm known as the interior point algorithm to solve large-
scale linear programming problems efficiently. The beauty of‘the apptoach is that it gives the
polynomial time complexity for t.l:Ie solution. This.is remarkably an excellent improvement over
the simplex method. Howeyer, the analysis is not simple but it requires projective geometry. In
the simplex method, we move fiom a vertex to-another veriex to find the vertex where the
optimal solution lies. For large lineatptogramming problems themumber of vertices will be very
large and this makes and this makes the simplex method very expensive in terms of
computational time. Infact it has been founc{ that the karmarkar’s algorithm is fifty times faster

= /—"——-——

than the simplex method.

—_—

The Karmarkar’s algorithm is based on the following two observations:
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1. If the current solution is near the center of the polytope, we can move along the direction

of steepest descent to reduce value of /by maximum amount.

2. The solution can always be transformed without changing the nature of the problem so

that the current solution lies near the center of the polytope.

The Karmarkar’s algorithm requires the lineayprogtamiming préblem in a specific format:

Minimize f =CT X (3.26a)
Such that
AX =0 (3.26b)
et X =1 (3.26c¢)
/ Xl (3.26d)
whete X = (X1, X3, . . - » XpajoualC = I €5, 7, CF ), AT 1, 1)T and Aisa

m X n matrix.

A feasible solution vector X of the above problem is defined to-be an interior solution if every

variable x; > 0. Here the feasible domain is bounded, and hence a polytope. A consistent

problem in the Karmarkar’s standardfernrcertainly has a finite infimum.

Karmarkar-made two assumptions for his algorithm:

(Al)Ae = 0, so thatX, = (1/n, 1/n,..., 1/n)T isan initial interior solution.
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(A2) The optimal objective value of the problem is zero.

Conversion of a linear programming problem into required form.
Let the linear programming problem be given in standard form
Minimize f = CT X

Subject to

Our objective is to convert this problem into the standard form required by Karmarkar, where

satisfying the assumption (Al) and (A2).

The key feature of the Karmarkar's standard form is the simplex strueture, of course results in
a bounded feasible region. Thus, we have to regularize the above linear programming problem

by adding a bounding constraint
oL X% FL L T ... T Xy = Q

For some positive integer Q derived from the feasibility-and optimality considerations. In the

worst case, we can choose Q = 2%, where L is the problem size (number of variables ). If this

constraint is binding at optimalitymctive value -22(), then we can show that the linear

programming - problem has unbounded solution.

By introducing a slack a variable x,,4, , we have a new linear program
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Minimize f = CT X (5.27a)

B AX =Db (3.27b
' X 4o =0 (3.27¢)

L X220 xq052 0

iy ‘

-*m!erto keep the matrix structure of A MK:N ipulation, we introduce a
m’vmnble Xn+2 = 1 and rewrite the above €o

AX -bxp,, = 0 (3.28a)
eX +xny1 + Qxnyz = Sl (3.28b)

: -. LIBRERY
gWANME RXRUMAR prIVERNITY 1R
§CIENCE ARD TECHNOLOEY

4 o xUMASI-GHANA
In this way, we have an equivalenmm‘ogl‘am

"i‘I

i -J. LTRSS |

~ —— Minimize f = (Q+1)CTY (3.29a)

J

r Subject to
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AY -byni2 =0 (3.29b)

Y t¥n41 - QVnsz =0 (3.29¢)
e'Y +¥ni1 + Yniz = 1 (3.29d)
1=, Yl 5mi2 = O, (3.29d) 5

o

The problem above is now in the standard form required by the Karmarkar’s algorithm. In order
to satisfy the assumption (A1), we may introduce an artificial variable y,,,; with a large scale

coefficient M and consider the following problem

Minimize f (Q+1)CTY +g My, .3 (3.30a)
Subjectto AY - bypsa =MA€=D1V,.; = 0 ' (3.30b)
e’Y tynt1 - QVptre: (1H15Q)Vn 3.5 0 (3:30c)
e’Y +yni1 + Yniz TUpesignl (3.30d)

Y = 0 Vneihdulia = OF Vnia = 0

We observe that this form satisfies assumption (A1) as-(1/n+3, 1/n+3, .. .5-1/n+3) 1s the

interior point solution. It minimum Valug is-zero (assumption (A2)).
Algorithm

The Karmarkar al ggﬁ_tﬂm proceedsas

Step 1. Setk = 0, x' = (1/a, 1/m, ..., 1/n it

Step 2.If the desired accuracy & = 0 such that C Txk < ¢ is achieved, then stop withx* asan

approximation to the optimal solution:~

T w—— o T e
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Otherwise, go to step

Step 3. Here, we find a better solution.

D= diagonal matrix formed with diagonal elements as the components of xk.

dy =- [I - BY (BxB}) 'B)] DxC

k= (3, 1 3y N 2\

y < R 5 U] for some J0 [<a < 1
D

xk+1 k yX
Tp
e kyk

Setk = k+1 and go to step 2.

Note that in this computationalprocedure x* is always andinterior feasible solution, Dy is an 1s
an n — dimensional matrix with ith element of vector”x* -asits ith diagonal matrix. Byis the
constraint matrix of ith linear programming problem in the Karmarkar’s standard form; dj 1s
the feasible direction of the projected negative gradient, y* is a new interior feasible solution

the transformed space and x**.is'a new. interior feasible solution‘in-eriginal space.

3.2.4: COLUMN GENERATION ALGORITHM

For linear programming problems that have many variables, column generation can be
== //..-—-""——'__-_

used to increase the efficiency of the revised simplex method. The theoretical background of

— |
column generation algorithm can be illustrated as follows.

Minimize z= Xj=1 (; x;(3.31)
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Subjet to X7, 4; x;= b (3.31b)

X1 20, (3.31)

where 4;, ] = 1,2,...,n,and b are m (< n) dimensional vectors. Assume that there is a large

feasible solution xp available, with an associated basis matrix B and cost coefficient Cz. Then

the simplex multiplier (dual vector) associated with this basis is given by
T = CygB™" (3:2)

Now, if the reduced cost coefficients C; - mA; = 0 for all of the nonbasic variables, then the

optimal solution of the linear program (3.2) is at hand. On the other hand, if is a k such that
MAg-Cp. = " A 6> O (3.33)

Then, the standard simplex method can be applied, by entering x, 1nto the basis through a pivot
operation, and an adjacent (improved) basis can be found. For large - sized problems, finding the
maximum in (3.33) by improving each mAj - €; may be computational expensive. In some cases,
however, these columns can be identified as vertices of another polytope S. In such a case, the

column to be entered into the basis can be ghosen by solving the following subproblem
Mazimize TA -(;. (3.34)

The solutions of the subproblem arethen sent to the problem master for pivoting and updating.

These iterations continue until optimality is reached.
e —
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3.3 DUALAITY OF LINEAR PROGRAMMING

The notation of duality is one of the most important concepts in linear programming. To

each linear program defined by the matrix A, right hand side vector b and the cost vector C, there

corresponds another linear program known as the dual, with the same set of data A. b and C.

3.3.1 DEFINITION OF THE DUAL PROBLEM

The dual problem of a linear programming defined directly and symmetrically from the primal

(or original ) linear programming model. The'two\preblems ate closely related that the optimal

solution of one problem automatically provides the optimal solution to the other.

Inmost linear programming treatments, the dual is defined for various forms of the primal
depending on the sense of optimization (maximization or minimization), types of constraints (< ,

2 or =) and orientation of the yariables (nonnegative or unrestricted).
The dual problem is constructed as
Maximize or minimize Z = Y.j—, G; X;

Subject to

—
=

The variables x;, =1, 2, , n incﬁﬂét’he'su/rplus, slack and artificial variables, if any.
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How dual prob!zm is constructed from the primal

1. A dual variable is defined for each primal (constraint) equation.

2. The dual constraint is defined for each primal variable.

3. The constraint (column) coefficients of a primal variable define the left-hand-side
coefficients of the dual constraint and its objective coefficients define the right-hand-side.

4. The objective coefficients of the dual equal the right-hand-side of the primal constraint

equations.

Table 3.4: Construction of the Dual from the Primal

Primal variables
X1 X2 X; An
Dual C1 Cs — Cj & I RHS
variables
Y1 a1 C12 ST Qqj e A1n by
Y2 azy : C22 o azj Fe Aon b,
Ym o A2 o Ut eilE Dy b,

If the primal problem is a normal maximization problem with m constraints and n variables, then
the duatproblem will be a normal minimization problem with m variables and n constraints. In

this case, the primal and the dual may be written as follows:
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Primal problem

MﬂX’lmiZE Z =--C'1x1 25 sz 2 + T Cnxﬂ

11X + AypXs + ... + Agpx, < by

Az1X2 T Q22X +... + AypXy < b,

Ay1Y1 + 1Yz oo T AGnaYm 2 G
/

A12Y1 +A2Y2 ... F a2y 2 G

a1¥1 +tazy:t... tamjym 2 C}
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Table 3.5: Rules for constructing the Dual problem

Primal problem Dual problem

Objective Objective Constraint type Variable sign
Maximization Minimization > Unrestricted
Minimization Minimization < Unrestricted

We must know that all primal constraints are equations with nonnegative right-hand-side and all

the variables are nonnegative.

Table 3.6: Rules for constructing the dual problem

Primal problem Dual problem
Maximization Minimization
Constraints Variables
> <
< >
Variables —; | = L | Unrestricted
] =0 =
Lo
<0 <
Unrestricted ] =
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Theorem 1. The dual of a dual is primal
Proof: Let the linear programming problem be given in canonical form
minimize Z = CT X
Subject to AX>b
xX=0

Where A is a matrix of order m x n and C = (¢f, @3, . | .Jc,)f, X= (%%, . .., x,)", b= (b, by, .

Wb )

Then its dual is written as
Maximize W.= b5Y
Subject-to
ATY <C
Y=
where Y =(y1, V2, . . -, Vi )T, and'y; is the dual variable associated with theith constraint.

Now, we want to write the dual of the dual.*To - write the dual of the system above, we first write

it in the form
i g
— Minimize W' =-b"Y
Subject
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-AT>Y-C
Y=0
The dual of the above linear programming problem is
Maximize U’ =(-C)' U or minimize U=C' U

Subjectto (-A) TU<(-b ")’ Subject to AU =b

The last Iinear programming problem is the primal. Hence we have proved that the dual of the

dual is the primal.
3.3.2 DUALITY THEOREMS

Theorem 2 (Weak duality theorem). This theorem states that if X, is a feasible solution for the

primal problem and any Y is a feasible solution for dual problem, then

C PG4

Proof. The dual feasibility of Yo impliesthat A' Yo< C,"¥o=0.

If X0 is a primal feasible, then Xo= 0, and

_'_'_,.r'-
=

el X6 A Yo= Xo C.
We note-that AX, > b. Hence

CTXo= Xo'C = Xo"ATYo = (AXo)'Yo= b'Yo
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Corollary 1. If Xo 1s primal feasible, Yo, is dual feasible, and C'Xq = b'Y, then Xo and Yo

are the optimal solutions to the respective problems.

Proof. Theorem 2 indicates that C'X> b T Y, = T X, for each primal feasible solution X.

Thus, Xo is an optimal solution to the primal. A similar argument holds for the dual.
Corollary 2. If the primal is unbounded below, then the dual is infeasible.

Proof. Whenever the dual problem has a fegsible salution Yy, the weak duality theorem prevents

the primal objective from failing before b'Yo
Corollary 3. If the dual problem is unbounded/above, then the primal problem is infeasible.

The converse statement of the two corollaries above 15 not true. When the primal problem is

infeasible, the dual could be either unbounded above or infeasible.
For a given cost vector C (Column vector) and the coefficient matrix A, we can always denote
these as

C= {Q} and-A-=[B/NI,
CN

where Cj is the cost vector of basic variables, €Gy-is.the-cost vector if nonbasic variables, B 1s m

x m nonsingular and N is the matrix corresponding to nonbasic variables with dimensionality m

-

e /"”_—_

X (n—m).

Theorem 3 (Strong Duality theorem)
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1. If either the primal or the dual linear program has a finite optimal solution, then so does

the other 2nd they achieve the same objective value.

2. If either problem has an unbounded objective value, then the other has no feasible

solution.

Proof. For the first part, without loss of generality, we can assume that the primal problem has

reached a finite optimum at a basic feasible solution X. If we utilize the simplex algorithm at X

and define

Y'=|OGH! \hek,

Alveg = [ﬂ—: YEE —r <0.

Therefore Y is dual feasible. Moreover, sinceX 15 a basic feasible solution, we have
EX=Clr=_C el Y =l

Due to corollary 1, we can say Y is an optimal solution'to-the.dual linear problem.

33.3 COMPLEMENTARY SLACKNESS THEOREM

This theorem explains how the primal and the dual are closely related. The relationship between

the primal and the dual reveals somany facts involving optimal solution of one from the other.

L

Theorem 4 (Complementary slackness conditions)

a--_l'f,.'ﬁlit;}ptimal tableau of primal the decision variable x; appears as basic variable then the
kth dual constraint is satisfied as equality constraint, ie, slack or surplus variable

associated with kth dual constraint assumes zero value.
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Proof.

b. If, in optimal tableau of primal the slack or surplus variable s, appears as basic variable

then the dual variable y, associated with kth primal constraint assumes zero value in the

optimal solution of dual.

a. Since zy - ¢, = 0 for all basic variables, it follows that if z, is a basic variable then z,

¢y It means CgB™'Ay= ¢, = YT Ag# cy. This implies

Y1Qq + YoQor t ... YQmie = Cr . 4(*), Tie, kth dual constraint is satisfied as

equality constraint.

. If s, is slack or surplus variable, thenigy = 0 and"4, = (0,0,...1,.. 0)'. Using

this data in (*), we have

X0 + yox 0 +...+ y XHE- T % Xd =0 V= 0.

Remarks: At any simplex iteration of the primal or dual, the direct consequence of
complementary slackness theorem is

(Objective coefficient [relative cost] of variable j _in.one problem) = (Left- hand side
minus right hand side of constraint j in other problem).

This property is very useful for finding optimal solution of primal or dual when the

I ///_’_
optimal solution of one is known.

‘_—-_______...—-'-
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Minimize CT X

Subjectto AX 2 b, X 2> 0.

U KNUST

Subjectto A'YS C, Y 20

i
l“.

d symmetric pair of primal and dual p

-

slackness vector

be primal feasible solution and Y be dual feasible solution to a symmetric pair of lincar

ns. Then X and Y become an optimal solution pair if and only if

m =(C -A"Y);=0




and
either

si= (AX -Db) =0
or

Y=0, 1= 1% . m arefsatistieds

Here X; and ¥; represent the jth and ith component of the feasible X and Y respectively.

Proof. For any primal feasible X and dual feasible Y, we have
0<r™X + Y =@V . )x&F Y. @8~
= CTX AbNY

Therefore, the quantity r” + b” Y is equal to the duality gap between the primal feasible

solution X and dual feasible solution Y. The duality gap vanishes if and only it
rTX & _0F apde "5

In this case Xand Y become optimal solution of primal and dual respectively. ¥ X = 0 and

s" Y require that é_irt'ﬁérij- = Mj =1,2,...nandeithers; =0orY; = 0fori =1,

20 m.

This proves the theorem.
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Remark. If the psimal is given in standard form
Minimize CT X
Subjectto A X =0
X =20,
It dual is given in. the form
Maximize h” ¥
Subjectto A"Y < 0
Y unrestricted.

Since the primal has zero slackness (being tight equalities), the ¢ondition s”Y = 0 is

automatically met. Thus, compliméntaty.slackness<s simplified tor” X = 0.

3.3.4 THE DUAL SIMPLEX METHOD

The dual simplex method is applicable when in the starting simplex tableau the optimal criterion
is satisfied but the feasibility remains disturbed, whileidentity sub-matrix is'manipulated to exist

in A, the coefficient matrix. Hencé;the objective function is immediately observed.

We adopt the following procedure to find the optimal solution.

1. After introdué_iag slack OWablﬁ, we write the problem in the format
Maximize Z = CT X
Subjectto AX = b

X =0,
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Where A contains the identity matrix as sub matrix and at least one of the b; in the right-

hand side vector b = (b, b, . . .,bm)Tis negative.
2. The objective function is expressed in terms of nonbasic variables.

Algorithm

Step 1. The leaving variable is decided to be the most negative entry of the solution column, ie,

E
‘ P
X i evsns< 0),
Step 2. To decide the entering variable, we look for negative entries in row of leaving variable
and find the ratio of these entries with the corresponding (zj= ¢;)’s in x,, row. Fix the entering
variable by
: Zji
min j J
j { T L Oy 0}
Step 3. When the entering and leayvingvariablesare decided by steps 1 and2, perform the
simplex iterations to have the next tableau.
If all the entries in solution colum of the resulting tableau after the iteration monnegative values,
then stop otherwise continue iterations through steps 1 and 2 tillall'the €ntries in solution column
are nonnegative, i.e., the feasibility is attained.
Remarks. -
1. Use of artificial variables should be avoided to produce the identity sub matrix, while
—_-—.—.__-_F |
applying the dual simplex method. i
!
;
L 4
2
’
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2. Suppose jth variable is qualified to leave the basis. but all the entries ntf. it 3 Lae Sy n

are positive which means that no variable can enter basis. In this situation the linear

programming problem has no feasible solution.

3.4 SENSITIVITY ANALYSIS

Sensitivity analysis is a process which is applied to an optimal tableau of any linear 1
programming problem when some changes are proposed in the original problem. It is sometimes

referred to as post optimal analysis.

Given a linear programming problem in standard form, the problem is completely specified by
the constraint matrix A, the right hand side vector by and the cost vector C. We assumed that the
linear programming problem has an optimal has an optimal solution with the. data set (A, b,C).
In many cases, we find the data set (A, b, C) needs to be changed within a range after we

obtained the optimal solution, and we are interested to find the new optimal selution.

Thus, the possible changes are

(1) Change in the cost vector;
(i) Change in the right'hand side vector;

() Change in the constraint matrix,

34.1 CHANGE IN THE COST VECTOR

The change in cost of variables has a direet-impact on optimal criteria (z-row) which has its
entries as Z; -¢ =C ;!; B‘lAj - ¢j . Ifthe optimal criterion is disturbed due to cost
o

change, then we use simplex method to restore optimality which results in a new solution.

Two types of changes are possible:

o N B T N i e——
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(i) Change in cost of a nonbasic variables. With the change in of nonbasic variables the

relative cost of this variable is changed. Obviously, there is no change in relative cost

of any other variable. If the sign of the relative cost is changed, then we bring this

variable into the basis to get the new optimal solution.
Let the linear programming problem be
maximize z = CT X
Subjectto AX = b,

X =10

Suppose X is a nonbasic variable and its cost .c; 1s changed.to c;Ac,, where k € N , the

index set of nonbasic variables. The new relative costof % turns up

CIB A, —=(op+Acp); ~k JEN

Since CF is fixed and cost of all remaining variables are kept fixed, there will be no change

relative of any of any other variable. The optimal remains same 1f
CT BTy N (it DG,

Otherwise the optimality is disturbed which.ecan be restored by simplex method to find new

optimal solution.

.-""-FF-
-

(i)  Changein cost of a bastc variable. With change in the cost of a basic variable, all z;

- ¢; will change except for the basic variables. Note that C; B~ cannot be taken

from the optimal table asC has changed. There will also be a change in the objective

function value.
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Let ¢, the cost of jth_ basic variable be shifted to ¢j + Acj, where j € B , the index set of basic
variables. Then, relative cost of each nonbasic variable is changed as

(€5 + Acie)a” - ¢, j ER, K €N.
Where a® and ¢, are the coordinate vector and cost of kthnonbasic variable, respectively.

To stay optimal solution as it is, we must have
T K
CpaX - cg Acai =0

This implies

Zk-¢ . ’
Ac; > —~, forkth nonbasic variable.

S

Hence, we can define

ﬂcjz max{z—i;—;i, ajk =20, kat€ &}

J

AETTS min[z"‘ﬁ", af <0, k € }‘_J].
J

=

Which ensures the variation limits in-cost’0fjth basic variable

If Ac; goes out of these limits for at least one nonbasic variable, this implies optimality 1s

—

—I—I"'.-F-—

disturbed. Calculate fresh objective function value using
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(€5¢z- - ..¢ + Acy, ..., ;) B71b, and apply simplex method to restore

optimality which results in new optimal solution.

342 CHANGES IN THE RIGHT HAND SIDE VECTOR

In linear programming problem, if the change in right hand side of the constraints is made
then the solution column, B~'b, and the objective function value, f(X,) = CTB~1b are

affected. This change corresponds to two cases.

(1) if all entries of the new solutioncolumn turfyout to be nonnegative, then the existing

table remains optimal with the newssolution and new optimal value.

Let the linear programming problem be
Maximize z = G' X
Subjectto AX = b;
2=

Suppose right hand.side entey._ b, of the vectorb = .(bi.bgs .. , byy)T 18 shifted to

(by + by + ... + by + Aby; 2 shpp)T= Thén'thenew solution column is

Xi= B~1(b + Abyey), where e, = (0.0,...,1,...,0)T has 1 at kth position.

Let B~'= (B;,)m xm. The optimal basis remains the same if

——-—--""'_--

Xé: B_lb 4n Aka‘lek >0
or AL
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Bl [0
Xp + Aby ﬂ.Zk 2(.).
_ﬁmk_ _O_

If 1_3 denotes theindex set of basic variables, then we have

Xq + AbiBy = 0,9 €B, i =1,2,...,m

which gives

Ab, > —-,
K —Bik

We define

Abk =T g, ST 0}

Abk 4= ;‘”—f‘”{ﬁ, B < 0}

Thus, if Ab, satisfies

A bka< Ab, < Abk

The same basis remains intact.

"
e

In this way the same set of bm with changed values according to X, + Aby B

. . . . T v
produce-the new solution and new objective value is CpXp.

S EL A I Dy
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(ii) the second possibility is that Aby is assigned beyond the above limits. Then at least one of

; = -1 . . . . s - .
the entries in new B™"b is negative, ie, feasibility is disturbed. Restore the feasibility using the

dual simplex method to get the optimal solution of the revised problem.

34.3 CHANGE IN THE CONSTRAINT MATRIX

In general, changes made in constraint matrix may result in different optimal basis and optimal
solutions. We discuss five possible changes here, Theéy arel\.addihg a constraint or variable,

adding a variable, removing a constraint or variable and change in some column of the constraint

matrix A.

1. Addition of a constraint. If a new constiaint.is.added to a linear programming problem,

then we have to make.two observations:
1) If the constraint totbe added.is satisfied by the'given optimal solution, then there will
be no effect on adding this«constraint.
i) If the constraint is not.satisfied, then addition will affect the optimal solution.
Addition of such-a constraint first will-disturb.the simplex format. When the simplex
format is restored the feasibility will get disturbed. Restore'the feasibility by the dual

simplex method to find the new optimal solution

Remarks: 1. It is worth mentioning that addition of a constraint (provided it affect the
optimal solution) always woTsens the current optimal value of the objective function as the

set_of basic feasible solution has shrunk.

m REA T
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2. For equality constraint to be added, we split into two inequalities constraints.

Certainly one of the inequality constraints will be satisfied by the optimal solution and

other one is considered for addition in the linear programming problem

2. Addition of a variable. Addition of a new variable causes addition of some column in the
optimal table which may affect the optimal criteria. Suppose that a new variable Say Xpiq 1S
identified after we obtained the optimal solution X* of the original linear programming problem.

Assume that ¢4 1S the cost coefficient associated with x,,, , and A,., is the associated

column in the new constraint matrix. Ourfaim §s to/find an optimal solution of the new linear

program

Max g0 XEEeatg . |
Subjeet to
AX HAnf1Xne = b
N> Xty 270,
Observe that we can set x,.4 = 0. then (X, 0)' becomes a basic feasible solution to the
new linear programming problem. Hence, the simplex algorithm can be started right
away. Also, note that X *\is an optimal solutionsto the original problem, the relative cost

Zzi=icy, J= 1,2, . . . ,nTRIGS bémonnegative. Thereforepwe-have to check additional

relative cost

_ rTp-1
Zpt1 = Cns1 = CpB™ Anya.

S //—-__’-—_—

Ifz. 4 - ¢cppq = 0, then the current solution X*with x,4,= 0 is the optimal solution to

the new problem and we don’t have to do anything. On the other hand if z,,+1 - Chy1 <O,

AN
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3.

then z,., should be included in the basis. Continue

simplex iterations till an optimal

solution to the new linear programming problem is available.

Deletion of a constraint: While deleting a constraint we observe two situations:

i)

11)

If any constraint is satisfied on the boundary, ie. slack or surplus variable
corresponding to this constraint is at zero level then deletion of such a constraint
may cause change in the optimal solution.

If any constraint is satisfied in interior of the feasible region, ie, slack or surplus
variable corresponding to thi€ coustraint ate{positive, then deletion of such a

constraint will not affect the optimal solution.

Deletion of a variable. We observe for two.situations:

1)

i)

If we delete nonbasic variable 'or a basic variable (at zero level) in the optimal,
there will be no change in the optimal solution.

However, deletion of a-positive-basic variable will change the“optimal solution.
Deleting a basic variable with*positive value-is equivalent to converting this into
nonbasic. For the purpese, first-we remove the entire column from the optimal
table associated with the basic variable to-be.deleted and then multiply the entire

row in frontiofithis variable by, -ul. This will certainlyadisturb the feasibility.

Now, use the dual simplex-meéthod to restorefeasibility.

4, Change in column of the constraint matrrx: Fhe-change in coefficients associated with a

variable may affect the optimal criteria. We consider the linear programming problem

—

Max z = CTX

=

Subject to
AX = b

X = 0.
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Two cases arise:

First, we discuss the change in coefficient of constraint matrix associated with a nonbasic

variable. This will change the whole column below this variable in the optimal table.

Suppose the a;rth entry of the column A4, corresponding to kth nonbasic variable is shifted to

A= Axt oie; , here k €N, the index set of nonbasic variables and e; is the column vector

BAFRT 4

with 1 at ith position and zero elsewhere. We decide the limits of variation a;;, such that the

optimal solution remains same.

When Ay is changed to A} this will affect the relative cost of x;. The new relative cost of xy

become
CyB 'A% - ¢, . The optimal table remains same if
CeB-(Ax+-orke) -cp= 0,
or
CIs "0, Ch B e e =>"0:
Let B~ = (B4, Bs, . . . , B )s Fhenithe aboye expression is simplified to
2 et aCi B

But B; is the coordinate vector of ith variable in the starting basis. Hence,

-

—— J,#ﬂ“"——_ﬂ__

zk—ck
Oix = -

Bi

-_.--"'"'_-.-.

This gives the variation in element a;;, of the column Ay in constraint matrix to that the

optimal solution remains same. Restore the optimal criteria by the simplex method to get the new

T . B s
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optimal solution. Suppose the coefficients of constraint matrix associated with some basic

variable in a linear programming problem considered above are changed. Let the column

Ay associated with some basic variable x;, is changed to Ay, wherek € B.Thenadd a

variable x; with same cost as that of xj and column Al in constraint matrix. Compute

q
Zy-cp— C.B AL " 3
f
If zy, - ¢, >0, there is no effect of such change, otherwise the optimality is disturbed and to
restore optimality bring z, into the basis. Ifeat %, llas the lattificiallvariable and force to come
out of the basis. In the last optimal table the value of x;, in the solution is nothing but x; with
the new column.
— //j
e BRY vt
‘,'['Bﬁ “,Nﬂl\“
AWANE waUT ot
U ¢
ar b
2
’
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CHAPTER 4
NUMERICAL EXAMPLES AND RESULTS

4.1;: INTRODUCTION

In this chapter, illustrative examples will be used to illustrate some methods of solution of
linear programming. These methods include the Graphical method, the Simplex method, the
Revised Simplex method, Dual Simplex method, Karmarkar’s algorithm, the Decomposition

Principle, the Bounded Variable Technique ahd the Columa Generation method.
ILLUSTRATIVE EXAMPLE

To illustrate the Graphical method, the Simplex method and the Dual simplex method, we

consider the following example.

Example 4.1: (Class assignment — formulaied by € Sibel, October 2010) A company
manufactures two soft drinks A and'B¢Two resources R, and'R, are teéquired to make the drinks.
Each unit of soft drink A req uircss | unit of resource R; and 3 units of resource R,. Each unit of
soft drink B requires 1 unit of resource Ry and 2 units of resourceR,. The company has 5 units of
resource R, and 12 units of resource R, available: The company also-makesa profit of GHC6 per

unit of soft drink A sold and GHC5 pertinit-of soft drink B.solds Hew many soft drink A and soft

drink B should the company manufacture to ensure a maximum profit?
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CONSTRUCTION OF LINEAR PROGRAMMING MODELS

The formulation table 4.1 for the example 4.1 is shown below.

Table 4.1: Amount of resources available to produce soft drinks A and B.

Types of soft drink Resources Profit per unit
Rl Rz ¢

&

Soft drink A (x;) 1 3 GHC6 -

Amount of resources 5 12

available.

The owners of the company would like to maximize profit as much as soft drinks A and B can be

but they are restricted by the availability of resources.

Let x; = number of units of soft drink"A-produced.

Let x, = number of units of soft drink'B préduced.

Let Z = total profit per day for manufacturing these two soft drinks.

Thus x; and x, are thedécision variables forthe model.-The objectiveis'to choose the values

of x; and x, so as to maximizésprefit, subject'tothe restrictions imposed on their values by the

limited production capacity of the-tworeseurces R; and Rj:

Profit function Z=106Xx; + 5x,
7 Restrictions: X3 T X3 <5
s /_ 2
2Py 2x2 <12
e
xl, xz 2 0.

Since negative soft drinks cannot be produced, x; and x; are called non-negativity constraints. |
:
/
.
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=

al form (Kasana and Kumar, 2004) of the maximization lincar programming model
Py:Maximize Z = 6x, + Sx,

Sl.lbjﬂ:ﬂo .t, +xz ss
3x; +2x, < 12
Xy, X2 20,

Z= 6x, + 5x; is the objective function, x, + x, < 5 and 3x, + 2x; < 12 are the

d x,, X, are the decision vnnKsN U S T

USTRATION OF THE GRAPHICAL M

ng the inequalities in the constraints

aa

for points in Feasible

4.1, when x; = 0, x; = 5 and whed%, > T5Xae Srikhis Fives the points (0, 5) and (5, 0).

. 12
2, when x,= 0, 2x; =12,x; =7 =6 and whenx; =0, 35, 12,3, = =4 This

L i .
es us the points (0,6) and(4701.

ls

il
i




E
-‘L- ‘

or

I
: =

I= region is the shaded portion. The points (0,0),(0; @) and (2,3) are the basic

-

ints while (5,0) and (0,6) are the T ——— s = 2 a—

For (4,0) Z=6(4)+5(0)

> il -

For (0, 5) Z=6(0)+5(5)
Z=25
For (2,3) Z=6(2)+5(3)
Z=12+15
Z=21




re ' feasible objective values are 0, 20, 25 and 27. The basic feasible values are 0, 20,

nile 27 is both basic and objective value optimal solution and it occurred at the

'y Wi
4

| *?-Zand Xz = 3. This means the company must manufacture 2 units of soft drink A and

ts of soft drink B in order to get a profit of GHC27.

1

gy

Fi

1 "

1A
: ILLUSTRATION OFTHE SIMPLEX METHOD

_I—

an illustration of the simplex method, we gonsider the Trm of problem P;.
- MaximizeKﬁNUﬂ S

Subject to

, *
Wi
. o

1

-

H duce slacks to convert the canonica

imar 004) Let s, and > be-the slacks.




Table 4.2: The initial simplex tableau

Cj 6 5 0 0
Cp B, R X2 S1 S5 RHS Ratio
0 S1 1 I 0 0 5 5
0 S2 (%3)) 2 0 1 12 4 -
Z; 0 0 0 0 0
Ci - Z 61 5 (e 0
|

From Table 4.2, the basic variables are s; and's; while thesnonbasic variables are x;and x,. The

most positive (cj-Z;) value is 6. Therefore the third columnis the pivot column. Dividing the

elements in the right hand side by-their respective elements in the pivot column and comparing
the ratios, it is observed that the smallertatio is 4. Therefore the tow containing the smaller ratio
4 (the fifth row) is the pivot row and 3 is the pivot.element. This means x; is entering basis and
s, leaving basis. [The pivot element 3'should be reduced to l.and the element above the pivot
element should also be reduced to zero. By performing*Gauss Jordan elimination row operations,
that is dividing the fifth row by-3, the pivot element is reducedione:"Also by multiplying the
fourth row by — 1 and adding the result to the-row-obtained after the pivot row has been divided

by the pivot element 3], table 4.3 below is obtained as the second simplex tableau of Table 4.3
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Table 4.3: The second simplex tableau

¢ 6 5 0 0
Cp B, X1 X5 S s, RHS Ritio
0 51 J () 1 - 3 l J=
6 X4 ] % 0 % 4 6
Zj 6 4 0 > 24 J
7 0 11 0 5 |

From Table 4.3 the variables in basis are 84, and %, fwhile the*ngnbasic variaables are x, and s.
The most positive ¢j - Z; 1s 1. Comparing the two ratios 3 and 4, we observed that 3 is less than

4, This means x, is entering basis while s, is'leaving basis. The pivot column is the fourth
column and the pivot row is the third row. The value at where the pivot column and the pivot

row are meeting is <. Therefore the pivot element is [ Thepivot element = should be change to 1
by multiplying the third row by 3. The value below the pivot element (i.e.; ) is changed to zero

by performing Gauss- Jordan row operations.  We multiply the élements in the fourth row by -

-and add the results to the new pivot.row to change the value below the pivot element to zero] to

obtain the Table 4.4 below.

Table 4.4: The optimal tableau

Cae ] .16 5 0 0
Cp B‘I‘.? X1 X2 S1 S2 RHS Ratio
. 3
P x 0 | 3 1 3
6 X1 1 0 2 1 2 D
Z; 6 5 3 1 2
L 5 . . _.
Ci - Z; 0 0 |
f
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From Table 4.4, since all the ¢j - Z; values are zeros and negatives, we stop. The values of x;, and

Ll
i
4N

manufacture 4 units of soft drink A and 3 units of soft drink B to obtain a maximum profit of

ey

T

X, are . and 2 respectively and the maximum profit is 27. This means the company should
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4.3: ILLUSTRATION OF THE REVISED SIMPLEX METHOD

OPTIMAL LOAN ALLOCATION FOR EXPRESS SAVINGS AND LOANS COMPANY
LIMITED (A REAL LIFE PROBLEM)

Emample 4.2: Express Savings and Loans Company Limited wants to formulate a loan policy
which would enable them disburse a total amount of GHC 200,000 as loans to its customers.
The table below gives the types of loans, interest rates charge and the probability of bad debts of

ESLC Las estimated in the 2012 financial year.

Table 4.5: Types of loan, interest rates and probability of bad debt of ESLCL

Types of loans Interest rate (7;) Probability of bad debts (P;)
-Eersonal loan: x; 0.30 0.04
Production loan: x, : 0.32 05
Susu loan: x3 0.29 0.02
Business loan: x, 0.40 | 0.10
Education: x. 0.35 0.15

The company wants the money for-thé lean'to be disbursed‘in.the folletving manner:

l. At most 50% of the total amount should be allocated to Susu and Production loans.

Zmum of business and educational must not exceed 20% of the total amount.

3. Susu loan must be at least 40% of personal, Business, and small Educational loans to

ensure maximum profit.

4. Production loans must not exceed 6% of the total amount.

5. The sum of production and small Education loans should be at most 40% of the total

amount.
131



%

5, The sum ofSusu and Business loans must not exceed 10%.
5 N l -:

7. The total ratio of bad debt must not exceed 6% on all types of loans.

2\ A, 3

Al

[he objective is to maximize the net rehmtjiSTeMeen revenue from
E. --*\ I"' f
interest and money which would be lost as'a result of bad-debis-for each amount of money given

_* mount _'g_iven' as Production‘loans
g :

|i

X3 = amount given as Susu loans

e ALYy . e



Table 4.6: Amount of loans, bad debt and amount contributing to profit of ESLCL

Amount of bad debts (P;x;)

Amount contributing to profit

; Amount of loan (x;)
|
r

(1- Py)x;
X1 0.04x, 0.96x,
5 X5 0.25x, 0.75x,
% X3 0.02x54 0.98x,
; Xy 0.10x, 0.90x,
L Xs 0.15x< 0.85x< °
_e
i Total profit on loans is given as:

AR s T Xat Xy T X5 S

The objective function is therefore given as

Z = 0.288x, +0.240x, + 0.284x3 + 0:360%,-0.298%
CONSTRAINTS
Total amount is GHC 200,000

1. Limit on total amount (X1, X2, X3, X4, Xs)

200,000
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Z=11(1 - Py)xy +15(1 - Pp)x, + r3(1 =Pa)xg +74(1 3B x405(1LoFs)xs.

Maximize Z = 0.3(0.96x,) +0.32(0.75x5)+0:29(0.98x5) + 0.40(0.90x4) + 0.35(0.85x5)




imit on Business(x,) and education (xs):

%4 + x5 < 0.2(200000)

e &

3.1 ta@m Production (x;) and Education (xs) loans

I»

& + xz < 0.40(200,000)

4. Limit on Susu (x3) and Production (x,) loans:

X + %3 < 0.5(200000)

Xy + 23 <10000C

—

X3 2 0405y + X4t X5)

-
 0.4x; - x3 +0.4%,

6. Limit on Production loans (x2):

 x; <1200

7. Limit on Susu (x3) and business (x4) loans:
- I

X3 +x, <0.1(200000)

”-'?fir.ﬂn bad debt:
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0.04%; +0.25X5 +0.02X5+0.10x,+0.15x5
XXt Xt X

< 0.06

-

F KNUST

RESULTING LINEAR PROGRAMMING MODEL

==
whig

Maximize Z = 0.288x; + 0.240x, + 0.280x 3+ 0.360x, + 0:34(

B s <

100000
-

e 3

0.4, - x5 + 0.4y + 045 <0

— -

~ x3+x, <20000

-0.02%; + 0.19x, — 0.04x3 + 0.04x, +0.09x5 <0

|
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RESULTS
The initial iteration of the solution of the revised simplex method is given in appendix.

Table 4.7 gives the variables (column one), the optimal value of the variables(column two) and
the status of the variables (column three). The variables show that funds for loans should be

allocated to personal, business and education with the amounts shown on the table.
Optimal solution after four (4) iterations

Table:4.7: Optimal value (Z) = 611200

Variables Optimal value Status
X, : Personal loans 140000.00 7 Basic
X, : Production loans 0.00 Nonbasic
X3 : Susu loans 0.00 Nonbasic
X4 : Business loans 20000.00 Basic
Xz : Educational loans 40000.00 Basic

Table 4.8 shows the variables (columin one),ob) ective coefficient'(column two) and the objective

L] " = /—,————f-_
value contribution (column three).

_.._--""'-F.-F
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Table 4.8: Variables, objective coefficient and objective value contribution

Variable Objective coefficient Objective value contribution
x; : Personal loans 0.288 40320.00

X, : Production loans 0.240 0.00

X3 : Susu loans 0.284 0.00

x4 : Business loans 0.360 7200.00

x: : Educational loans 0.298 1§1920.00

Total 59440

DISCUSSION

The optimal solution is x; = 140000, x5 =0, x3= 0, %, = 400;-%5=40000 and the objective

function value, Z is 611200. This shows that Express Savings and Loans Company Limited

(ESLCL) should allocate 'GHC! 140000 to personal loans, GHC 20000 to-business loans and

GHC40000 to educational 1oans. The.company should not allocate-any fund to production loans

—

and Susu loans

e

P L 2
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LUSTRATION OF THE DUAL SIMPLEX METHOD
h Hg; we use problem P, to illustrate the application of the Dual Simplex method.

e
B L

,Tr:ﬁ“ | Maximize z = 6x; + 5x, a
_"' A ‘Subject to
X1 + X +s1= 5
KNUST
0.

X.]_ L] Xz’ Sl ? S

-' .J: in the appropriate Dual Simplex format; we have

B i o | Tl TR R
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Organization structure of tables

In the following tables, the elements in the bracket are the pivot elements. An arrow pointing
towards outside a row means the element in that row is the pivot element and that row is the

pivot row. An arrow pointing towards inside a column means the variable in that column is the

entering variable and that column is the pivot column.

Table 4.9: initial tableau

Cj 6 ) 0 0
CBy By X X2 S| Sy solution
0 S| -1 -1 -1 0 -5
0 S> (-3) -2 0 -1 =127
7 0 0 0 0 0
Z- = 5 0 0

From the above Tableau, the more negative entry in-the-solution column is - 12 and that

corresponds to s,, hence s, is the leaving variable. Next, we look for negative entries ins;—row

and compute

Nin (=6/-3], |-5/-2]) = 2

e
-

e et /f____‘____e——--
This corresponds to x; , hence x; is the entering variable. Thus, s; leaves and x;enters and -3

I8 thepivot element. [Now, we obtain the next tableau exactly like the simplex method by
performing Gauss Jordan row operations. That is dividing the fourth row by -3 to convert the

pivot element to 1 and adding the result to the third row ] Table 4.10 is obtained.
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Table 4.10: The second tableau

& 6 d 0 0
CBy By X| X2 S S5 solution
0 S 0 -1/3 -1 1/3 -1
6 X1 1 2/3 0 4
Z 6 4 0 2 24
Zi-c 0 sl 0 2

From the Table above, since - 1 is the negative entry in the solution column-and corresponds to

§;, it means s; is the leaving variable. We look fer all negative entries in s;-row and compute

Min (-1/-1/3]) = 3.

This corresponds to x» therefore Xsisthe entering variable. Thus,s, leaves-and x;enters and the

pivot element is -1/3. [We multiply the sj-row:by - 3%t0 convert.the-pivot element to 1, multiply

the result by - 2/3 and to the fourth row] to obtain the Table 4.11 below.

Table 4.11: The optimal tableau

Cj 6 5 0 0
€ By -~ X X5 S1 S5 solution
By bt .. =
S X2 U 1 3 -1 3
X 1 0 %) 1 2
Zj 6 5 3 1 27
Zi- Cj 0 0 3 1

Since all the solution columnvalues are nonnegative, the table above gives the optimal

That is

A= 2, X2

= 3, maximum value is 27.
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4.6: ILLUSTRATION OF KARMARKAR’S ALGORITHM

As an illustration ofKarmarkar’s algorithm in solving linear programming problems, let us
consider the following minimization examples since Karmarkar’s algorithm is very useful in

solving minimization problems.

Example 4.3:(Eiselt and Sandbrom, 2007) An individual wants to plan his diet, which consists
of only pork and beans. The two nutrients that are considered in this diet are protein and
carbohydrates. Details concerning the nutritional eontents jof the faod stuffs, their prices and the

required nutritional contents are shown in the table below.

Table 4.12: Nutritional content of food stuffs and their prices

Pork Beans Nutrients needed (at
least)
Protein (x,) 2 3 8
Carbohydrate (x,) g 2 12
Unit Selling Price GHC 3 GHC 4

By denoting with x; and x5, the respective number of servings of pork and beans respectively, a

cost-minimizing diet problem can be formulated as a linear programming problem as follows;

Minimize Z = 3x; + 4x;

Subject to
2%, +3x, 28

5.71:1 +2x2 > 12

141



id

*”

- both constraints contain greater than or equal to signs (=), it means resources have been

]

h’* Ve must therefore subtract the excess resources by introducing surplus. Then model

L

Minimize Z = 3x, + 4x,
Subject to

2]{‘1+3x2-51=3
KNBST
xl: 23921522 = U

by the Karmarkar algorithm so that the

-z.'e-‘::"c-‘:_fs'w' ert the model into the standard form requirec

".E '_ lnya Ae = 0 will be satisfied. That is
L Tand

Y2 0: Yn+1 s Yn+2 sYVn+3 = 0.

e =2 L is the number of variables in the linear programming model above, n is the

un ? 'columns in matrix A shown below. This implies n = 4,

1'.

J2 3 -1 0 16, C=[2300]

. ., Q =2L where L =4. This ijnpliesQ -
52 0 -1

1
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Min
f=
(16 + DI23I00Ny, v yam]’ + My,
Minf »
(17X |
2y, *3yy) ¢ Il.!:

e,

& 'I.-:r.'\I h]
2y 3 [0)'.
i r l
2)'1.]-[(."2)::-1 I
— l *"- : :

lh-
E 8y
.' ,-- o

Yo - Vo -
12y, + y; -

|

Yot
h-
16y, + 11y,
- 0.

M
»2

’3 fhf
Yot M* |
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| Vit Yot Y3t Yat Yot yet y,= 1.
.;‘!

F.

herel u,ﬁ] becomes |

. Minimize f = 34y, + 51y, + My, | |
Subject to

21+ 3y; - y3 - 8y, + 4y, =

o KNUST

Vit Yot Yat Yat Vs- s + 11y; = 0
Vit Yot Y3t Pt e

Y1, )2 ay

Step 1: we set k = 0, this means x°=(1/7, 1/7, 1/7, 1/7, 1/7, 1/7, UT)"

)J— 34(1/7) + 51(1/7) + 10000000000(1/7)
J |, -|" ¢

48571 4+7.28571 + 1.42857% 10° i
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1/7

1/7

-16/7 11/7

-8/7 4l7

= 12/.T 6
-16/7

0
—-1/7

—1/7

i T

0

1/7

0
1/7

S 2

11/7

1/7

1/7

1/7

I

1
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| 5/7 | Iy
B 27 17
= 1/7 O W7

1
, : |
1 94/49 136/49 176/49 0
Al v | N W ] )
l
1
1

136/49 30/7 264/49 0

B 0 17
=8/7 -12/7 -16/7
P4/7  6/7 - 11/7

0 0 0 7

.I h-
1

E KNUST

- [ 465255/38546 —42238/19273 -86240/19273 0
|

ol | —422238/19273  733187/115638 #215600/57819 0
7| —86240/19273  —215600/5781, 80/57819
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B} (BoB3 ) Bo =

—-2972850

—4582541
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WT A A s TIN m mmmp  we B il _ o

1436866 ~ —214273 —42187 15420073 —8798330
1888754 944377 044377 269822 134911 944377 944377
—402541 —1545639 133769 -30252  -23707 6261559 ~3830993
944377 1888754 1888754 134911 134911 944377 94437
~66162 —198033 549953 50339 138319 15455 320501
134911 269822 809466 134911 404733 404733 404733
20089 928236 —27627 143553 44053  —2999659 2222576
1888754 944377 944377 269822 134911 944377 944377
~42187 —23707 138319 44058 §_ 101359 26459 204119
134911 134911 404733 13494 1w’ 404733 404733 404733
9340073 13861559  —13571815 5763 26459  —106909451 53403265
944377 944377 2833131 184911 404733 2833131 2833131

—48357968280 —7369651783 9083507 , £727183228 204119 156674666855 —6582479948

| 9634628597 9634628597 2833131 1376375511 404733 9634628597 9634628597 _

[ 1.72 /485057 079 5 Ui 16.33 9.32 ]
043 | G96ELA07AVGRINNNFIEES 6.63 40.57
0.49 . O\ 05430200 0:04 —0.79
[BBI(B,BIY' B, = | 101\ — 095~ 0.0F—@30F033" 3,00 D35
03172 "0.18 w034 =033 —=0,11 .~ 0.07/ —204119404733
—9.90~=14:68.247.90 —0.04 +=0.075+3788 =~ 18185
T sz 168 B IERR0SEE050 ~16.26 ORI
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—89983300288835015 h

b 6610639
| -10336861934078397884809

178368261498
6410019956203903

- 5666262
{1 BI(BoBT )-1 By ] DyCT = 22222576004768 1549

6610639
275379530119337629997356585

94437
534032653073505973

19831917

L - 885599966933 171123
A ‘ 44240014 |

=

ple 4.4: (Kasana.and Kumar) Find the solttion of the following linear programming

m
it

sblems using the Karmarkar's algorithm.

Minimize f=2x, + X

B - 'I—'#--
I

ol: Ifk=0, x°=(1/3,1/3,1/3)

L — o

of 0.075, we check step 2.

= 2(1/3) + 1/3—1/3 = 2/3 > 0.075, we check step 3.

ep 3: we define
|

k. 1/3 0 0
e : DO — [ 0 1/3 0 ]-
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/3. .0 0
| oo

ADo= [0 1-1] [0 L=l

1 0

—il7p il

[’ 13 3” i] : ’3|]\| UST

L 0 0 1/31l-1

L UES

0 0 |
1 0] - [1/3 5/6
0 1 1/3 —ﬁ(ﬁ

] -
-__.--."";-H-I

dy =-[1- By (BoBE)T Byl DoC = =

The length of the vector d, is given by

—

I._

8
"
I r

n

= [0,13,-1/3), By = [ /3 ‘1/3]

_1 B n i U 1
-0 7 e -0 9 e - [F

E:-J(‘}/g)z + (2/9)2 +(%/ 9)2 =5C Je_/;’ = 1/ Jnm—1)

1

!

1/\/3



[/ ~4/ 1/31 -1 2/9
1/§] +(1/3) (1/ ) 9/ [2/91 = [1/3] . [1/1 = |7/18
s | ve© 2ve| 5 130 lissl 718

- e new feasible solution is given by

¥

= : = (29, 7/18,1/18)"

| :,,jp.n_ 50

d

) = 2(2/9) + /18 - /18 = 419 KtN U ST

= l-l ’ . . . . - "
ainly, there is improvement over the first siartingsestimation but the tolerance limit is not

Y

1/3
1/3] +(1/3) ¢/ N

1
it
i

1/3

) = 2(127) + 4/27 - 4127 = 2127 < 0.075.

L

,x'= (1/27, 4/27, 4/27) is the optimal solution.

—_



: ILLUSTRATION OF THE DECOMPOSITION PRINCIPLE

e lm -ﬂl'e*decamposition principle, we consider the following example

ra e 4.5: Write the following linear programming problem amendable to the Decomposition

Maximize f =x, + 22X +2%s T 3%,

Subject to x; + x, ]x<N ‘00 | S T
0

x1+X3£ 5

.}




] 4z _'[ ;]’ 21 [} _12]; o il S C,=[;]; C; 'E]; Do
(8l - B )

ation 1.We consider the subsidiary constraints sets B;X; = Dj, j = 1,2.

nj=1, ByX,=Dy but B, =] KNEJST]

1 1”: [37] . Therefore x;= 40 and x ;2

I 3"‘?[*'4 tices of




X3 «x3 =100

— 2x3+x,= 0

__Feasible region 2

KNUST -

. v = longing to feasible region 2 can be

e . 4

lence, any point X; belonging to feasible reg

| 5 [0 i-_l’!-h' . 2 [109
o Sdlol " M lpg0)* 1 Lol
- N

i e T T —— —

\

in the objective function and the first constraint of

i

Iteration 2.Putting the values of X; and X;
: ; | . - = L j
e problem (amendable to decomposition principle) and including restrictions ., We have

1
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. 40u3 10042 + 10042
mize f = (1 2)[ 3 ] SER] il U
60u3 + 20u3 =2 2002

1 1] 4043 +[1 1] 100p35 + 10042 <[1oo
1 0l|60ud +20ut| 11 0 20042 =150

Ui+ s+ pz=

KNS T

all variables 2 0,

i

tin simplified form

p?&:#i 2 0: k = 112’3'

2dard method can be applied to solve the above linear programming problem. We use the

] - e
Do

implex method to solve the problem.



, zation of the tables

_”134@ 13below, the value in the bracket is the pivot element. An arrow pointing outside a row

il

neans the corresponding variable is the leaving variable while that row is the pivot row. An

..

arrow pointing towards a column means the corresponding variable is the entering variable while
! is the pivot column.

s
N -

- Table4.13: Initial simplex Tableau K N U S T

solution | Ratio
100 §_>
50 1
2
0
0

';.-, Table 4.13, the pivot element, 300 is changed to 1 by dividing the elements in the pivot

fov 300. The element below the pivot element is changed to 0 by performing Gauss Jordan

ro W operations to obtain table 4.14.

I T
bl »
|

From table4.10, s; = 100, s, = 50 and z=0.
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Table 4 .14: The optimal tableau

C; 120 80 800 200 0 0
CBy By U3 U3 U3 Uz S Gh solution
300 2 /5 175 1 173 1300 | 0 E
0 = 20 20 0 2003 | -1/3 I | 503
zj 160 160 800 800/3 8/3 0 800/3
Z- ¢ 40 30 ONT 12003 | 73 0

From the Table 4.14 above, since all theiz; ='c; valuesiare positive, Table 4.14 is the optimal

tableau.

The optimal solution of the above problemis i = L, up="0, pi

800
f= —

3

Inserting these values for the.expressions of Xjand X5, we have

.__,_;-F"-

X = [2] = [g].f:l"his_impliemz =0

_.-#_—__._-.-.- -
'__103_ 100 200
%3] _ 111001 _ | 3] This implies xa=— X2 =—-
e = = = S 1m 1€S X - 4
i [xq_] 3 [200 200 i3 P % 8 :
[ 2

Thus the optimal solution 1s X; = 0,x; =0, X3= ED X4~ 73
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8 ILLUSTRATION OF THE BOUNDED VARIABLE TECHNIQUE

11

.

o illustrate the Bounded Variable Techniquewe consider the example below.

u} linear programming problem

a mple 4.6 ( Kasana and Kumar)

Maximize z = 4x; +2x, + 6x5

swieate NS T

-X1 txp +2x3 : '#‘k
4 %

Since the variables are bounded, the bounded variable technique is the appropriate method to use

First, we make lower bounds m.1

1 £

5%, by y; + 1, we have

1
A S

1<y, +1< 3, which gives us 0<y; < 2.

B

;ig..;;réplacing x,; by y; + 1 and substituting slackss;, s3, surplus szand artificial variable R;

)
ke :
] to the constraints, the model shown in phase 1 is obtained.
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hase 1: To find the initial basic feasible solution, we solve the auxiliary problem

Minimize r =R,
Subjectto 4y; -x; -3x3 + 5, = 5
Y1t X+ 2x3 - S + R, =9

sk NUST

0=y = 2,0= x _;), 0 <x3<2

Organization of the tables

| "E.ffables below, the element'

' F, ] ._-. T F
o - s i Mll

insid B a column means the val;lab

o omtmg_.

pivot column. An arrow

= Solution
0 9
0 5
0 9
1 14




'ﬂ .15, x3 enters basis since it has the largest z-value. To decide the leaving variable, we

-
F e 1 = 1
compute
- et

3
- '
| L Bede s 7
B = — — = -
e 00=08 _ _
8,= min (_—3) = 00, upper bound on s,

= 2, upper bound on the entering variable x5.

Thus -f 9= min (64, 0,, u3) = 2. This is tKN LﬁJ S’ng enters basis at its upper

bound as nonbasic. We use the relation

¥ |
lﬂ -
.

gative of the column of x5. In fact,

jév ;E-:- icated in Table 4.16

S3 solution

0 5

0 11

0 5
W




r.
!

n Table4.16, x, is the entering variable since it has the largest z-row value. To decide the

leaving variable, we compute

e e e ——— e —

. 56
6:= min(=,-) =
1 1 1) 5

co-11

6,= min(- '(_1)

) = oo, upper bound on s,

e

u,= 35, upper bound on s,

-CINUST

minimum is for 8;and u,. Obviously 6, isfpreferred, and R, leaves. We make simplex

—— -

-

iteration and this is the end of phase 1. We discontinue with R, column toobtain table 4.17

e

“solution
¥y solu

160



| 'LL_:.-_ P -~ . % . .
Phase II: We rewrite the objective function as
'
1 *

Maximize z =4(y; + 1) +2x, + 6(2 - x3) = 4y, + 2x, - 6x} + 16. Inserting

this into the objective function in table 4.14,

hat is from Table 4.14, y; = -1, x, = 1, x3 = -2. This implies

KNUST

Z=4(-1)+2(1)-6(-2) + 16 = 26.

/e obtain table below.

Table 4.18: The initial tableau

solution

26

16

't ‘able4.18, y, is the entering variable since it has the most negative z value. To decide the

leaving variable, we compute

16 e 16
6,= min (-3—) 33
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e
=
[y
I
(§]

The minimum value is 0 corresponding to x,. Thus, y, enters and x, leaves. This is the case 6 =

8,. To achieve this, we just make simplex iterations and obtain table 1.16.

K

Tableau 4.19: The second Tableau K N U S T

V1 S3 solution

0 4

= 0 31

'__’,_/"'

1 e

" P 4.} 1 il
‘We make x, at its upper bound and by the substitution Xz = Uz - 43, 0 =x; <).

— s

J1— row gives
+2x1 + s, + 0sy + 053 =-5.
V1 - Xzt 2%X3 T S2 1 3

- I il -onstraint equation to have Table
Since u,= 5, we make the substitution 5 - x in the above co 4 .
4.20 shown below.
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: Al 1 :

solution

.26

16

Table 4.20 is the optimal tableau since all z = row values are

3, = 0, this implies x, — 1 = 0, that is x;

. h
x3 =0, this implies 5- x, = 0;that

L

x3 = 0, this implies 2 - x5 =

Y
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4.9: ILLUSTRATION OF THE COLUMN GENERATION METHOD
llluStrate the column generation method, we consider the following example.

mple 4.5: ( Winston, 2003): Woodco sells 3-ft, 5-ft, and 9-ft pieces of lumber. Woodco’s
|_

customers demand 25 3-ft boards, 20 5-ft boards, and 15 9-ft boards. Woodco, who must meet its
.'__'-ands by cutting up 17-ft boards, wants to minimize the waste incurred. Formulate a Linear

Programmingmedel to help Woodco accomplish its goal, and solve the LP by column generation.

Woodco must decide how each 17-ft boachme us Ich decision corresponds to a

way in which a 17-ft board can be cut. For examplejone decision variable would correspond to a

teof 17 - 15 =2t Many possible
sxample, it would be foolish to cut a board

cut the board into-a 9-ft piece, a 5-ft
._'

ai!! ore of waste need not

be considered because we could usethe waste to obtain one or.more 3-ft boards.




1 Ways to cut a 17-ft board

Number of
'-__'_inat-ion 3-ft board 5-ft board 9-ft Board Waist (feet)
b 1 5 0 : 2
=2 - 7 1 0 0
= ._ 3 7 ) 0 1

I [KNUST &

'6' : v . :

3
We now define

ol -

"

e

=.--'number of 17-ft boards-cut aecording to-constraint i late Woodco's linear

programming model.

Woodco’s waste + total customer demand =

Woodco’s waste ( iilffget) = 17

Then Woodco’s objective functi

Minimize z = 17x1+l’.7x2+ 175 + 1724 + 17x5 + 17x6- 310.

This is equivalent to minimizing 17(x; + Xz + X3 + X3 ¥ X5 x) which is equivalent to

| Minimizing x; + Xz + X3 + X4 + X5 Xe
Hence, Woodco's objective function is
.

Minimize z =x; + X2 + X3 + X3 + X5 + Xg

i
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This means Woodco can minimize its total waste by minimizing the number of 17-ft boardsthat
. u; |
Noodco faces the following three constraints.

Constraint 1: At least 25 3-ft boards must be cut.

[

Constraint 2: At least 20 5-ft boards must be cut.

I
¥

I 3: At least 15 9-ft boards must be cut.

.:'_-";-;.; pse the total number of 3-ft boards the ut s given b
Xy +4x; + 2x3 + 2x4+ X5, constraint | beto N +U+S + [x4 +xg = 23

20 and constraint 3 becomes

Similarly, constraint 2 becomes x; + 2x3 + x5 + 3xg 2
|

he linear programming model is thus

We note that x1-only occurs i

nt (because combination 6 yields only 5-ft boards).

ds), and x6 occurs in the 5-ft constrai

'-:’41' 1is means that x1 and J;:G can be used as starting basic variables for the 3-ft and 5-ft constraints.

jhfortunately, none of combinations yields only 9-ft boards, so the

9-ft constraint has no obvious basic variable. To avoid having to add an artificial variable to the

|

9-ft c;:)nstraint we define combination 7 to be the cutting combination that yields only one 9-ft

bos d. Also, define x7 to be the number of boards cut according to combination o
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Clearly, x7 will be equal to zero in the optimal solution, but inserting x7 in the starting basis

lows us to avoid using the Big M or the two-phase simplex method.

the column for x7 in the LP constraints will be

18

J“ a term x; will be added to the objective function. We can now use basic variable BV =

15 Xg» X7} s a starting basis for the model. If we let the labr§ for this basis be the tableau 0,

en we have

o F | ¥ ivnd

ch vari bllg should enterthe basis.

»f variables, so pricing

— : ~l,
vhich column generation comes into 1@’

want to find a column that will price out positive (have a positive coefficient in row(). In the

I - _?.__.-—-‘ ! . . A )
cutting stock problem, each column, or variable, represents a combination for cutting up a board:

A variable is specified by three numbers:

3, as. and a9, where a;is the number of i-ft boards vielded by cutting one 1 7-ft board according to

he given combination. For example, the variable x,is specified by a; =4,
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1.= 1, and ag=0. The idea of column generation is to search efficiently for a column that will
yrice out favourably (positive in minimization problem and negative in maximization problem).

“or our current basis, a combination specified by as, as and ag will price out as

_1—[a5]" 1 = 1/5(13 1/3 a5+a9 - 1.

€Y

We note that a3, as, and ag must be chosK

op’t Tn | 7-ft wood. We also
U S r any combination, as, as

e, (g are integers).

r. ‘that by az, as and ag must be nonn
and ao must satisfy

+ Sas +9a9 <17 (a3 = 0,a5 20,a9 2 0, @
irably by solving the following

We can now find the combination that prices out most favo

knapsack problem:

Max z = 1/5a3y

Subject to 3a

solve by using the branch and boune

e

fig 4.4. From fig 44 we find the

:as = ag=_ l.ThiS

nesponds to 5 combination and variable xs. Hence, X5 = prices out 8/15 and entering X5 Into

basis will decrease Woodco’s waste.
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(1

Z=8/9

as =17/9 t=1

| ag <1 Qg =2
KNUST
ag =1 t= infeasible |t=7
3 |
; e
2 aa 2 — S
8/15(4)
i | |
l s 3 \, .e"ll
1. S — > 2 -
o S £
' >
| < o~
. = YO SAnE v
|
15 (6) z=2/5 (7)
t=4 ag = | t=5



To enter X5 into basis, we create the right hand side of the current tableau and the xz column of

the current tableau.

1 A7 S ) I O Tl 1/5
xscolumn in current tableau = Bg'b [1|=]| 0 1 /3 0] Ell T [1/ 3]
1

1 0 U 1

/5 =D DI 5
Right hand side of current tableau [ 0 K1/3 ol [2 0/3]
0 Of M INLS

The ratio test indicates that x- should the basis in tow 3. his yields BV(1) = {x;, X¢, X5}-

Using the product form indicates that of the inverse, we obtain

1/5 0 ORS00 /50" —1/5
Bi'=E,=B;! = [ 0 1/3 —1/3” g1 /3" 050 13 —1/3|.
0 O i 07" Al G 0 1

Now,

1/5 O Ealrs _
CByBi*=|[11 1]={ 0 1/3 i3Sk 13 T/15K
=150 0-

With-theew set of shadow prices (CBy By 1), we can again use column generation to determine

whether there is any combination that should be entered into the basis. For the current set of

shadow prices, a combination specified by as, as and ag prices out to

as

[1/5 1/3 7/15][515] 1= 1/505 +1/3a= +7/15a9 — 1
Ag
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: the current tableau, the column generation procedure yields the following problem:

mize z = 1/5a3 + 1/3as + 7/15a4 - |
Subject to 3a; + Sas +9aq < 17

§ .

as, as, Qg = 0; as, as, aq are integers.

The branch and bound tree for the above p%NU‘ST




-, as > 1

Z=2/15 (4)

"'-ﬂ;.s =laz =3

 candidate

IA

3 = 17/3

(1

L

2/5[t=1

3)

aq =2/9

- ;

e

=
=
5

t=4

%an’tbeat z = 2/15 candidate
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Figure 4.5 B_r;nch and bound tree for example 4.5




We see that the ccombination with a; =4, a5 = 1 and ag = 0 ( combination 2) will price out

better than any other (it will have a row 0 coefficient of 2/ 15). Combination 2 prices out most

favourably, so we now enter X, into basis.

]i‘e column for x,in the current tableau is

4 il O - A 4/5
T [1]= [ O /3 —-1/3” ] {1/3]
0 Uit
;‘T,[‘he right hand side of the current tableﬂK N U S T

Bilb = [ 0 1/3M=E = [5/3].
0 14 LLLS 15
The ratio test indicates that X, should € ence BV(2) = {x,, X¢, X5}. Using the

product form of the inverse

- Then

77 —1/4
B! = E,B;t = |- =1/12 1/3 —1/4].
| | 0 0 1

i

The new set of shadow prices is given by
LS TICW SO

1O 1 /L |
- CByB;'=[111] [—1/12 1/3 —1/4| = [1/6137%]
| 0 0=yl

For this set of shadow prices, a combination specified by as, @s, and aq will price out to

P S S A — —
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1/6as + 1/3as + 1/2a9 — 1. Thus the column generation procedure required us to solve the

:r QWing_ problem
Maximize z = 1/6(13 + 1/3&5 o+ 1/2&9 -1
Subject to 3a; + Sas +9aq < 17

as, aq = 0; as, as, ag integers.

| e optimal z value is found to be KNI U.nglat Fo combination can price out

favourably. Hence, our current basic solution must be an optimal solution. To find the values of

L

the basic variables in the optimal solution, we | eright hand side of the current tableau;

i 1/4 0N =1441.[25 <154 he s
,_ﬂ_lb =1=1/12 . 1/3 <) I:.E"Iir_j = _|15/6|.. Therefore t E‘m solution to Woodco’s
0 0 1S LINA WV

cutting stock problem is gwen b #
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CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

This chapter is the concluding part of this thesis. In this chapter, we find out whether the title of
this thesis has adequately been dealt with. We also find out whether the objectives of the thesis

have been achieved and other findings of this thesis will also be discussed. Recommendations

based on the findings of the thesis will also be made.

5.1: CONCLUSION

Chapter 3 of this thesis contains all the impertant theories of linear programming. Some
methods of solutions_of linear programming haye also been treated in chapter three. All the
necessary algorithms. procedure:s and steps involved in the applications,of these methods have
also been given in details in chapter three. All the necessary stepsinvolved in the formulation of
linear programming models have also been given in chapter three. These methods include the
Graphical method, the-Revised Simplex method, the Dual”Simplex method, the Bounded

Variable Technique, the ‘Decomposition-Prineiple;-the Karmardar’s method and the Column

Generation method.

In chapter 4, illustrative exammgen given. The required linear programming models

needed in solving the given examples have also been formulated out of the given examples.

These examples have been used to illustrate the Graphical method of linear programming, the

simplex method of linear programming, the Revised method of linear programming, the dual

simplex method of linear programming and the Karmarkar’s method of linear programming.

All the necessary computations have been made to clearly illustrate the methods mentioned
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above for better understanding. All the tables involved in computing the solutiﬁns of the given

examples that are used to illustrate these methods have also been given and systematically

explained.

Data from Express Savings and Loans Company Limited (ESLCL) has been analysed. A loan

policy has been formulated for ESLCL using linear programming model.
It can, therefore, be concluded that the title of this thesis has adequately been dealt with.
It can also be concluded that the objectives of the thesis' haye/been achieved.

So many findings have come out of this thesis¢" This thesis has shown that there are so many
methods available that can be used to selve linear programming problems of all kinds. It has:
been found out of this thesis that linear programming is a very powerful mathematical tool which
can be applied to enable us maximize profit and minimize cost in our everyday activities. It has
also been found that linear prog}amming can be applied in various fields of study. It can be used
most extensively in businesses and economies. Linear programming can also be utilized for some
engineering problems. Industries such as energy; telecommunications and manufacturing can
also use linear programming models;‘to_Solye “problem to ensure ‘the growth. Linear
programming can be useful in_diverse types of problemis infplamhing and designing. Linear

programming can also help us to think [ogically-and-that will enable us to solve many problems

= /,.p-/l
in our societies.

e e
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5.2 RECOMMENDATIONS
The following recommendations are made out of this thesis.

It is recommended that when solving linear programming problems with any of the linear
programming methods such as the graphical method, the simplex method, the revised simplex
method, the dual simplex method etc., students should make sure they apply the details of the

theory behind the method that they are using.

It is also recommended to students that théy should givelogical illustrations of their solutions for
clear understanding. That is, they should ensure thatithe linear programming models are properly

formulated to avoid any errors.

All the procedures leading to the solution of the problem should be carefully followed in order to

obtain a very good solution.

This thesis will benefit Ghanaian students-in so many wayst Thertheory of linear programming

and some methods of solution have been clearly explained in chapter three of the thesis to give

students clear understanding of linear programming.

In Chapter 4 of the thesis, the methods of linear programming have been used to solve a linear
programming problem. All the necessaty procedutes involved in the application of the methods

-

have been followed to illustrate-tte methods to give logical and easy understanding to students.

It isforther recommended that linear programming should be applied in all our everyday

activities to enable us maximize profit and reduce cost.

It is also further recommended that industries such as energy, telecommunications efc. in Ghana

must applied linear programming models to ensure maximum growth.
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1t is also recommended that all businesses and engineering firms in Ghana must apply linear

 programming models since that will enable them to maximize profit and reduce cost.

It is also recommended that we must apply linear programming whenever we want to solve
problems in our socicties.

KNUST
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APPENDIX

INITIAL SOLUTION OF THE REVISED SIMPLEX METHOD IN OF EXAMPLE

Maximize Z = 0.288x; + 0.240x, + 0.280x; + 0.360x, + 0.340x5 + 0s; + 0s, + 0s3 + 0s,4

+0sg + 055 + Osg

Subject to
X, +x; +%x3 tx+xs +8; =200.000

X, + X%t Sp 40000

X, + x5 +83 =.80,000

X, + X3+ 84=100000

0.4x; ¥%s.10.424 £0.4x57+ 55 =0

x5t 55.=1200

X3 + x4+ 57 =20000

-0:02x, %+ 0.19x; —0.04x5 + 0.04xy + 0.09x5 F Sg=F 0
COAMPUTATIONAL PROCEDURES

Impute parameters
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0 1 0! SO 20 1200

0 0 1 TR0 20000
002 019 —0.04 0.04 0.09- Lo
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Iteration 0
(i) Basic variables in iteration 0, BV(0) = {s;, S5, 53, S4, Sc, Sg, S7, Sg}

Nonbasic variables in iteration 0, NBV(0) = {x, x5, X3, X4, X5 }

1 0 0 0 0 0 0 O
D00 00 0D
OO 1 L0 000 00
e lor0 0 -1 000 0 nl
B, =1=B, 5 6 1 0 0 ol CBy,=[00000000]
IR®0 0 0 1 09
0 000 00 108
% a 0 0o 0 0 0%
1 0 0 0 JNSESSHe
0 1 o ol -cNl
0 0 1.0%0770.40
e O D S TR 0.
CByB~1= [0000000 0N o<pep—g—1 0l0 "o (0000090 0]
0~*0. 00 =0~ ‘10 _J0
0 0 P0r=0>0 wid 0
o/ 000 0. 0 4
(ii) From CByB™'a;- ;
1
0
0
Coefficient of x; in z—row = [00000000] 0{_’4 0288 = -0.288.
20.02.
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L OO0 RRFE O

Coefficientof x,in z—row = [0000000 0] - 0.240 = -0.240.
10.19-
1
0
0
Coefficient of x3in z-row = [000000Q 0} nt, (|, - 0284 5--0.284
0
1
—0.04-
- 1 .|
1
| 0
Coefficient of x, inz—row=[00000000] 004 -0.360 = -0.360
0
1 1
.0.04-
ank
;|
“1
Coefficient of x5 in z-row = {00000 000] 004 [=.0340 = -0.34
0
0
0.09
Since x4 has the n__@_s-i_negative coefficient in z —row, it enters basis.

e

(iif) Using ratio test to determine the leaving variable.
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2 : 20000
Rowl : e 200000, row?2: -, row 3:-, TOW3 =, TOW4: =, TOW J: -, TOW 6: -, TOW/: =

20000, row 8: -.

Since row 7 has the smallesttatio; s,-leaves basissand x, enters basis:

(iv) The new basic variables are {51, 82, 83554+ S5 56+ Xa- Sg4

New nonbasic variables are {x;, X5, %3, S5, Xs |-
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(v) From CByB~'b, the objective function value Z after first iteration is:

180000

40000
80000

[0000000.360] | 200000 7260 and x, = 2000, 51 = 180000} 5, = 400005 = 80000,

1200
2000

. —888 -

Sy = 100000, Se — -80005 Se = ]200, Sgis -800.
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