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ABSTRACT 



The Knapsack problem model is a general resource allocation model in which a single 

resource is assigned to a number of alternatives with the objective of maximizing the total 

return. In this study, we applied the knapsack problem model to the placement of advert slots 

in the media. The aim was to optimize the capital allocated for advert placements. Our study 

focus on the use of a simple heuristic algorithm, developed by Amponsah and Darkwah 

(2009) for the solution of the knapsack problem. The algorithm was coded in Fortran 90. A 

walk through the algorithm with our model gave the computational iterative values for the 

various optimal values for the various optimal solutions. The software displayed the final 

optimal solution for the problem. This gave an optimal reach of one hundred and fifty three 

thousand people at the cost of ninety seven cedis as against one hundred and fifty two 

thousand people at the cost of ninety eight cedis from the crude method used by the company. 

In the study it was observed that computer applications in computation gives a systematic and 

transparent solution as compared to the arbitrary method and also management will benefit 

from the proposed approach for placement and selection of advert to guarantee optimal reach 

of people. 
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CHAPTER ONE 

1.0 INTRODUCTION 

       One of the most significant financial decisions facing individuals and institutions is the 

construction of optimal investment portfolios. These investment decisions are made in 

the present; their ultimate success or failure is only realized in the future. So this type of 

decision takes place under uncertainty, a common theme for financial optimization. 

One response to this atmosphere of uncertainty is to base judgments regarding 

optimality on current expectations of future returns and current perceptions of future 

risk. The central question of the portfolio problem is: What is the optimal way to 

allocate a limited amount of capital amongst a given set of investment choices? To 

answer this question, a process must be developed that can determine the relative 

weight each investment choice should have within the portfolio. That allocation should 

strike an acceptable balance between risk and reward. In addition, costs incurred when 

setting up a new portfolio or changing an existing portfolio are an important 

consideration. These costs must be included in any realistic decision making process 

(Bertsiman et al.,1999). 

Allocation of resources under uncertainty is a very common problem in many real-life 

scenarios. Employers have to decide whether or not to hire candidates, not knowing 

whether future candidates will be strong or more desirable. Machines need to decide 

whether to accept jobs without knowledge of the importance or profitability of future 

jobs. Consulting companies must decide which jobs to take on, not knowing the 

revenue and resources associated with potential future request (Bertsiman et al.,1999). 



 

  The problem of allocating limited resources among projects is really paramount to every 

organization. There is then the need to allocate these resources to maximize the yield  

from a given investment. The aim is to select the subsets of projects which can be 

funded within the budget constraint. Mathematical programming models are models 

that can aid organizations to optimally obtain their goals through appropriate utilization 

and allocation of available resources (Bertsiman et al.,1999). 

 

 This thesis presents an application of mathematical programming problem, specifically 

knapsack problems, which provide useful information to aid decision-makers in 

answering the above questions. It is the work of subsequent sections and chapters to 

show exactly how a topic such as application of knapsack problems can be productively 

applied to this type of financial decision.  

 In this chapter of the thesis, an overview of mathematical programming model would be 

given; a brief description of the problem statement of the thesis is also presented 

together with the objectives, the methodology, the justification and the organization of 

the thesis.  

  

1.1 BACKGROUND OF STUDY 



Throughout human history, man has always strived to master his physical environment by 

making the best use of his available resources. These resources are however limited and 

the optimal use thereof pose potentially difficult problems. Problems of finding the best 

or worst situation arise constantly in daily life in a wide variety of fields that include 

science, engineering, economy and management. The theory of optimization attempts 

to find these solutions. 

The theory and application of optimization is sometimes referred to as mathematical 

programming. Here the term programming does not refer to computer programming, 

but rather the allocation or composition of limited resources, although computers are 

extensively and in fact usually used to solve these problems. Programming problems 

deal with optimal allocation of limited resources such as equipment, raw materials and 

labor to the manufacture of one or more products. The aim is to allocate these 

resources in such a way that the products meet their given specifications, while at the 

same time maximizing some profit or minimizing cost. 

 

To understand the concept of optimization problems, consider the case of a farmer who 

wants to plant a variety crops. His production is however limited by many factors. 

Amongst some of these are the availability of land, labour and water. After the crops 

have been harvested, they will be transported to different markets for sale. This give 

rise to the following questions: How much of each crop should he grow in order to 

make a maximum profit? What is the cheapest way of delivering the goods to a number 

of destinations? Another example is to find the shape of a string, which is anchored at 



its ends along a given straight line and encloses the most area between itself and the 

line. This is often called Dido's problem, originating in the 18th century BC, named after 

a Phoenician princess Dido of Tyre, who according to the legend founded the city of 

Carthage in North Africa. She fled to Africa after her brother murdered her husband and 

appropriated her fortune. There she persuaded a local chief to sell her as much land as 

an ox hide could contain. She then cut the hide into thin strips and tied them together 

to make a cord 4km long. She laid the cord down in a semicircle with the ends touching 

the coast. This turns out to enclose the largest possible area and is considered as the 

original optimization problem(Anonymous,2011) 

There are many such problems arising in a wide range of fields. These can vary in size, from 

problems similar to the farmer’s crops involving few decision criteria to very large 

problems involving thousands of factors, for example, chemical reactions. Enormous 

efforts have been made to describe these complex human and social situations with 

mathematical expressions. 

Initially only relatively simple problems, usually expressed using linear equations, were 

modeled. The evolution of mathematics and physics allowed for more complexes, but 

also more accurately formulated problems to be modeled using non-linear equations.  

 

Mathematical programming is a fast growing branch of mathematics with a surprisingly 

short history. Most of its development has occurred during the second half of this 



century. Basically, one deals with the minimization or maximization of some function 

subject to one or several constraints. 

 Mathematicians for centuries have studied linear algebraic equations. Problems came from 

e.g. astronomy, mechanics, geometry, and economics and so on. Many of these 

problems had unique solutions. However, more recently, problems have appeared from 

a number of applications, mathematical and non-mathematical, with typically several 

possible or feasible solutions to a problem. This then leads one to the question of 

finding a “best possible solution” among all those that are feasible in the specified 

sense (Geir, 1997).  

Optimization is the process whereby we seek to find the best or optimal value of a function, 

usually subject to certain constraints or restrictions. The function with its restrictions is 

a mathematical optimization model that represents certain aspects of the physical 

environment. Optimization models are used extensively in many areas of decision 

making and are the cornerstone of most optimization studies. There are many methods 

available with which optimization problems may be solved. However, not all 

optimization problems can be solved efficiently with all the methods. The methods are 

appropriate for only certain types of problems, each designed to account for specific 

mathematical properties of the model. It is thus important to be able to identify the 

characteristics of a problem in order to find the correct solution method. 

Some specific examples of optimization include : 



(i) Police patrol officer scheduling in San Francisco (linear programming), saved $11 million 

per year; 

(ii) Reducing fuels costs in the electricity power industry (dynamic programming), saved 

over $125 million in costs; 

(iii) Petrol blending (non-linear programming), saves $30 million per year; 

(iv) Scheduling trucks (dynamic programming), reduced costs by $2.5 million per year; 

(v) Maximize the expected return of several investments while at the same time minimizing 

risk (quadratic programming); 

(vi) Minimize the power loss in an electrical networks while satisfying the conservation of 

flow (quadratic programming); and 

(vii) Optimization problems can also be found in modeling of digital circuits, chemical 

reactions, power flow, population ecology, heartbeat and nerve impulses, crop 

production, food mix problems etc.           

Today optimization problems arise in all sorts of areas. Modern society, with advanced 

technology and competitive businesses typically needs to make best possible decisions, 

which e.g. involve the best possible use of resources, maximizing some revenue, 

minimizing production or design costs, etc. In mathematical areas one may meet 

approximation problems like solving some equations “within some tolerance” but 

without using too many variables. In telecommunications, the physical design of 



networks lead to many different optimization problems, e.g. that of minimizing network 

design costs subject to constraints reflecting that the network can support the 

described traffic. In economics optimization models are used for e.g. describing money 

transfer between sectors in society or describing the efficiency of production units. 

The large amount of applications, combined with the development of fast computers, has 

lead to massive innovation in optimization. Today optimization may be divided into 

several fields, e.g. linear programming, non-linear programming, discrete optimization 

and stochastic optimization. 

 Integer programming model is a class of mathematical programming problems used to 

optimize linear systems that require the variables to be integers. It is the natural way of 

modeling many real-life and theoretical problems, including some combinatorial 

optimization problems and it is a broad and well-studied area. 

 Integer programming models are beneficial because, if one can solve them, then one is 

guaranteed to obtain the best solution. However, this guarantee of optimality has a 

computational tradeoff, and integer programming models currently may require 

exponential times to solve. The computational problems are so extreme that many 

integer programs cannot be solved, even using supercomputers (Geir, 1997). 

One example of the usefulness of integer programs optimized the scheduling and 

deployment of San Francisco Police Department Patrol Officers (Hillier and Lieberman, 

2001). The criteria used in this study were the level of public safety, level of officer’s 

morale, and cost of operations. The computerized system that was developed used a 



mathematical model to incorporate each of the goals and increased San Francisco 

Police Department’s net income by fourteen (14) million dollars and decreased 

response times by 20 percent. 

 In addition to the above application, integer programs have been used to solve a number of 

real-life problems, including airline scheduling, sports scheduling (Easton et al., 2003), 

construction site location, manufacturing job scheduling, and telephone network 

optimizations (Tomastik, 1993).   

 A great variety of practical problems can be represented by a set of entities, each having an 

associated value, from which one or more subsets has to be selected in such a way that 

the sum of the values of the selected entities is maximized, and some predefined 

conditions are adhered to. The most common condition is obtained by also associating 

a weight to each entity and establishing that the sum of the entity sizes in each subset 

does not exceed some prefixed bound. These problems are generally called knapsack 

problems, since they recall the situation of a traveler having to fill up his knapsack by 

selecting from among various possible objects those which will give him the maximum 

comfort. 

 The Knapsack Problems are among the simplest integer programming problems which are 

NP-hard. Problems in this class are typically concerned with selecting from a set of given 

items, each with a specific weight and value, a subset of items whose weight sum does 

not exceed a prescribed capacity and whose value is maximum. The specific problem 

that arises depends on the number of knapsack (single or multiple) to be filled and on 

the number of available items of each type (bounded or unbounded). Because of their 



wide range of applicability, knapsack problems have known a large number of variations 

such as: single and multiple constrained knapsacks, knapsack with disjunctive 

constraints, multidimensional knapsacks, multiple choice knapsacks, single and multiple 

objective knapsacks, integer, linear, non-linear knapsacks, deterministic and stochastic 

knapsacks, knapsacks with convex / concave objective functions, etc. 

 

 The knapsack problem is to decide what should be put in a knapsack given a weight 

limitation on how much can be carried. The term knapsack problem invokes the image 

of the backpacker who is constrained by a fixed-size knapsack and so must fill it only 

with the most useful or essential items. However, any problem that matches a similar 

analogy from any other problem area is also recognized as a knapsack problem, for 

example, the capital budgeting problem. The classical 0-1 Knapsack Problem arises 

when there is one knapsack and one item of each type. Knapsack Problems have been 

intensively studied over the past fifty (50) years because of their direct application to 

problems arising in industries and also for their contribution to the solution methods for 

integer programming problems. Over the last decade, knapsack problems have 

attracted a lot of interest for both theorists and practicians. The theoretical interest 

arises mainly from their simple structure which, on the other hand allows exploitation 

of a number of combinatorial properties and, on the other, more complex optimization 

problems to be solved through a series of knapsack-type sub-problems. From the 

practical point of view, these problems can model many industrial situations: cutting 



stock, cargo loading, and capital budgeting, to mention only the most classical 

applications. 

 

1.2 PROBLEM STATEMENT 

 The specific form of problem that this thesis seeks to solve is to mathematically model a 

company’s advertising problem as 0-1 knapsack problems (KP) and solve the problem. 

The knapsack problem is a general resource allocation problem in which a single 

resource is assigned to a number of alternatives with the objective of maximizing the 

total return. The knapsack problem seeks to optimize a set of yes/no decisions subject 

to a single non-negative constraint.  

  Knapsack problems are widely used in financial decision making, with examples being 

resource allocation (Granmo et al., 2007) and portfolio management (Bertsimas et al., 

1999). In resource allocation, the organization may wish to maximize its return from 

resources invested into each division or product subject to the total resources available. 

In portfolio management, the goal would be to maximize returns while minimizing risk.  

 

1.3 OBJECTIVES  

Knapsack problems have been intensively studied for the past fifty years, both because of 

their immediate applications in industry and financial management, and more 



pronounced for theoretical reasons, as Knapsack problems frequently occur by relaxation 

of various integer programming problems. In such application, one need to solve a 

Knapsack problem each time a bounding function is derived, demanding extremely fast 

solution techniques. 

 The goal of this research is to model the advertising problem a company as a 0-1 knapsack 

problem and solve the problem.  

 

 

1.4 METHODOLOGY  

 In our methodology, we shall propose the heuristic approach presented by Amponsah and 

Darkwah (2009) in solving our problem. First, the algorithm is presented along with 

relevant examples. A real life computational study is performed and a code in 

FORTRAN 90 programming language will be employed to evaluate this algorithm. 

 

 1.5 JUSTIFICATION  

 Knapsack problems are widely used in financial decision making, and very interesting from the 

perspective of computer science because of the time complexities in some of the well-known 

algorithms used in solving knapsack problems. These have made the studies of knapsack 

problems and their algorithms an important area of research in the contribution to academic 



knowledge and the benefit of the economy as a whole, hence the reason for solving the 

knapsack problem. 

 

1.6 ORGANIZATION OF THE THESIS 

In Chapter 1, we presented a background study of mathematical programming model.  

In Chapter 2, related work in the knapsack will be discussed. 

 In Chapter 3, the heuristic algorithm by Amponsah and Darkwah (2009) will be introduced 

and explained.  

Chapter 4 will provide a computational study of the algorithm applied to our knapsack 

instances.  

Chapter 5 will conclude this thesis with additional comments and recommendations 

 

1.7 SUMMARY  

Mathematical programming models are useful tool for modeling and optimizing real-life 

problems. Unfortunately, the time required to solve mathematical programming models 

are exponential, so real-life problems often cannot be solved. The knapsack problem is a 

form of mathematical programming problem that has only one constraint and can be used 

to strengthen cutting planes for general integer programs. In addition, knapsack problems 



are widely used in financial decision making, and very interesting from the perspective 

of computer science since they are NP-complete. These facts make the studies of 

knapsack problems and their algorithms an extremely important area of research.  

In the next chapter, we shall present the review of literature. This will consider the numerous 

studies by researchers and academicians in areas of resource scheduling and the 

applications of knapsack.  

 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

In this chapter, we shall discuss numerous studies by researchers and academicians in areas 

of resource scheduling and the applications of knapsack.  

 

 In hard real-time systems timeless is an important as functional correctness. Such systems 

contain so called hard real-time tasks (HRT tasks) which must be finished by a given 

deadline. One of the methods of scheduling of HRT tasks is periodic loading introduced 

by Schweitzer et al., (1988). The authors presented an extension to that method which 



allows for deterministic utilization of cache memory in hard real-time systems. It is 

based on a new version of the Knapsack problem named Knapsack-Lightening. In the 

author’s presentation, the Knapsack-Lightening problem was defined, its complexity was 

analyzed, and an exact algorithm along with two heuristics was presented. Moreover the 

application of the Knapsack-lightening problem to scheduling HRT tasks was described. 

 

Kleinberg et al., (2007) studied a model which considered the situation in which a decision-

maker with a fixed budget faces a sequence of options, each with a cost and a value, and 

must select a subset of them online so as to maximize the total value. Such situations 

arise in many contexts, e.g., hiring workers, scheduling jobs, and bidding in sponsored 

search auctions. This problem, often called the online knapsack problem, is known to be 

inapproximable. Therefore, the authors made the enabling assumption that elements 

arrive in a random order. Hence the problem can be thought of as a weighted version of 

the classical secretary problem, which is called the knapsack secretary problem. Using 

the random-order assumption, the authors designed a constant-competitive algorithm for 

arbitrary weights and values, as well as a e-competitive algorithm for the special case 

when all weights are equal. 

 

Knapsack problem has been widely studied in computer science for years. There exist several 

variants of the problem, with zero-one maximum knapsack in one dimension being the 

simplest one. Tauhidu (2009) studied several existing approximation algorithms for the 

minimization version of the problem and propose a scaling based fully polynomial time 



approximation scheme for the minimum knapsack problem. The author compared the 

performance of this algorithm with existing algorithms, which showed that the proposed 

algorithm runs fast and has a good performance ratio in practice 

 

 Knapsack problems have been studied for the past few decades attracting both theorist and 

practitioners. The theoretical interest arises mainly from their simple structure which 

both allows exploitation of a number of combinatorial properties and permits more 

complex optimization problems to be solved through a series of knapsack type. From a 

practical point of view, these problems can model many industrial applications, the most 

classical applications being capital budget, cargo loading and cutting stock.    

 

 The collapsing knapsack problem is a generalization of the ordinary knapsack problem, 

where the knapsack capacity is a non-increasing function of the number of items 

included. Whereas previous methods on the topic have applied quite involved 

techniques, Ulrich et al., (1995) put forward and analyze two rather simple approaches: 

One approach that was based on the reduction to a standard knapsack problem, and 

another approach that was based on a simple dynamic programming recursion. Both 

algorithms have pseudo-polynomial solution times, guaranteeing reasonable solution 

times for moderate coefficient sizes. Computational experiments are provided to expose 

the efficiency of the two approaches compared to previous algorithms 

 



 The deterministic knapsack problem is a well known and well studied NP-hard 

combinatorial optimization problem. It consists in filling a knapsack with items out of a 

given set such that the weight capacity of the knapsack is respected and the total reward 

maximized. In the deterministic problem, all parameters (item weights, rewards, 

knapsack capacity) are known (deterministic). In the stochastic counterpart, some (or all) 

of these parameters are assumed to be random, i.e. not known at the moment the decision 

has to be made. Kosuch et al., (2010) studied the stochastic knapsack problem with 

expectation constraint. The item weights are assumed to be independently normally 

distributed. The authors solved the relaxed version of this problem using a stochastic 

gradient algorithm in order to provide upper bounds for a branch-and-bound framework. 

Two approaches to estimate the needed gradients are applied, one based on Integration 

by Parts and one using Finite Differences. Finite Differences is a robust and simple 

approach with efficient results despite the fact that the estimated gradients are biased; 

meanwhile Integration by Parts is based upon a more theoretical analysis and permits to 

enlarge the field of applications. 

 

 Eleni and Nicos (2010) presented a new exact tree-search procedure for solving two-

dimensional knapsack problems in which a number of small rectangular pieces, each of a 

given size and value, are required to be cut from a large rectangular stock plate. The 

objective is to maximize the value of pieces cut or minimize the wastage. The authors 

considered the case where there are a maximum number of times that a piece may be 

used in a cutting pattern. The algorithm limits the size of the tree search by using a bound 

derived from a Langrangean relaxation of a 0–1 integer programming formulation of the 

problem. Sub-gradient optimization is used to optimize this bound. Reduction tests 



derived from both the original problem and the Lagrangean relaxation produce 

substantial computational gains. The computational performance of the algorithm 

indicates that it is an effective procedure capable of solving optimally practical two-

dimensional cutting problems of medium size. 

 

 The bounded knapsack problem (BKP) is a generalization of the 0-1 knapsack problem 

where a bounded amount of each item type is available. Currently, the most efficient 

algorithm for BKP transforms the data instance to an equivalent 0-1 knapsack problem, 

which is solved efficiently through a specialized algorithm. Pisinger (1995) proposed a 

specialized algorithm that solves an expanding core problem through dynamic programming 

such that the number of enumerated item types is minimal. Compared to other algorithms for 

BKP, the presented algorithm uses tighter reductions and enumerates considerably less item 

types. Computational experiments were presented which showed that the proposed algorithm 

outperforms previous algorithms for BKP. 

 

 The 0-1 knapsack problem is a linear integer-programming problem with a single constraint 

and binary variables. The knapsack problem with an inequality constraint has been widely 

studied, and several efficient algorithms have been published. Balasubramanian and 

Sanjiv (1988) considered the equality-constraint knapsack problem, which has received 

relatively little attention. The authors described a branch-and-bound algorithm for this 

problem, and present computational experience with up to 10,000 variables. An important 

feature of this algorithm is a least-lower-bound discipline for candidate problem selection. 

 



The binary knapsack problem is a combinatorial optimization problem in which a subset of a 

given set of elements needs to be chosen in order to maximize profit, given a budget 

constraint. Dash and Ghosh (2003) studied a stochastic version of the problem in which the 

budget is random. The authors proposed two different formulations of this problem, based on 

different ways of handling infeasibility, and propose an exact algorithm and a local search-

based heuristic to solve the problems represented by these formulations. The authors also 

presented the results from some computational experiments.  

 

The constrained compartmentalized knapsack problem is an extension of the classical integer 

constrained knapsack problem which can be stated as the following hypothetical 

situation: a climber must load his/her knapsack with a number of items. For each item a 

weight, a utility value and an upper bound are given. However, the items are of different 

classes (food, medicine, utensils, etc.) and they have to be loaded in separate 

compartments inside the knapsack (each compartment is itself a knapsack to be loaded 

by items from the same class). The compartments have flexible capacities which are 

lower and upper bounded. Each compartment has a fixed cost to be included inside the 

knapsack that depends on the class of items chosen to load it and, in addition, each new 

compartment introduces a fixed loss of capacity of the original knapsack. The 

constrained compartmentalized knapsack problem consists of determining suitable 

capacities of each compartment and how these compartments should be loaded, such that 

the total items inside all compartments does not exceed the upper bound given. The 

objective is to maximize the total utility value minus the cost of the compartments. This 

kind of problem arises in practice, such as in the cutting of steel or paper reels. Doprado 

and Nereu (2007) presented the problem as an integer non-linear optimization problem 

for which some heuristic methods are designed.  



 

 Knapsack problem has been widely studied in computer science for years. There exist 

several variants of the problem, with zero-one maximum knapsack in one dimension being 

the simplest one. Tauhidul (2009) studied several existing approximation algorithms for the 

minimization version of the problem and propose a scaling based fully polynomial time 

approximation scheme for the minimum knapsack problem. The author compared the 

performance of this algorithm with existing algorithms, which showed that the proposed 

algorithm runs fast and has a good performance ratio in practice. 

  

 Kanniappan et al., (1993) studied the problem of selecting various schemes under the 

integrated rural development program and to maximize the number of beneficiaries so as 

to optimize the annual income generated from each scheme. There are typical constraints 

prescribed by the government in the allocation of the funds to several schemes from the 

budget outlay for integrated rural development each year. Through knapsack algorithm 

model and data from the district rural development agency, they were able to maximize 

the annual income generated from the schemes. 

 

 A procurement decision model for a video rental store is modeled based on inventory 

management, but many classical inventory management principles are inappropriate 

since the commodities (movie titles) are removed from, and after a certain time period, 

returned to inventory. The commodities also have a decaying demand in general; hence 

the video rental store owner (the decision maker) is required to procure new titles 

periodically. There is the question of how to determine which movie titles to acquire, and 



how many copies of each in order to best maximize profit. A demand function is 

presented, and attributes of movie titles in inventory are used to classify candidate’s 

movie titles and predict their future demand. This allows the decision maker to select the 

most profitable candidate items from a list, whilst remaining within a predetermined 

budget. Kok et al., (2007) presented a knapsack model to achieve the above. 

 

 Scogings et al., (1995) presented a knapsack model for student enrolment at the University 

of Natal. The project was part of an effort to find solution to meet the demand for 

accommodation of lecture rooms, which is to double up on the number of time tabled 

period so that no lecture room will be idle for the whole day, due to the steady increase 

in student enrolment over the years. 

 

 Yogesh et al., (2006) addressed the problem of designing a multi-commodity network using 

facilities of a fixed capacity to satisfy a given set of traffic demands. This problem, 

called the network design problem, arises primarily in the design of high-capacity 

telecommunication networks. The k-partition of the network design problem graph is 

introduced which results in a smaller k-node network design problem. The result was that 

a facet inequality of the k-node problem translates into a facet of the original problem 

under fairly mild conditions.  

 Hall et al., (1992) developed a mathematical model for a project funding decision facing 

United State Cancer Institute. The problem was to decide which project to fund given a 

strict limitation on capital availability. The return for each project is calculated and the 



objective is to maximize the returns from the selected projects subject to the capital 

constraint. 

 

 Chan et al., (2005) studied a defense modernization acquisition decision problem using 

multi-criteria optimization model. This model explicitly considers the diverse functions 

of the organization. In particular, the synergisms among the functions are modeled as a 

multiplicative value function. The model highlights how technology acquisitions can be 

affected as the priorities of each organizational function changes. 

 

 The capital budgeting problem is one of the first integer programming problems studied. It 

was first posed by Lorie and Savage and was called Lorie-Savage problem . Bean et al., 

(1987) developed a model for a multi-period version of the Lorie-Savage problem where 

the objective was to maximize net cash present value profit by divesting assets subject to 

certain lower bounds on the return on equity that companies must achieve each year. 

 Bhargara (1992) presented a model for the fleet mix planning of United State Coast Guard as 

a capital budgeting problem. This was to determine a set of new assets that can be 

obtained using a given capital so as to maximize the performance of the fleet. 

Generating a regular season schedule is a demanding task for any sports league. In Europe, 

the creation of a suitable schedule for every national top soccer league not only has to 

address numerous conflicting inner-league requirements and preferences. 



 

Bartsch et al., (1990) considered the case of Australia and Germany, that is the planning 

problem the Deutsche FuBball-Bund and the Osterreichische FuBball-Bund. For both 

leagues they developed a binary integer programming models which yield reasonable 

schedules quickly. 

 

 Hospitals need to constantly produce duty rosters for its nursing staff. Appropriate and 

considerate scheduling of nurses can have an impact on the quality of health care, the 

recruitment of nurses, the development of budgets, and other nursing functions. The 

nurse budget problem has been the subject of many academic studies. Cheang et al., 

(2003) presented a binary integer programming model to solve this problem. 

 

 Bard et al., (2003) presented a full-scale integer programming model of the tour scheduling 

problem as it arises in the United State Postal services, and to examine several scenarios 

aimed at reducing the size of the workforce. The problem was formulated as a pure 

binary integer problem and was solved using CPLEX. 

  

The objective of project scheduling is to determine start dates and the labour resources to be 

assigned to each activity in order to complete a project on time. By adjusting start dates 

within available slack times and altering labour levels, the daily labor demand profile can 



be changed. The objective of personnel scheduling is to determine how many of each 

feasible workday tour are required to satisfy a given labour demand profile while 

minimizing labour costs and overheads. Integrating these two problems permits the 

simultaneous determination of start dates, labour levels, and tours for a minimum-cost 

and on time schedule. Bailey et al., (1995) developed single- and multiple- resource 

binary integer programming models for this integrated problem. 

 

 Speeding up knapsack problem, one of the NP complete problems, which could be used to 

design public-key cryptosystems, was presented by Lu Xin and Feng Denggu (2004) 

using quantum algorithm. How to use Grover's quantum searching algorithm to speed up 

the knapsack problem was presented based on computational complexity theory. 

Comparisons of quantum searching algorithm with other factoring algorithm were 

delivered and the factors that affected the performance of quantum algorithms were 

discussed from group theory point of view. The future of the quantum algorithms was 

also augmented in the later. 

 Maya and Dipti (2011) presented a research project on using Genetic Algorithms (GAs) to 

solve the 0-1 Knapsack Problem (KP). The Knapsack Problem is an example of a 

combinatorial optimization problem, which seeks to maximize the benefit of objects in a 

knapsack without exceeding its capacity. The author’s research contains three sections: 

brief description of the basic idea and elements of the GAs, definition of the Knapsack 

Problem, and implementation of the 0-1 Knapsack Problem using GAs. The main focus 

of the research was on the implementation of the algorithm for solving the problem. In 

the program, he implemented two selection functions, roulette-wheel and group 



selection. The results from both of them differed depending on whether to use elitism or 

not. Elitism significantly improved the performance of the roulette-wheel function. 

Moreover, the author tested the program with different crossover ratios and single and 

double crossover points but the results given were not that different. 

 

 Yunhong and Naroditskiy (2008) modeled a budget constrained keyword bidding in 

sponsored search auctions as a stochastic multiple-choice knapsack problem (S-MCKP) 

and proposed a new algorithm to solve SMCKP and the corresponding bidding 

optimization problem. The author’s algorithm selects items online based on a threshold 

function which can be built/updated using historical data. Their algorithm achieved about 

99% performance compared to the offline optimum when applied to a real bidding 

dataset. With synthetic dataset, its performance ratio against the offline optimum 

converges to one empirically with increasing number of periods. 

 

 An instance of the geometric knapsack problem occurs in air lift loading where a set of 

cargo must be chosen to pack in a given fleet of aircraft. Chocolaad  (1998) presented a 

new heuristic to solve this problem in a reasonable amount of time with a higher quality 

solution then previously reported. The author also reported a new tabu search heuristic to 

solve geometric knapsack problems. He then employed a novel heuristics in a Master and 

slave relationship, where the knapsack heuristic selects a set of cargo and the packing 

heuristic determines if that set is feasible. The search incorporates learning mechanisms 

that react to cycles and thus is robust over a large set of problem sizes 



.  

 Computational grids are distributed systems composed of heterogeneous computing 

resources which are distributed geographically and administratively. These highly 

scalable systems are designed to meet the large computational demands of many users 

from scientific and business orientations. However, there are problems related to the 

allocation of the computing resources which compose of a grid. Van dester D. C. (2008) 

studied the design of a Pan-Canadian grid as a binary integer programming model. The 

design exploits the maturing stability of grid deployment toolkits, and introduces novel 

services for efficiently allocating the grid resources. The changes faced by this grid 

deployment motivate further exploration in optimizing grid resource allocations. By 

applying this model to the grid allocation option, it is possible to quantify the relative 

merits of the various possible scheduling decisions. Using this model, the allocation 

problem was formulated as a knapsack problem. Formulation in this manner allows for 

rapid solution times and results in nearly optimal allocations. 

 

 In recent years several integrated supply chain optimization models have been studied that 

require the solution of knapsack problems. Examples are market selection problems 

where a supplier can choose which markets to serve to maximize a measure of total 

profit. Such problems are of independent interest but also appear as pricing problems in a 

branch-and-price solution approach to single-sourcing problems in which a set of 

retailers (or markets) needs to be assigned to a set of supply facilities to minimize total 

system cost. Sharkey et al., (2006) considered a large class of knapsack problems where 

the objective function is the sum of one linear function of the variables plus a nonlinear 

function of another linear function of the variables, subject to a knapsack constraint. 



They showed that there always exists an optimal solution to such problems and can be 

generalized to the case of multiple knapsack constraints. 

 

 Last few years have seen exponential growth in the area of web applications, especially, e-

commerce and web-services. One of the most important qualities of service metric for 

web applications is the response time for the user. Web application normally has a multi-

tier architecture and a request might have to traverse through all the tiers before finishing 

its processing. Therefore, a request’s total response time is the sum of response time at 

all the tiers. Since the expected response time at any tier depends upon the number of 

servers allocated to this tier, many different configurations (number of servers allocated 

to each tier) can give the same quality of service guarantee in terms of total response 

time. Naturally, one would like to find the configuration which minimizes the total 

system cost and satisfies the total response time guarantee. Zhang et al., (2004) modeled 

this problem as binary integer optimization problem. 

 

 Allocation of resources under uncertainty is a very common problem in many real-life 

scenarios. Employers have to decide whether or not to hire candidates, not knowing 

whether future candidates will be stronger or more desirable. Machines need to decide 

whether to accept jobs without knowledge of the importance or profitability of future 

jobs. Consulting companies must decide which jobs to take on, not knowing the revenue 

and resources associated with potential future requests. 

 



 More recently, online auctions have proved to be a very important resource allocation 

problem. Advertising auctions in particular provide the main source of monetization for a 

variety of internet services including search engines, blogs, and social networking sites. 

Additionally, they are the main source of customer acquisition for a wide array of small 

online business, of the networked world. In bidding for the right to appear on a web page 

(such as a search engine), advertisers have to trade off between large numbers of 

parameters, including keywords and viewer attributes. In this scenario, an advertiser may 

be able to estimate accurately the bid required to win a particular auction, and benefit 

either in direct revenue or name recognition to be gained, but may not know about the 

trade off for future auctions. All of these problems involve an online scenario, where an 

algorithm has to make decisions on whether to accept an offer, based solely on the 

required resource investment (or weight) and projected value of the current offer, with 

the total weight of all selected offer not exceeding a given budget. When the weights are 

uniform and equal to the weight constraint, the problems above reduces to the famous 

secretary problem which was first introduced by Dynkin  (1963). Moshe et al., (2008), 

presented a binary integer programming model for this problem. 

 

Kleinberg et al., (2007) studied the matriod secretary problem as a binary integer 

programming problem in which the elements of a weighted matriod arrive in a random 

order. As each element is observed, the algorithm makes an irrevocable decision to 

choose it or skip it, with the constraint that the chosen elements must constitute an 

independent set. The objective is to maximize the combined weight of the chosen 

elements. 



 

 Borgs et al., (2005) presented a model to design bidding strategies for budget-constrained 

advertisers in sponsored search auctions and slot selection. 

 The knapsack problem model has been applied to many real life applications either as a 

stand alone model or as a combination of models. Eilon and Williamson (1988) 

developed budget allocation by ranking and knapsack to solve a particular problem in 

determining which projects should be selected, from a given array, for implementation 

subject to budgetary constraint. 

 

 The strike-force asset allocation problem consists of grouping strike force assets into 

packages and assigning these packages to targets and defensive assets in a way that 

maximizes the strike force potential. Chi-Wei et al., (2001) modeled this problem as 

binary integer programming formulation. 

 The application of placement problem arises in cluster of servers that are used for hosting 

large, distributed applications such as internet services. Such clusters are referred to as 

hosting platforms. Hosting platforms imply a business relationship between the platform 

provider and the application providers: the latter pay the former for the resources on the 

platform. In return, the platform provider provides guarantees on resources availability to 

the applications. This implies that a platform should host only applications for which it 

has sufficient resources. The objective of the application placement problem is to 

maximize the number of applications that can be hosted on the platform while satisfying 



their resource requirements. Bhuvan et al., (2005) studied the online version of the 

application platform problem as a binary integer programming problem. 

 

 Knapsack problems with setups find their application in many concrete industrial and 

financial problems. Moreover, they also arise as sub problems in a Dantzig-Wolfe 

decomposition approach to more complex combinatorial optimization problems, where 

they need to be solved repeatedly and therefore efficiently. Here, we consider the 

multiple-class integer knapsack problem with setups. Items are partitioned into classes 

whose use imply a setup cost and associated capacity consumption. Item weights are 

assumed to be a multiple of their class weight. The total weight of selected items and 

setups is bounded. The objective is to maximize the difference between the profits of 

selected items and the fixed costs incurred for setting-up classes. A special case is the 

bounded integer knapsack problem with setups where each class holds a single item and 

its continuous version where a fraction of an item can be selected while incurring a full 

setup. 

 

Chang Sung-Ho (1998) presented k-set inequality algorithm techniques for obtaining 

strategies to allocate rooms to customers belonging to various market segments, 

considering time dependent demand forecasts and a fixed hotel capacity. This technique 

explicitly accounts for group and multi-night reservation requests in an efficient and 

effective manner. This is accomplished by combining an optimal discrete-dynamic 



model for handling single-night reservation requests with a static integer programming 

model, developed to handle multi-night reservation requests.  

 

The multidimensional knapsack problem (MKP) is a well-known, strongly NP-hard problem 

and one of the most challenging problems in the class of the knapsack problems. In the 

last few years, it has been a favorite playground for meta-heuristics, but very few 

contributions have appeared on exact methods. Renata and Grazia (2009) introduced an 

exact approach based on the optimal solution of sub problems limited to a subset of 

variables. Each sub problem is faced through a recursive variable-fixing process that 

continues until the number of variables decreases below a given threshold (restricted core 

problem). The solution space of the restricted core problem is split into subspaces, each 

containing solutions of a given cardinality. Each subspace is then explored with a 

branch-and-bound algorithm. Pruning conditions are introduced to improve the 

efficiency of the branch-and-bound routine.  

 

 Lin and Wei (2001) proposed an efficient linear search algorithm for solving the 0-1 

knapsack problem. A net profit criterion is included in the linear search algorithm to 

generate a rescheduled candidate set. Four hard cases presented were tested and 

compared with the revised approach. Their results demonstrate that the approach 

proposed outperforms the previous works in terms of producing a small candidate set 

while retaining most of the information on optimal. 

 



The knapsack problem is believed to be one of the “easier”-hard problems. Not only can it be 

solved in pseudo-polynomial time but also decades of algorithmic improvements have 

made it possible to solve nearly all standard instances from the literature. Pisinger (2005) 

gave an overview of all recent exact solution approaches and to show that the knapsack 

problem is still hard to solve for these algorithms for a variety of new test problems. 

These problems are constructed either by using standard benchmark instances with larger 

coefficients or by introducing new classes of instances for which most upper bounds 

perform badly. The first group of problems challenges the dynamic programming 

algorithms while the other groups of problems are focused towards branch and bound 

algorithms. Numerous computational experiments with all recent state-of-the-art codes 

are used to show that knapsack problem (KP) is still difficult to solve for a wide number 

of problems. One could say that the previous benchmark tests were limited to a few 

highly structured instances, which do not show the full characteristics of knapsack 

problems. 

 

2.1 SUMMARY 

In this chapter, we presented the review of literature by considering the numerous studies by 

researchers and academicians in areas of resource scheduling and the applications of 

knapsack. In the next chapter, we shall present the methods for solving the knapsack 

problem 

CHAPTER THREE 



METHODOLOGY 

3.0 INTRODUCTION 

This chapter provides discussions of the methods for solving knapsack problems. The knapsack 

problem is a specific type of integer programming problem. The knapsack formulation is the 

same as a basic integer program with only one constraint and binary variables. Without loss of 

generality, the knapsack problem is assumed to be sorted in the form a1 ≥  a2 ≥…≥ ai and ∑ai ≥  b. 

  

 Formally, a knapsack problem is defined as: 

   Maximize c
T
x 

   Subject to: a
T
x ≤  b  

         x  {0, 1}
N
 . 

 Because the knapsack problem is formulated for sets of solutions containing only zeroes and ones, it 

is ideally suited to model decision systems. One of these types of problems is the capital 

budgeting problem in which a decision maker wishes to maximize profit from choosing how 

much to budget to a set of projects or division. 

 

3.1 METHODS FOR SOLVING KNAPSACK PROBLEMS 



There are two basic methods for solving the 0-1 knapsack problems. These are the Branch-

and-Bound and the Dynamic Programming methods. However, heuristics approaches can 

also be employed in solving large scale knapsack problems. 

 

3.1.1 The Branch and Bound Method 

 Branch and bound is a class of exact algorithms for solving optimization problems, 

especially integer programming problems and combinatorial optimization problems. 

Branch and bound uses the linear relaxation as starting point to search for the optimal 

integer solution. Every linear relaxation solution that is found during the branch and 

bound process is given a corresponding node on the branching tree. Once a node’s 

relaxations point has been found, any variable with a fractional value may be chosen as 

the branching variable. Two child nodes with corresponding branches are created from 

this parent node. One branch requires the branching variable to be greater than or equal 

to its relaxation value rounded up to the nearest integer. The other branch requires the 

branching variable to be less than or equal to the relaxation solution rounded down to the 

nearest integer. Using these values, two new relaxation points are found and two more 

nodes are created in the tree. This process is repeated until all nodes have been fathomed. 

 A fathomed node is finished, and no more nodes or branches are created below any 

fathomed nodes. Fathoming a node in a branch and bound algorithm occurs under three 

circumstances. If a node is found that: (i) cannot produce a feasible solution to the linear 

relaxation, then that node is fathomed. (ii) returns an integer solution, then that node is 

fathomed. Although other feasible solutions may exist below that node, none will be 



better than that node’s solution.  (iii) Has a linear relaxation solution with a value lower 

than the value of a previously discovered integer solution, then that node is fathomed. 

 

 

 

3.1.2 Dynamic Programming Method 

Dynamic programming is a method for solving optimization problems. The idea is to 

compute the solutions to the sub-problems once and store the solutions in a table, so that 

they can be reused (repeatedly) later. 

The idea of developing Dynamic programming Algorithm is as follows 

Step 1: Structure: Characterize the structure of an optimal solution 

         Decompose the problems into smaller problems, and find a relation between the  

         structure of the optimal solution of the original problem and the solutions of the  

        smaller problems 

Step 2: Principle of Optimality: Recursively define the value of an optimal solution  

           Express the solution of the original problem in terms of optimal solutions for 



          smaller problems. 

Step 3: Bottom-up computation: Compute the value of an optimal solution in a bottom-up  

            fashion by using a table structure. 

Step 4: Construction of optimal solution: Construct an optimal solution from computed 

            information. 

 

3.1.3 Heuristic Scheme 

A heuristic scheme according to Amponsah and Darkwah (2009) may be employed to solve 

knapsack problems instead of branch-and-bound method. The steps for the heuristic 

scheme from the authors are outlined as follows: 

Step 1: Input the vector of weight and item values 

Step 2: Input random initial solutions S0 and check for feasibility of S0 by the constraint  

          equation. If S0 is not feasible, discard and choose another S0 

Step 3: Find a feasible solution and compute the objective function values f(S0) 

Step 4: Obtain a new solution S1 by flip operation and check for feasibility, continue the  

          flip operation until the solution S1 obtained is feasible. Compute the objective 



         Function value for f(S1). 

        If f(S1) > f(S0) then  S0 = S1 

       else maintain S0 and discard S1. 

Step 5: Repeat Steps 3 through 4 for all feasible solutions 

Step 6: Stop for non-improving solution over a number of iterations and output the best 

            Feasible result so far 

 

3.1.4 Simulated Annealing 

Simulated annealing is a local search algorithm capable of escaping from local optima. In its 

case of implementation, convergence properties and its capability of escaping from local 

optima has made it popular algorithm over the past years. Simulated annealing is so 

named because of its analogy to the process of physical annealing with solids in which a 

crystalline solid is heated and then allowed to cool very slowly until it achieves stable 

state. 

At each iteration of simulated annealing, the objective function values for two solutions (the 

current solution and a newly generated neighboring solution) are compared. Better 

solutions are always accepted, while a fraction of inferior solutions are accepted in the 

hope of escaping local optima in search of global optima. The probability of accepting 



non-improving solutions depends on a temperature parameter, which is non increasing 

with each iteration of the algorithm. 

The key algorithm feature of simulated annealing is that it allows worse moves (i.e. moves to 

a solution that corresponds to a worse objective value function). As the temperature is 

decreased to zero, worse moves occur less frequently and the solution distribution 

associated with the inhomogeneous Markov chain that models the behavior of the 

algorithm converges to a distribution in which all the probability is concentrated on the 

set of globally optimal solutions implying the algorithm converges asymptotically. 

To describe simulated annealing algorithm, the following definitions are needed. Let  be the 

solution space: define ( ) to be the neighborhood function for v  . Simulated 

annealing starts with an initial solution   . A neighborhood solution 
1  

 ( ) is then 

generated randomly in most cases. Simulated annealing is based on the metropolis 

acceptance criterion, which models how a thermodynamic system moves from its current 

solution    to a candidate solution 
1  

 ( )  in which the energy content is being 

minimized. The candidate solution 
1  

is accepted as the current solution based on the 

acceptance probability. 

In this situation, finite time implementations of simulated annealing algorithm are 

considered, which can no longer guarantee to find an optimal solution, but may result in 

faster executions without losing too much on the solution quality. Below are the steps for 

implementing simulated annealing: 



(i) Select an initial solution    = (x1,…….,xn) 
 

  ; an initial temperature t = t 

(ii) Control parameter value ; final temperature e; a repetition schedule, M that defines 

the number of iterations executed at each temperature; 

(iii)Incumbent solution ⃪ f ( ; 

(iv)       Repeat; 

(iv)  Set repetition counter m = 0; 

(v)  Repeat; 

(vi)      Select integer i from the set {1,2,…,n} randomly; 

(viii)    If xi = 0, pick up item i , i.e. set xi = 1, obtain new solution 
1 

 then  

(ix)     While solution 
1 

 is infeasible, do 

(x)      Drop another item from  randomly; denote the new solution as 
1 
 

(xi)     Let  = f (  - f (   

(xii)    While   0 or random (0,1) < e
( ) 

do    ⃪  

(xiii)    Else 



      (xiv)    Drop item i and pick another item randomly, get new solution   

(xv)  Let  = f (  - f (   

(xvi)   While   0 or random (0,1) < e
( ) 

do    ⃪  

      (xvii)   End if 

     (xix)   If incumbent solution < f (  incumbent solution  ⃪ f ( ;  

      (xx)     m = m + 1; 

      (xxi)   Until m = M 

     (xxii)  Set t = a * t; 

     (xxiii)  Until t < e 

A set of parameters need to be specified that govern the convergence of the algorithm, i.e. 

initial temperature t0, temperature control , final temperature e, and Markov chain length 

M, in order to study the finite time performance of simulated annealing algorithm. Here t0 

should be the maximal difference in cost between any two neighboring solutions. 

 

3.1.5 Genetic Algorithm 



A genetic algorithm (GA) can be described as an intelligent probabilistic search algorithm 

and is based on the evolutionary process of biological organisms in nature. In the course 

of evolution, natural populations evolve according to the principles of nature selection 

and survival of the fittest. Individuals who are most successful in adapting to their 

environment will have a better chance of surviving and reproducing, while individuals 

who are less fit will be eliminated. This means that the genes from highly fit individuals 

will spread to an increasing number of individuals in each successive generation. The 

combination of good characteristics from highly adapted parents may produce even more 

fit offspring. In this way, species evolve to become increasingly better adapted to the 

environment. 

A GA simulates these processes by taking an initial population of individuals and applying 

genetic operators in each reproduction. In optimization terms, each individual in the 

population is encoded into a string or chromosome that represents a possible solution to a 

given problem. The fitness of an individual is evaluated with respect to a given objective 

function. Highly fit individuals or solutions are given opportunities to reproduce by 

exchanging pieces of their genetic information in a crossover procedure with other highly 

fit individuals. This produces new offspring solutions who share some characteristics 

taken from both parents. Mutation is often applied after crossover by altering some genes 

in the strings. The offspring can either replace the whole population (generational 

approach) or replace less fit individuals (steady-state approach). This evaluation-

selection-reproduction cycle is repeated until a satisfactory solution is found. 

Below are the steps of a simple GA 

Step 1: Generate an initial population 



Step 2: Evaluate fitness of individuals in the population 

Step 3: Repeat 

 Select individuals from the population to be parents 

 Recombine (mate) parents to produce children 

 Mutate the children and Evaluate fitness of the children 

 Replace some or all of the population by the children until 

Step 4: You decide to stop where you report the best solution so far 

THE NATURE OF AN INDIVIDUAL IN OUR GA ENVIRONMENT 

In the real-life we know how individuals look like. In the GA environment, how individuals 

look like (their representation or chromosome) is ones choice. 

In the GA environment for the KP we shall choose individuals to be n bit binary strings 

individual 0 1 0 0 0 1 0 

Step 1: An initial population containing six individuals 

 Individual 

1 1 1 0 0 0 0 0 

2 1 0 0 1 0 0 0 

3 0 0 0 0 0 0 1 

4 0 0 1 0 1 0 0 

5 0 1 1 0 0 0 0 

6 0 1 0 0 0 1 0 



has an interpretation in terms of the KP of x2 = x6 = 1 and x1 = x3 = x4 = x5 = x7 = 0 

Step 2: Evaluation of fitness 

The objective function value ( ) equates to how good a solution is, that is, its fitness. 

In general, an individual population is randomly generated in some way. 

Step 3: Selection of individuals as parents 

In the real-life, individuals are independent being who for their own reasons decide to 

become parents. But in the GA environment we have to make a choice as to who will 

become a parent. In the GA environment for KP we shall choose to select parents by 

binary tournament selection. In binary tournament selection, we first randomly select two 

individuals from the population. We then select from these two the individual with the 

best fitness to be the first parent (individual 5 in this case). 

Step 4 : Mate parents to produce children 

In the real-life, parents mate to produce children. 

In the GA environment for KP, we shall have a single child from two parents by uniform 

crossover. In uniform crossover, each bit in the child solution is created by: 

repeat for each bit in turn 

 choose one of the two parents at random 



 set the child bit equal to the bit in the chosen parent 

We can also have other ways as outlined below: 

One-Point Crossover 

In one-point crossover, we randomly select a point between two adjacent bits, cut the parents 

into two segments and create two children by rejoining the segments. For example, 

cutting parents we had before between bits 3 and 4 

 parent 1 0 1 1 0 0 0 0 produces segments 0 1 1 and 0 0 0 0  

 parent 2 0 1 0 0 0 1 0 produces segments 0 1 1 and 0 0 1 0 

 to give                 child 1               0 1 1      0 0 1 0 

                             child 2              0 1 0      0 0 0 0   

where child 1 (0110010) is composed of the first sgment of parent 1 and the second segment 

of parent 2; child 2 (0100000) is composed of the first segment of parent 2 and the 

second segment of parent 1. 

Restricted One-Point Crossover 

From the one-point crossover example presented above we could have produced children 

who were identical to the parents (duplicates, clones) if we had chosen to cut the parents 

bits 1 and 2, bits 2 and 3: or bits 6 and 7. Restricted one-point crossover represents the 

cut point to ensure that the children are different fro the parents. That is easily done by 



simply restricting the cut point to be between the first bit where the two parents differ 

(bit 3 above) and the last bit where the two parents differ (bit 6 above)  

(i)Fusion, as uniform crossover except that bits are taken from the parents with probabilities 

proportional to their fitness; 

(ii)Two-point crossover, as one-point crossover (where each parent was cut into two 

segments) except that each parent is cut into three segments and two children produced 

by taken alternate segments from each parent. 

Indeed, any way of combining two bit strings together could be used to produce children 

from two parents. Note that, one property that crossover schemes typically have in 

common is that bits which are the same in the parents are the same in the children. 

Step 5: Mutation 

Mutation corresponds to small changes that are stochastically applied to the children. Taking 

our child 0110010 produced by uniform crossover we could decide to make a small 

change, typically to randomly select one bit and to change its value (flip it). For instance 

we might randomly select bits 2 and flip it to give 0010010. Alternatively, we might 

decide (according to some probabilistic criterion) to make no mutation changes to the 

child. Mutation can be applied with a constant probability or with an adaptive probability 

that changes over the course of the algorithm (perhaps in response to the number of 

iterations that have passed or in response to population characteristics). 

Step 6: Infeasibility 



One problem that must be addressed is that (most likely) not every individual (binary bit 

string) represents a feasible solution in terms of the underlying problem that is being 

solved, for instance, for our example an individual mar violate the constraints of the KP. 

There are a number of strategies for dealing with constraints and infeasible solutions in Gas 

and these are detailed below. 

The first strategy is to use a representation that automatically ensures that all solutions are 

feasible. For some problems such representations exist, for example, the set covering 

problem but for the majority of the constraint problems this strategy is not possible. 

The second strategy is to design a heuristic operator (often called in the literature a repair 

operator) that guarantees to quickly transform any infeasible solution into a feasible 

solution. Such a strategy is possible for KP and we illustrate this below 

How to Deal with Constraints and Infeasible solutions in GA 

 

Strategy Description 

1 To use a representation that automatically ensures all solutions are feasible 

2 To design a heuristic operator that guarantees to quickly transform any infeasible 

solution into a feasible solution 

3 To separate the evaluation of fitness and infeasibility 

4 To apply a penalty function to penalize the fitness of any infeasible solutions 

Heuristic Operator 



For the KP, designing a heuristic operator that guarantees to quickly transform any infeasible 

solution into feasible solution is trivial, for example, 

repeat until solution feasible: 

    set xi = 0 

 

Population Replacement 

We will use a steady-state population replacement strategy. With this each new child is 

placed in the population as soon as it is ready (after mutation and application of the 

heuristic operator in this case). It is common in GA to keep the population size constant 

hence placing the child in the population means selecting a member of the population to 

kill (delete). A logical approach is to kill the member of the population with the worst 

fitness. 

 

3.2   SUMMARY 

In this chapter, we considered the methods for solving knapsack problem. In addition the 

heuristic algorithm by Amponsah and Darkwah (2009) was introduced and explained. 

In the next chapter, we shall present the data collection and analysis of the study. 

  



 

 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 



In this chapter, we shall model a company’s advertisement problem as a 0-1 knapsack 

problem and applied heuristics algorithm to solve our model. 

The aim is to optimize the capital allocated for advertising in the business so that the business 

gets the best combination of adverts, through different media that would reach the largest 

audience possible with a minimal cost. The general practice is that most establishments 

do not have a well structured plan on how to allocate funds for advertising. Funds are 

allocated by the discretion of people or departments in charge. These methods are 

faulted, and are basically inefficient as funds available are not optimally utilized. 

4.1 DATA ANALYSIS AND RESULTS 

The Bata Shoe Company has contracted with an advertising firm (S.T.B  McCANN) to 

determine the types and amount of advertising it should have for its stores. The three 

types of advertising available are radio, television commercials and newspaper ads. The 

retail store desires to know the number of each type of advertisement it should purchase  

in order to maximize exposure. It is estimated that each ad and commercial will reach the 

following potential audience and cost the following amount.  

 

 

 

 



Table 4.1: Cost and Benefits of Placing an advert in a Media  

TYPE OF 

ADVERTISEME

NT 

EXPOSURE (PEOPLE/AD OR         

COMMERCIAL) 

              (,000) 

COST  

GH¢(,000) 

Television commercial  20 15 

Radio commercial  12 8 

Newspaper ad  9 4 

 

The following resource constraints exist: 

(i) There is a budget limit of GH¢100,000 available for advertising. 

(ii) The television station has enough time available for four commercials. 

(iii) The radio station has enough time available for six radio commercials. 

(iv) The newspaper has enough space available for five ads. 

The problem here is to select media types of adverts in such a way that the widest reach of 

people would be achieved without over shooting the amount allocated for adverts. 

In comparison to the knapsack problem model, the holding capacity of the bag is the resource 

limit, given here as the advertising budget. The items to be considered are the different 



media that can be used, the weight of any item is the cost of placing an advert using that 

media, and the value of the item is the reach of the media type to the people. 

The problem can be modeled as: 

 

                        Maximize    R = 
n

i=1 rimi   

  Subject to   
n

i=1 wimi    W 

   mi  {0, 1}
N
,     i = 1,… , n. 

 

 

where;  

R = Total reach 

ri = Reach of each media or item 

mi = Number of adverts placed using each media 

wi = Cost of placing an advert in each media  



W = Total amount available for adverts (resource limit) 

Thus, 

Maximize R= 20  + 12  +9  

Subject to   15  + 13  +4  ≤ 100 

To carry out the computation of the proposed model, we applied the heuristics algorithm 

coded in Fortran 90. The feature of the software permits the input data to be fixed into 

the code. The Software displays the final optimal solution for the problem. However, a 

walk through of the algorithm with our model gave the computational iterative values for 

the various optimal solutions as shown in Table 4.2 

The Fortran 90 code is shown in Appendix_1. 

 

RESULTS 

The various feasible combinations of media types to be selected to achieve optimal reach of 

people at minimum cost can be seen from Table 4.2. 

The best solution among them was 153 reach of people at a cost of 97 consisting of 

advertising on 4 TV, 6 Radios and 5 Newspaper ads thus iteration 26 in Table 4.2. 

 



CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

 We have described the advert placement and selection problem of a company as a 0-1 

knapsack programming problem. We applied Heuristics algorithm to solve the 

company’s advert placement and selection problem. Our research focused on the use of 

the Knapsack problem for placement and selection of adverts given a limited available 

fund for a particular company in Ghana. It can however be applied to any situation that 

can be modeled as a 0-1 knapsack problem. 

5.1 CONCLUSIONS 

 This thesis seeks to solve a real-life problem of a Company in Ghana using heuristics 

algorithm. It was observed that the solution that gave maximum achievable value was {3, 

4, and 5}. This means that the company should spend a total cost of ninety seven 

thousand Ghana cedis (GH¢97,000) to obtain an optimal reach of one hundred and fifty 

three thousand (153,000) people, consisting of placing three TV, four radio, and five 

newspaper advertisement slots. 

 Currently, as at the time of this work, there is no such method for determining what media 

types to be used and in what quantity to be placed by the company. The media are chosen 

using guess work and by the discretion of the people in charge. 



For the data used for our analysis, the company using their crude approach arrived at the 

following conclusion; placed a total of two TV, six radio, and five newspaper adverts, 

thus {2, 6, 5}. Total reach achieved was one hundred and fifty two thousand (152,000) 

people at the total cost of ninety eight thousand Ghana cedis (GH¢98,000).  

 

5.2 RECOMMENDATIONS 

 The use of computer application in computation gives a systematic and transparent solution 

as compared with an arbitrary method. Using the more scientific Knapsack problem 

model for the placement and selection of the company’s advert slot gives a better result. 

Management may benefit from the proposed approach for placement and selection of 

adverts to guarantee optimal reach of people. We therefore recommend that our 

Knapsack problem model should be adopted by the company for advert placement and 

media planning. 
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APPENDIX_1 

#include <stdio.h> 

double min (double a, bouble b) { 

         return a < b ? a: b ; 

} 

struct Bounty { 

             int value; 

             double weight; 

}; 

struct Bounty A = {20, 15}, 

                       B = {12, 8} 

                       C = {9, 4} 

                       S = {0, 100} 

#define CALC(V) current.V = nA * A.V + nB * B.V + nC * C.V 

int main(void) { 



        int nA, nB, nC, max_A, max_B, max_C; 

        int best_amounts(3); 

         best.value = 0; 

        max_A = 4; 

        max_B = 6; 

        max_C = 5; 

        for (nA = 0; nA <= max_A; nA++) { 

               for (nB = 0; nB <= max_B; nB++) { 

                           for (nB = 0; nB <= max_B; nB++) { 

                                  CALC (value); 

                                  CALC (weight); 

                                  if (current.value > best.value && current.weight <= sack.weight) { 

                                          best.value = current.value; 

                                          best.weight = current.weight; 

                                          best_amount[0] = nA; 



                                          best_amount[1] = nB; 

                                          best_amount[2] = nC; 

                                   } 

                             } 

                      } 

           } 

         printf (“Maximum value achievable is %d\n”, best.value ); 

         printf(“This is achieved by carrying (one solution) %d A, %d B and %d C\n”; 

                  best_amounts[0], best_amounts[1], best_amounts[2]; 

         printf(“The weight is  %4.1f , best.weight); 

        return 0; 

}  

 

 

 



APPENDIX_2 

Table 4.2: Optimal Solutions for the various iterative stages 

ITERATION ADVERT 

PLACED 

OPTIMAL 

REACH 

OPTIMAL 

COST 

1 {0,0,5} 45 20 

2 {0,1,5} 57 28 

3 {0,2,5} 69 36 

4 {0,3,5} 81 44 

5 {0,4,5} 93 52 

6 {0,5,5} 105 60 

7 {0,6,5} 117 68 

8 {1,0,5} 65 35 

9 {1,1,5} 72 43 

10 {1,2,5} 84 51 

11 {1,3,5} 96 59 



12 {1,4,5} 108 67 

13 {1,5, 5} 120 75 

14 {1,6,5} 132 83 

15 {2,0,5} 80 50 

16 {2,1,5} 92 58 

17 {2,2,5} 104 66 

18 {2,3,5} 116 74 

19 {2,4,5} 128 82 

20 {2,5,5} 140 90 

21 {2,6,5,} 152 98 

22 {3,0,5} 105 65 

23 {3,1,5} 117 73 

24 {3,2,5} 129 81 

25 {3,3,5} 141 89 



26 {4,6,5} 153 97 

27 {5,5,3} 147 97 

28 {3,6,1} 141 97 

29 {4,0,5} 125 80 

30 {4,1,5} 137 88 

31 {4,2,5} 149 96 

32 {4,3,4} 152 100 

33 {4,4,2} 146 100 

34 {4,5,0} 140 100 

35 INFEASIBLE INFEASIBLE INFEASIBLE 

36 {5,0,5} 145 95 

37 {5,1,4} 148 99 

38 {5,2,2} 142 99 

39 {5,3,0} 136 99 



40 INFEASIBLE INFEASIBLE INFEASIBLE 

41 INFEASIBLE INFEASIBLE INFEASIBLE 

42 INFEASIBLE INFEASIBLE INFEASIBLE 

 

 

 

 

 

 


