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Abstract—Every organization subsists on data, which is a 

quintessential resource. Quite a number of studies have been 

carried out relative to procedures that can be deployed to 

enhance data protection. However, available literature indicates 

most authors have focused on either encryption or encoding 

schemes to provide data security. The ability to integrate these 

techniques and leverage on their strengths to achieve a robust 

data protection is the pivot of this study. As a result, a data 

protection model, dubbed Harricent_RSECC has been designed 

and implemented to achieve the study’s objective through the 

utilization of Elliptic Curve Cryptography (ECC) and Reed 

Solomon (RS) codes. The model consists of five components, 

namely: message identification, generator module, data encoding, 

data encryption and data signature.  The result is the generation 

of the Reed Solomon codewords; cipher texts; and generated 

hash values which are utilized to detect and correct corrupt data; 

obfuscates data; and sign data respectively, during transmission 

or storage. The contribution of this paper is the ability to 

combine encoding and encryption schemes to enhance data 

protection to ensure confidentiality, authenticity, integrity, and 

non-repudiation. 
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Reed Solomon; security 

I. INTRODUCTION 

A. Background of Study 

The advent of computerized systems and networks has 
been beneficial to organizations and has subsequently 
enhanced their operations. This has resulted in the generation 
of larger quantum of data to augment the activities of these 
organizations. Data produced by these organizations are 
considered a major resource, therefore resulting in 
organizations adopting strategies that can protect this 
important resource from being misused. As a quintessential 
resource, comprehensive techniques are provided and 
instituted by these organizations frequently to offer protection 
to this data [1]. 

Though protective mechanisms are instituted, there is also 
an increase in threats to undermine organizations’ operations. 
Notwithstanding, the insurgence of adversary’s attacks have 
consistently hampered the functional activities of 
organizations over the past years and was colossal during the 
COVID-19 pandemic era. To ameliorate this insurgence, 
organizations started scrambling for solutions to protect their 
data. In this regard, researchers began to also seek for 

solutions to mitigate this insurgence of threats and attacks 
through the development of robust techniques and methods to 
prevent loss of data and unauthorized access and modification. 
It is on the basis of the aforementioned, that it is always 
important for industry and researchers to stay a step ahead of 
attackers in the preservation of data in transit and storage, 
hence, the call for this research. 

As several research have postulated, most security systems 
have focused on either using encoding or encryption 
strategies/techniques to guarantee the safety and accuracy of 
data [2]. Whereas the encoding schemes add extra bits to the 
original data to aid in error detection and correction, in order 
to maintain the integrity of messages. The encryption 
schemes, on the other hand, ensure messages transmitted or 
stored are obfuscated to prevent unauthorized access and 
modification in order to maintain the authenticity and 
confidentiality of messages. 

Examples of data encoding and encryption schemes 
include Reed Solomon codes, Reed-Muller codes, checksum, 
and AES, RSA, ECC, Blowfish among others have emerged to 
offer protection to data  [3]. The encoding and encryption 
schemes are aimed at preserving the confidentiality, 
authenticity, integrity and non-repudiation (CAIN) of data. 
The utilization of encoding scheme over encryption 
algorithms, even though, offers security but it is ineffective to 
provide optimal protection due to unauthorized access or 
alteration of data as a consequence of adversaries’ activities. 
This illicit access and modification of the data by the attacker 
causes data compromise. Also, the utilization of encryption 
algorithms offer protection to data but it is inadequate as a 
result of inadvertent modification, loss of data or hardware 
failures. Data can be destroyed by hardware failures, un-
trusted communication channels or attackers when accessed. 
This also leads to data compromise and therefore requires the 
application of different security measures to offer optimal 
security. 

This research therefore focuses on how to harness the 
strengths of encoding and encryption security techniques to 
achieve a robust data protection system. 

B. Aim of Study 

The study’s aim is to implement a data protection model 
by integrating Elliptic Curve Cryptography (ECC) and Reed 
Solomon (RS) coding schemes. 

*Corresponding Author. 
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To achieve the stated aim the following questions are 
raised: 

1) Can ECC and RS codes be used to ensure secure data 

transmission and secure data storage? 

2) Can a proposed Harricent_RSECC data protection 

model enhance data security by ensuring an uncompromised 

data transmission and data storage? 

3) Will the implementation of the proposed 

Harricent_RSECC data protection model offers the required 

security to data? 

II. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 

Elliptic Curve Cryptography (ECC) is a contemporary 
group of public-key cryptosystems premised on the algebraic 
structures of elliptic curves over finite fields and the 
complexity of the Elliptic Curve Discrete Logarithm Problem 
(ECDLP). 

An ECC curve can be illustrated as a curve that intersects 
two lines on a graph. This type of curve is determined by the 
properties of the mathematical group consisting of set of 
values for which operation on two of its members produces a 
third member [4] depicted in Fig. 1. Multiplying a point by a 
number on the curve produces an additional point on the 
curve, but finding what number has been used is very difficult, 
although parties involved know the original point and results. 
ECC uses elliptic curves in which elements of a finite field are 
all limited to variables and coefficients. The ECC is 
mathematically represented using the Weierstrass form of an 
elliptic curve denoted in (1) as follows             
where           . Each "a" and "b" value has an elliptic 
curve that is different. 

                        (1) 

 

Fig. 1. ECC Representation. 

ECC constructs all of the substantial functionalities of 
asymmetric cryptosystem, including encryption, signatures, 
and key exchange. ECC cryptography is regarded as an 
effective modern replacement to the RSA cryptosystem since 
it utilizes smaller keys and signatures than RSA for the same 
level of security and offers extremely fast key generation, key 
agreement, and signatures. 

A. ECC Keys, Algorithms, Curves and Key Length 

In the ECC, the composition of private keys are generally 
numbers within a range of integers (usually 256-bit integers), 
thereby making it easier and faster for private key generation. 
The public key on the other hand is generated from points 
which lay on an elliptic curve, usually a pair of integer 

coordinates (x, y). Ultimately, a shared key is a public key that 
is derived after multiplying the private key of the sender to the 
public key of the receiver and vice versa [5]. 

Besides, basing on the mathematical properties of elliptic 
curves over finite fields, the elliptical cryptography offers 
varied sets of algorithms. Three major categories of ECC 
algorithms are available consisting: signature algorithms such 
as elliptic curve digital signature algorithms, fast elliptic curve 
digital signature algorithms and Edwards digital signature 
algorithms; encryption algorithms for instance elliptic curve 
integrated encryption scheme and ElGamal Encryption using 
ECC (EEECC); and lastly is the key agreement algorithms 
including elliptic curve Diffie Hellman X25519 and Fully 
Hashed Menezes-Qu-Vanstone (FHMQV) [6]. 

Moreover, diverse sets of curves exist that elliptic curve 
crypto algorithms can utilize to achieve different purposes. 
Goals such as determining the level of cryptographic strength 
(security), the length of key and the performance are rational 
for implementing a different set of curves. Consequently, 
every curve consists of the following parameters (curve name; 
size of the field/key; the cryptographic strength – expressed as 
ratio of field size to 2; and the speed – also expressed as ratio 
of operations to seconds). Examples of ECC curves and their 
corresponding key sizes include “curve secp192r1 with 192-
bit, curves secp256k1 and Curve25519 with 256-bit, curve P-
521 with 521-bit among others” [6]. 

Therefore, it can be advanced that digital signature, 
encryption and key agreement algorithms utilizes any of the 
curves above for computations which heavily rely on the 
difficulty of ECDLP to provide adequate level of security to 
data while performing with minimal key length. 

B. Key Benefits of Elliptic Curve Cryptography 

The benefits of using elliptic curves stems from the fact 
that with shorter keys, equivalent levels of protection can be 
obtained compared with other algorithms. The ECC 
cryptosystem is useful in our contemporaries with massive 
upsurge in the development and usage of mobile devices. 
Thus, as the use of smartphones grows, more robust 
encryption is necessary for businesses to meet the increasing 
security requirements [7]. Some of the benefits are discussed 
below: 

1) Stronger keys: ECC represents the latest encryption 

method, providing more security in elliptical curve 

cryptography. The underlying math problem of the ECC 

algorithm implies it is more difficult for hackers to crack 

compared to RSA and DSA, which makes the ECC algorithm 

more reliable than conventional methods for websites and 

infrastructure [8]. ECC algorithms rely on the difficulty of 

ECDLP to provide adequate level of security to data while 

utilizing minimal key length [5]. This invariably has improved 

performance and enhanced storage requirements. 

2) Short key size: Comparably, Because ECC keys are 

substantially smaller than DSA/RSA keys; the size of the 

public and private keys in ECC is relatively short. As a result, 

the National Institute of Science and Technology (NIST) 

recommended that ECC can employ substantially lower 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 5, 2022 

135 | P a g e  

www.ijacsa.thesai.org 

parameters for the same degree of security bits as RSA/DSA 

[9]. The choice for these algorithms is that elliptic 

cryptography uses lesser keys to achieve same security levels 

contrary to the other PKCs. For instance, the RSA/DSA 

technique requires a key length of 7680 bits to achieve 192 

bits of security, whereas ECC requires a key size of 384 bits. 

Furthermore, the RSA/DSA algorithm requires a key size of 

15360 bits to obtain 256 bits of data protection, whereas ECC 

requires a key length of 512 bits. 

As a result, processing times are reduced while memory 
and bandwidth requirements are limited. ECC is especially 
suitable for applications with limited memory, bandwidth, 
and/or computing capability, and its use is expected to 
increase in this area. 

III. REED SOLOMON (RS) CODING SCHEME 

A. The Theory of Reed Solomon (RS) Coding 

The RS code is a systematic, linear cyclic and non-binary 
block code. During RS coding, redundant symbols are created 
and appended to the symbols of the message by using a 
polynomial generator [10]. The position and magnitude of the 
error in the decoder are determined using the same polynomial 
generator [11]. The correction is then applied to the code 
received. RS coding is commonly used for error detection in a 
variety of communications and computer infrastructures, 
including storage, wireless or mobile communications, 
satellite communications, digital television, and high-speed 
modems [12]. 

RS codes were opted over other error detection and 
correction codes because of their faster decoding capabilities, 
i.e., their ability to detect and/or correct significant numbers of 
omitted or compromised data items; and the fact that they 
require the fewest additional error correcting codes bits for a 
known number of data bits [10]. Fig. 2 provides a framework 
representation of RS encoding/decoding process: 

Reed-Solomon codes are by far the most extensively 
utilized for burst error correction [13]. The benefit of utilizing 
RS codes is that the likelihood of an error persisting in the 
decoded data is (generally) substantially lesser than if RS 
codes are not employed. Coding gain is a common term for 
this benefit. Because Reed Solomon code has a high coding 
rate, it is suited for a broad array of applications, comprising 
storage and transmission [12]. 

B. Properties of RS Code 

RS code is specified as         with s-bit symbols [10]. 
Given a symbol size s, the maximum codeword length (n) for 
a Reed-Solomon code is n = 2

s
 – 1. For instance, an 8-bit 

symbol will produce a maximum length of 255 bytes. This 
signifies that the encoder creates a   symbol codeword by 
adding parity symbols to   data symbols of   bits each. There 
is a total of      parity symbols, each with s bits. A Reed-
Solomon decoder can fix up to   symbols in a codeword that 
have errors, where        . A typical Reed-Solomon 
codeword (known as a Systematic code because the data is not 
altered and the parity symbols are attached) is shown in Fig. 3 
[14]. 

 

Fig. 2. Framework of RS Scheme. 

 

Fig. 3. Reed Solomon Codeword Generation. 

A code such as Fig. 3 can detect and correct up to    
            symbol where each symbol represents an element 
within the finite fields        . This implies that any   
symbols that may be corrupted can still be recovered from the 
original message [15]. 

An RS(255, 223) with 8-bit symbols is an example. Each 
codeword is made up of 255 bytes, with 223 bytes of data and 
32 bytes of parity. The following can be derived from the 
code: 

n = 255; k = 223; s = 8; 2t = 32, t = 16 

As a result, the decoder can automatically correct any 16 
symbol errors in the codeword: that is, errors of up to 16 bytes 
can occur anywhere in the codeword. 

In Fig. 4, the sender uses the RS encoder to encode the 
message in a codeword and transmits it through the 
communication channel. Channel noise and other disorders 
may disrupt the codeword and corrupt it. This corrupted 
codeword comes to the recipient end (decoder) and transfers 
the tested message to the receiver. If the error caused by the 
channel is larger than the decoder's error correction capability 
it may result in a decode failure. Decoding errors occur when 
a codeword has not been passed and a decoding error leads to 
an incorrect message [16]. 

The representation of an instance of an RS protected 
communication channel while transferring data is illustrated in 
Fig. 4. 

Source
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ENCODER
Encodes the Message into 

Codeword

DECODER
Corrects and reclaims the Source 

Message
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Introduces Error 
into the Message

1011010

1011

 

Fig. 4. Reed Solomon Protected Channel. 
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IV. REVIEW OF RELATED WORK 

This section explores the extant works of ECC and RS.  
Elliptic curve cryptography (ECC) is by far the most effective 
public-key option for providing security services to devices 
with limited resources and it has been employed in a variety of 
business applications [5]. ECC, since its emergence has been 
considered the preferred option with notable efficiency for 
ensuring authenticity, encryption, signatures and key 
agreements [5]. To achieve these, He et al. deployed an ECC 
authentication model in a smart grid environment to obfuscate 
smart meter anonymity [17]. However, Sadhukhan et al 
pointed some security flaws in [17] such as internal and 
masquerading attacks [9]. Besides, by utilizing ECC and 
image steganography to maintain the legality and accuracy of 
medical health data, Eshraq et al.’s model obfuscated health 
data from being accessed by unauthorized access [18]. To 
ensure ECC’s applicability in diverse contexts, the authors 
[19], [20], [21], [22] and [23] utilized ECC to achieve 
confidentiality, integrity, non-repudiation and authenticity 
levels of security. 

On the contrary, the establishment of a reliable 
communication channel is very necessary as there exist 
security breaches within satellite or telephone channel which 
can compromise data security [10]. To overcome these 
security breaches many techniques of correcting errors have 
been introduced over time. One of such method is RS code 
which is a key non-binary BCH coding sub-class. These are 
useful cyclic codes utilized in detecting and correcting burst 
errors. RS codes have been prevalent due to its simplicity in 
encoding and well-structured decoding capabilities. In 
appraising the efficiency of RS codes, Wonshik & Jae-Yeon 
appraised the performance of RS(255, 239) in a smart 
transmission medium and an intelligent system [12]. The 
implementation of their system depicted RS code efficiency 
over a chaotic communication channel as the higher the 
codeword length, the greater the bit error rate improvements. 
Besides, Mounika [10] postulated that there exist security 
breaches on a satellite or telephone channel. Therefore, the 
establishment of a reliable communication channel is very 
necessary. To this end, [10] implemented a modified version 
RS codes for performing error corrections. Further, studies by 
[13] indicated that the decoding capabilities of RS codes have 
been efficient against deletion errors. And it was validated 
through the simulation results by [24] where the proposed RS 
decoder achieved a higher coding gain in contrast to algebraic 
decoding methods. 

The identifiable gap is the ability to combine both 
techniques to achieve a robust security model and that’s the 
goal of this study. 

V. IMPLEMENTATION OF THE HARRICENT_RSECC MODEL 

A. Conceptual Framework of an Efficient Data Security 

Quite a number of studies have been carried out relative to 
mechanisms that can be deployed to enhance data protection. 
However, most of these studies have either focused on 
encryption or encoding schemes as postulated in [2]. The 
ability to integrate these two techniques and leverage on their 
strengths to achieve adequate data protection has been the 

major concern in this study. To this end, the 
Harricent_RSECC data protection model has been designed 
and implemented to achieve the objective of this study 
through the utilization of Elliptic Curve Cryptography (ECC) 
and Reed Solomon (RS) codes. The prime goal for integrating 
ECC and RS is to achieve a fast, small, and portable 
cryptographic protocol, which would support elliptic curve 
digital signature generation and verification together with data 
reconstruction. 

Fig. 5 shows the design of the Harricent_RSECC data 
protection paradigm, which integrates RS encoding and two 
variants of ECC to serve a purpose of improving data 
protection while achieving data integrity and confidentiality. 
Generally, the implementation of the model is achieved by the 
following steps. 

B. Metrics used for Harricent_RSECC Data Protection 

Model 

As a defensive system, it is always important to identify 
any messages or data received. Since messages come in 
different forms, understanding the different message types 
received play a crucial role when identifying the message/data 
received. The process for an unwanted message to be detected 
or identified is important to ensure the right defensive 
mechanisms are applied. 

Having identified the type of message, a second defense 
module, the generator module, ensures proper defense by 
identifying which encoding level is crucial in identifying and 
correcting the right amount of errors that may occur in the 
system. This module also provides the chunking of data to 
ensure faster processing of the messages received. 

Thereafter, messages received are transferred for security 
mechanisms to be applied to the message. The mechanisms 
are to encode, encrypt and sign the messages. These three 
effective security mechanisms will prevent unauthorized 
access to the message received. 

As different attacks can be performed, each stage in the 
framework provides a defensive approach in protecting the 
message received. 

Harricent_RSECC

MESSAGE

(TEXT / IMAGE)

Encrypting 

using ECIES

Encoding using 

RS 

Signing using 

ECDSA

View or 

Save?

Store Data 

View Data

GENERATOR
Codeword

&
Remainder

Ciphertexts

Signed
Message

 

Fig. 5. Schematic Diagram of Harricent_RSECC Data Protection Model. 
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Therefore, the metrics that defined the functional 
requirements for Harricent_RSECC are: 

1) The model must be able to identify the message type in 

order to perform the proper analysis. This maintains the scope 

of the study (text and images) prevent unclassified messages 

from being uploaded. 

2) The model must be able to identify the message 

size/length in order to apply appropriate RS coder levels. 

3) The model should be able to detect if a message has 

been compromised and correct eventually. 

4) The model should be able to obfuscate the message and 

prevent unsolicited access and modification. 

5) The model should be able to maintain the integrity of 

the message and associate messages transmitted or stored with 

the sender (i.e., ensuring non-repudiation). 

The primary focus of this model is the ability for the 
system to identify a message type received, chunking of large 
messages for faster processing, obfuscation of the message, 
signing of the message, detection and correction of 
compromised messages. This work attempts to provide a 
protective mechanism which organizations can rely on to 
protect their resources. 

C. Implementation of Harricent RSECC Components 

From the design of the model, the following principal 
components are implemented: Message Identification, 
Generator Module, Encoding, Encryption, and Signature. 

1) Message identification: A message is submitted by the 

user into the Harricent_RSECC model. This phase is to 

identify the type of message that is permissible to be uploaded 

into the model, be it a text or an image. This module consists 

of a rule-based component where rules are defined based on 

the list of file types and type of file uploaded or sent by the 

user. 

For example, a typical rule might be 
if(filetype==filetypeslist) return true. The module identifies 
the message/data based on the type of file received/uploaded. 
The received message/data is processed and categorized to 
compute a value Mt based on two outputs, text (Dt) and Image 
(Di).  Messages are identified based on f(Mt ) as follows: 

      

 {
                                                     
                                                     

 

If new message types are identified, there is the need for it 
to be added to the file type list to improve the efficiency of the 
system. If new message types are identified, there is the need 
for it to be added to the file type list to improve the efficiency 
of the system. 

Files uploaded are checked by a function to prevent 
unclassified files from being uploaded. 

#function file upload 

if (filetype = “.txt” or filetype = “.doc” or filetype = “.docx” or 

filetype = “.png” or filetype = “.jpg” or filetype = “.jpeg” or 

filetype = “.gif”): 

upload file 

else 

print(“file type not supported”) 

2) The Generator Module (GM): This module prepares 

image and text files for the RS encoding scheme to be applied. 

It determines the length of message, chunks message based on 

encoder level and generates ASCII codes from message. The 

received message could be preprocessed by this module to 

determine the message’s length. Message length,   , 

determination effectively enables how the message can be 

encoded. If a message, M, is presented as a number of 

characters               then    is determined by   , where 

n is the last returning value, resulting in     .  This module 

also takes into accounts the coder level during processing to 

determine the bits-type needed during encoding. The size of 

the bits-type is determined based on the message length   . 

The bits size, k, of a message is the bits-type to be used during 

RS encoding. Selection of the bits-type for a message is 

determined based on 

      {
                

              
 

where α is a pre-defined threshold value of thirteen 
characters. 

The algorithm for determining the length of text messaging 
is presented below. 

#def determine the length of message. 

Take the length of message using the length library. 

#def set bit size. 

 if messagelength < 13 and Bit_size=="8-bits": 

Display a message that coder level must be either 'RS(15, 11) 

and RS(15, 9). 

Set bit_size to 4-bits. 

Else. 

Pass 

After the message length has been determined, a decision 
has to be made where the received message will be chunked 
(1) or not-chunked (0), utilizing the encoder level. The 
encoder level utilizes message length CML and codeword 
length CWL in its operation. All encoder levels are in the 
format: CL(CWL,  CML), where CL is for coder level. 
Chunked messages    are determined based on. 

      {
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The algorithm for chunking a message is presented below. 

#code for chunking data. 

#def chunkmydata(self, string, n): 

chunks = [string[i:i + n] for i in range(0, len(string), n)]. 

return chunks. 

The last operation of this module is the conversion of a 
message to its ASCII format. Each character (C) in the 
message is converted to its ASCII code (AC) (ie. 
C1=>AC1,…,Cn=>ACn). 

The algorithm for messaging to their equivalent ASCII is 
presented below. 

#def convert message length to ASCII codes. 

letters = take the ordinal of the message characters to give 

their ASCII Codes. 

3) Data encoding: This module utilizes the RS error 

correcting code to encode messages prepared from the GM to 

generate codeword. This is to guarantee that messages in 

transit or storage are devoid of corruption or contain errors by 

appending redundant data to it. The framework employed 

multiple encoder levels to encode. The RS code is built on 

finite fields, which have the feature that any computation on 

field elements always returns an element in the field-set [14]. 

To generate an RS codeword, a polynomial generator 
     is used with the following notations: information 
block     , codeword      and a primitive element     of the 
field. A polynomial generator is illustrated in (2) below: 

                                        (2) 

with the codeword generated as follows (3): 

                           (3) 

Following steps are employed in the generation of 
codewords and remainders: 

a) An encoder level (RS) must be selected. To encode, 

Reed Solomon coder makes use of different encoder levels. 

Eight (8) RSCoder levels (RS) were selected ranging from (15, 

9) to (255, 251) as follows: 

RSCoder(15, 9), RSCoder(15, 11), RSCoder(53, 37), 
RSCoder(255, 223), RSCoder(255, 239), RSCoder(255, 251), 
RSCoder(255, 247), RSCoder(255, 191). 

The above RS encoder levels determine the message 
(RSM) and codeword (RSC) lengths. 

b) Message (M) length is determined based on the 

encoder level (RS) selected.  

Message length = len(Message) 

c) If message (M) length is less than or equal to the 

message (RSM) length of the encoder, message (M) is encoded 

and a remainder (R) is generated. 

d) A message (M) length that exceeds the encoder level 

message length (RSM), message (M) is chunked based on the 

message (RSM) length of the encoder level using a chunk 

function explained above. Each chunked message is encoded 

and a remainder (R) generated for each. 

Chunked Data = (M, RSM). 

Chunked Data Length = len(Chunked Data). 

If Message length > RSM: 

Chunked Data = (M, RSM). 

codeword = rs4a.encode(Message). 

remainder = codeword[-6:]. 

remainderhex = remainder.encode().hex(). 

4) Data encryption: The Encryption module provides 

obfuscation and protection of message/data. The framework 

used the ECIES to accomplish this. In an unsecured channel, 

ECIES will safeguard the contents from being read or altered 

with by unauthorized parties. During implementation, the 

ECIES combines the Secp256k1 curve with the Advanced 

Encryption Standard – 256 – Galois Counter Mode (AES-256-

GCM) to offer the needed security. The AES-256-GCM 

algorithm is a symmetric encryption algorithm with a 256-bit 

key size [25]. To achieve ECIES encryption the following 

steps are followed: 

a) Generation of Key Pairs: The first step in ECIES is to 

generate private (PRk) and public key (PUk) pairs. In the 

elliptic curve, private keys (PRk) that are generated are in 

integers and public keys (PUk) are points on the curve. 

Therefore, to encrypt file contents, the Harricent_RSECC 

model generated both public (PUk) and private keys (PRk). A 

private key (PRk) was created by obtaining 32 bytes from 

randomly generated numbers (R). A new private key (PRk) is 

generated if there is none; otherwise the private key already 

generated will be loaded. A private key (PRk) is just a 

sequence of raw bytes. To ensure better security, small 

numbers must not be chosen as private keys. 

PRk = rand() 

If PRk = NONE then 

PRk = rand() 

Else 

PRk 

Example: the limit of the integer number (N) as agreed by 
the communicating parties. 

N = 

10015792089237316195423125709850085568790718528137

56427907490438260516314 

PRk = random.randint(1, N) 

PRk = 

95193991353039061015378100235213857196721754949810

9375643560636694135579 
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The public key, on the other hand, is determined by 
multiplying a point on the elliptic curve (G) and the private 
key (PRk). 

PUk = PRk × G 

Therefore, 

PUk = (PRk × Gx) + (PRk × Gy) 

b) Generation of Shared Secret Keys: The second step of 

using the ECIES was to create a shared secret key by 

multiplying the private (PRk) and public (PUk) key using 

Elliptic Curve Diffie-Hellman (ECDH) algorithm. The ECDH 

algorithm is principally used to prevent eavesdropping by 

facilitating the exchange of the AES shared secret key. This 

shared key is a public key derived after multiplying the private 

key of the sender to the public key of the receiver and vice 

versa. Thus, 

Shared Secret key (S) = PRk × PU 

c) Key Derivation Function (KDF) - AES Key and 

HMAC Key: The third step of the ECIES algorithm utilized the 

shared secret key to derive an Advanced Encryption Standard 

(AES) key and a Hash-Based Message Authentication Code 

(HMAC) key via a Key Derivation Function (KDF). The KDF 

component provides another layer of security to prevent man-

in-the-middle attack which is a major issue in ECDH. The 

KDF ensures the hashing of the shared secret key (S) generated 

using SHA256 algorithm. The steps involved in implementing 

the key derivation function (KDF) are: 

i) Convert Shared key (S) to bytes 

ii) Using the SHA256 hash library, the bytes are hashed to 

produce a hash key (H). 

The AES key derivation is based on the key length and the 
hash (shared) key (H). AES-256-GCM has the key length of 
256 bits. To generate an AES key that was used for 
encryption, the hash (shared) key (H) length should be equal 
to 256 key bits length. 

AES Key Length = 256 bits 

AES Key = H [: AES Key Length] 

// AES key picks the first part of shared //key whiles the 
latter is for the HMAC key 

More so, HMAC secret key utilized was also based on the 
key length and the hash (shared) key (H). HMAC’s 
cryptographic strength depends on the size of its output as 
well as the size and quality of the key. HMAC-SHA256 
operates on a bit size of 256. This size produces a sizable 
output and key. To generate HMAC secret key: 

HMAC Key Length = 256 bits 

HMAC Secret Key = H [HMAC Key Length:] // HMAC key 

picks the later //part of the shared key 

d) Message Encryption: The fourth step in adopting the 

ECIES is message encryption. To encrypt a message, a random 

initialization vector (IV) was created and XOR’d with the 

message in addition to the AES key to generate a ciphertext.  

Initialization vector (IV) is an abbreviation of “nonce” which 

connotes the number used once.  The randomly generated bits 

were based on the AES block size and the number of bits in the 

key length. 

The generated IV is converted to bytes depending on the 
AES block size. 

IV = random.getrandbits (AES block size * number of bits per 

byte). 

IV = IV. to_bytes (AES block size). 

Ciphertext (C) = (IV XOR message, AES Key). 

e) Hash-Based Message Authentication Code (HMAC): 

In the fifth step, HMAC was created to be used for 

initialization vector (IV) and Ciphertext (C). To create HMAC, 

two keys are generated from the HMAC Secret Key. The two 

keys are named, inner key (Ik) and Outer key (Ok). The first 

256 hash (Fh) value is generated from the message and Ik. A 

second 256 hash value is generated from Fh and Ok. These 

keys are sent to the recipient for verification/decryption. 

f) Transmitting PUk, IV, C and HMAC: The final step 

involves the sending of PUk, Initialization Vector (IV), 

Ciphertext (C) and Hash-Based Message Authentication Code 

(HMAC). The transmission is through a communication 

channel to the server facility for storage. 

Encrypted data or ciphertext sent (Cs) is decrypted using 
the private key PRk, 

Messagedecrypted = (Cs, PRk,) 

5) Data signature: This component uses Fast ECDSA to 

digitally sign files to uphold the integrity of the message. In 

comparison to other types of digital signatures, the Fast 

ECDSA technique is designed to conduct fast elliptic curve 

cryptography. In comparison to ECDSA, it takes very little 

time to perform its instructions. In the elliptic curve, private 

keys are integers, and public keys are points on the curve. To 

offer 128 bits of security, the curve adopted is 

P256/secp256r1. Creation curves are done using Weierstrass 

form:                  . 

The Fast ECDSA algorithm employed to digitally sign 
messages combines P256 / secp256r1 curve and SHA3_256. 
The curve is imported for use in this study as shown in the 
example below: 

Example: 

curve = ec.SECP256R1() 

The following are the steps involved in the implementation 
of Fast ECDSA algorithm: 

a) Generation of Key Pairs: Private (EPRk) and Public 

(EPUk) keys were generated to sign and verify messages by 

using P256 curve. Private (EPRk) keys are integers that were 

randomly generated and Public (EPUk) key were derived by 

multiplying the EPRk and a point on the curve (GE). Public 
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Keys are considered points on the curve. 

EPRk = rand(). 

EPUk = PRk × G. 

b) Signing the Message: The private key (EPRk) is used 

to sign the message and the hash function SHA3_256. ECDSA 

signature (r, s) is generated after signing and returned as 256 

bits. 

Message = b"This message will be signed and verified". 

signature_algorithm = ec.ECDSA(hashes.SHA3_256()). 

signature = privatekey.sign(Message, signature_algorithm). 

c) Verifying the Signatures: To verify that the message 

has not been compromised, the ECDSA signature (r, s) 

together with public key (EPUk), decrypted message and hash 

function SHA3_256 are utilized. 

valid = publickey.verify(signature, message, 

signature_algorithm) 

if valid is True then 

print(“Valid Message”) 

else 

print(“Invalid Message”) 

D. Securing Data with the Harricent_RSECC Data Protection 

Model 

To demonstrate the feasibility and performance of 
Harricent_RSECC Data Protection Model, a python 
implementation has been developed. Consider the message: 

“CAREER OBJECTIVE: To secure a position where I can 
efficiently contribute my skills and abilities for the growth of 
the organization and build my professional career” 

The message is firstly identified as text through the 
message identification module. Following the model utilized a 
“unireedsolomon” library to facilitate in message encoding to 
generate the codeword and remainders for each message. 
Several predefined RS coder levels were setup in the 
Harricent_RSECC Data model. However, in Listing 1 (see 
Appendix II), an implementation instance RS(15, 9) and 
RS(255, 251) are presented. The two encoder levels have 
codeword lengths of 15 and 255 and message lengths of 9 and 
251, respectively. The remainders are derived by subtracting 
the length of the message from the codeword length. 

Reference to the case, a user can encode this message and 
by selecting a coder level of RS(53, 37). The Generator 
Module is invoked to chunk the message into five different 
parts for encoding shown in Fig. 6 below. Each of these parts 
of the message is encoded to the codeword length of 53. This 
ensures that enough redundant bits are appended to the 
message to offer the opportunity for data reconstruction in the 
event of data corruption. 

 

Fig. 6. Codeword and Remainders Generated from the given Message. 

Concurrently, the model takes the message, and by 
utilizing ECIES and Fast ECDSA, the message is encrypted 
and signed respectively. Fig. 7 shows the output of the 
encrypted text of the above message. 

To encrypt, the model uses the key generating and 
encrypting libraries from ecies.utils to generate random 
values, private, public keys and encrypt the message. Listing 2 
(see appendix) is a code snippet of the implementation of the 
data encryption module using ECIES algorithm. 

The Fast ECDSA technique used to digitally sign 
messages combined P256 / secp256r1 curve and SHA3_256. 
Secret and shared keys are generated automatically from the 
P256 / secp256r1 curve to sign and verify messages. The 
message content is signed using the private key and the hash 
function SHA3_256. Fast ECDSA signature (r, s) is generated 
after signing and returned as 256 bits.  Listing 3 (see 
Appendix II) is a code snippet of the implementation of 
signing the message using Fast ECDSA algorithm. 

Appendix I provides a python simulation of the 
implementation of Harricent_RSECC data protection model 
and the various stages of interactions of the model. Altogether, 
the remainder, encrypted and signed texts are transmitted for 
storage. These files provide adequate information to ensure 
confidentiality and integrity of organizational data. 

 

Fig. 7. Encrypted Text. 
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VI. DISCUSSION 

The Harricent_RSECC data protection model provides 
data owners with the guarantee of data security in transit and 
storage while preserving data validity. It contributes to the 
field of security by incorporating encryption, encoding, and 
signature techniques to provide confidentiality, authenticity, 
integrity, and non-repudiation levels of security. Should an 
adversary intercept any of the ciphertexts, the model ensures 
data secrecy by utilizing ECIES to prevent unauthorized 
access and eavesdropping. The ECC key size for the 
Harricent_RSECC data protection model was 256. This 
provides a 128-bit security equivalent (RSA/DSA will use a 
key length of 3072). Furthermore, the model employs Fast 
ECDSA to digitally sign a message, ensuring its integrity and 
non-repudiation. Fast ECDSA generates hash values from the 
message which are used for signing the messages and 
verifying the authenticity of the ciphertexts. The model 
additionally leverages RS codes to identify and corrects errors 
that arise in order to provide the capability of retrieving 
corrupted data files that occurred during transmission or 
storage, which further enhances data protection in transit or at 
storage. 

The model affirms the studies conducted by [19], [20], 
[25], [26], [27], [21] that applied elliptic cryptographic 
algorithms to encrypt and decrypt the selected data and this 
guarantee the safety of private information, sensitive data, and 
can enhance the security of communication between computer 
systems. The Harricent_RSECC model through the use of Fast 
ECDSA validates the identity of the sender that transmitted 
the message which upholds the studies conducted by [19], [20] 
[28]. By employing Fast ECDSA, the content of the message 
cannot be altered without detection. This ensures the integrity 
of the message is maintained and, moreover, the signer cannot 
deny association with the signed content. Moreover, studies 
conducted by [13], [12], [10], [23] through the utilization of 
RS codes endorses the benefits of error detection and 
correction that may emerge. 

A comparative discussion supported with existing 
literature is presented in this section. The security of the 
Harricent_RSECC data protection model was evaluated using 
five metrics: Message Identification, faster processing through 
chunking, obfuscation, detection and correction of 
compromised messages and signature of message. This is to 
ensure that the confidentiality, authenticity, integrity and non-
repudiation (CAIN) levels of security are provided to the data. 
By obfuscating message, the confidentiality and authenticity 
of information stored on computer systems or transferred 
between its users across the internet is assured. By encoding 
and decoding the message, the integrity of the message is 
maintained through the addition of redundant data. By signing 
the message, the integrity and non-repudiation of the message 
is ensured. The selected metrics, as adduced in chapter 3, aids 
in appraising the security potentials of the system. 

In analyzing the studies of [19] and [20], it was observed 
that their system partly used the message identification metric 
by concentrating on either text or image on separate studies. 
To ensure fast computational process, their studies utilized 
message groupings to chunk messages. However, their 

adopted message groupings will slow the processing of 
messages as compared to the chunking component (generator 
module) in the Harricent_RSECC model. In our study, the 
GM chunks each message based on the RS coder level which 
leads to faster encoding processing. Even though, the authors 
utilized the ECC to obfuscate the messages, the two distinct 
studies lack the functionality of detecting and correcting of 
compromised messages in an event of error occurrence. More 
so, [19] and [20] studies failed to offer and maintain integrity 
of messages by not signing and associating messages 
transmitted or stored to the sender (i.e., ensuring non-
repudiation); which have been ensured through fast ECDSA in 
Harricent_RSECC model. 

In a related study, [23] developed a technology that allows 
messages to be hidden based on numerical ruler-bundle. It’s 
worthy to note that message hiding is one of the reliable 
methods of preserving and ensuring the CAIN.  Notably, 
[23]’s study partially made use of only one part of message 
identification (i.e., image) in comparison with 
Harricent_RSECC model. Analysis of [23]’s technology also 
reveals that the authors failed to decompose the information 
extracted from the image as their system read each stream of 
input sequence to determine its encoding alphabet; however, 
their technology hampers efficient computational processes. 
Their studies enable the hiding of an image inside another 
image in addition to noise tolerant codes. The model of noise-
tolerant codes provided an opportunity to correct up to 25% of 
errors in the code word. Though, the technology has the 
capacity to detect and correct errors in comparison with 
Harricent_RSECC Model, but it lacks the capacity to ensure 
non-repudiation as their technology does not sign messages 
that are transmitted and stored. 

Also, a study conducted by [21] concentrated on text 
messages the author’s message identification at the exclusion 
of images. Besides, [21]’s study failed to highlight the imports 
of chunking which Harricent_RSECC model dwells because 
chunking is beneficial to ensuring faster computational 
processes. Like the Harricent_RSECC model, [21]’s model 
obfuscates the content of the message through the utilization 
of ECC. However, it lacks the ability to sign, detect and 
correct compromised messages; hence integrity and non-
repudiation levels of security are not maintained. 

More so, [22] designed a secure model for data protection 
in the cloud but the system lacks the ability to differentiate the 
types of data the study seeks to secure. Data identification is 
consequential in ensuring CAIN because each data has its own 
way of processing to offer the needed protection. Also, [22]’s 
model was not clear on how message chunking is being 
handled; however, much concentration was given to usability 
in the study. Whiles the latter is good, the former is equally 
important to ensure fast computation. More so, [22]’s model 
obfuscated messages, but the methods employed are AES and 
RSA, which in literature this study has adduced that the 
benefits ECC far outweighs RSA. Again, the [22]’s study 
indicated the concepts of non-repudiation and integrity but the 
methods in achieving those security metrics are not explicit. 
Lastly, their system lacks the ability to detect and correct 
compromised messages which inadvertently affect the 
integrity of the transmitted or stored data. 
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TABLE I. COMPARATIVE ANALYSIS OF SOME EXISTING WORK WITH HARRICENT_RSECC MODEL 

Authors MI C O EDC S 

[19]  Image Yes Yes – ECC No No 

[20] Text  Yes  Yes - ECC No No 

[21] Text  No Yes, ECC Not  No 

[22] 
No message 

identification  
Not clear Yes, AES and RSA  No  

Non repudiation and integrity are 

mentioned but method not clear  

[23]   Image  No  
Yes - numeric ruler 

bundle  

Yes - numeric ruler 

bundle  
No  

Harricent_RSECC Texts and Images Yes Yes - ECIES Yes - RS Yes – Fast ECDSA 

Table I presents a comparative analysis of some existing 
work with Harricent_RSECC model in achieving secured 
system by basing on the stated metrics: 

MI – Message Identification, 

C – Chunking, 

O – Obfuscation, 

EDC – Error Detection and Correction, 

S – Signature, 

From the levels of security espoused, it can be asserted 
that it is only the Harricent_RSECC model that combines the 
functionalities of encrypting, encoding and signing to achieve 
confidentiality, authenticity, integrity, non-repudiation. 
Therefore, the Harricent_RSECC data protection framework 
offers the data owner the assurances of data protection in 
transit and storage, while maintaining the validity, integrity 
and confidentiality of the data. It is valid, therefore, to assert 
that Harricent_RSECC model is the efficient framework 
comparatively and offers protection to text and image datasets 
by using both ECC and RS encoding protocols. 

To advance this section, the questions posited in section 
1.3 are discussed. 

A. Can RS and ECC be used to Ensure Secure Data 

Transmission and Secure Data Storage? 

The characteristics of RS and ECC are advanced in 
Sections 2 and 3. To offer protection to data, several data 
encoding and encryption techniques have been proposed. In 
the case of the encryption, such schemes are utilized to 
obfuscate messages to prevent unauthorized access and 
modification to protect the validity and secrecy of messages 
transmitted/stored. While the encoding scheme adds extra bits 
to the original data to aid in error detection and correction in 
order to keep the messages from corruption or damage. 

This study evaluates the RS encoding scheme and ECC 
encryption technique to create a data protection model. Data in 
transmission and/or storage are susceptible to attacks or 
security threats. Most security systems focus on either extra 
bit of data to messages or obfuscate the message. The 
utilization of one scheme over the other offers security but it is 
ineffective to provide optimal protection due to the inadvertent 

loss of data as a consequence of adversary’s activities or 
hardware failures. Therefore, it is essential to combine both 
encoding and encryption strategies for ensuring effective data 
protection. 

As a public key cryptography, ECC characteristically 
consists of a public key and a private key which augment the 
communication between the parties involved. As a result, ECC 
use significantly smaller parameters than RSA/DSA to 
achieve the same level of security. 

B. Can a Proposed Harricent_RSECC Data Protection 

Model Enhance Data Security by Ensuring an 

Uncompromised Data Transmission and Data Storage? 

The Harricent_RSECC model and implementation (shown 
in Fig. 8) achieved the study’s purpose of providing enhanced 
data confidentiality and integrity model by using Reed-
Solomon encoding scheme and elliptic curve cryptography. 
This ensures that the data owner participates in the provision 
of security to the datasets before storing or outsourcing it to a 
storage infrastructure [21]. 

Firstly, from the implementation of the model, a message 
must be encrypted Using ECIES to inhibit unauthorized access 
and intrusions if any of the ciphertexts are intercepted. 
Secondly, prior to transmission, the message is signed by 
computing a hash value to enable the receiver to authenticate 
the validity and genuineness of the source message. This aids 
in detecting any compromises that ensued during transmission 
by untrusted channel or by an attacker. 

 

Fig. 8. A Snapshot of an Encoded and Encrypted Data. 
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Moreover, in the event of data compromise, the Reed 
Solomon scheme is utilized to decode and correct the 
corrupted message. Thus, at the receiving end, the receiver 
validates the validity and accuracy of the message by 
computing the hash value on the decrypted message to verify 
the authenticity of the message. The unmatched values 
computed from the verification algorithm would render the 
invalidity of the message. 

C. Will the Implementation of the Hybrid Data Protection 

Scheme Offer Necessary Security to Text and Image 

Datasets? 

The Harricent_RSECC data protection model is a robust 
model that offers higher security levels to texts and image 
datasets as it combines the strengths and efficiency of two 
outstanding data protection schemes. The implementation of 
the Harricent_RSECC data protection model offers necessary 
security to both image and text dataset including 
confidentiality, integrity and non-repudiation. From Appendix 
I, the Harricent_RSECC model provides confidentiality of the 
owner’s data at the first level of security through encryption 
by using the ECIES. Again, at the second level of security, the 
ciphertexts are signed using the fast ECDSA to sign, 
authenticate and validate the source of the transmitted data. 
The Harricent_RSECC model provides protection from data 
loss or corruption using the Reed Solomon coding. Data 
integrity provided by both fast ECDSA and RS is achieved at 
the second and third level of the Harricent_RSECC model. 

VII. CONCLUSION 

In this paper, we appraise that data is vulnerable to attacks 
and security threats while in transit and/or storage. The study 
focused on integrating encoding and encryption schemes to 
offer optimal protection due to unintended data loss as a result 
of adversary actions or hardware failures. The study 
implemented a data security model, dubbed Harricent_RSECC 
data protection model, to improve CAIN of data by dwelling 
on five key metrics. Through data identification and 
classification process, the study was scoped with texts and 
images. The use of RS codes enabled the detection and 
correction of compromised messages so as tom maintain the 
integrity of the message. To prevent man in the middle attack 
and message eavesdropping, the model obfuscated the 
message prior to transmission and storage. Consequently, the 
confidentiality and authenticity of the message guaranteed. 
Moreover, through message signing, the model achieved the 
security levels of integrity and non-repudiation. 

VIII. FUTURE WORK 

The future study will focus on improving the 
computational processes so that instead of three deliverables, 
authors may compress all output into one file. More so, study 
will expand the scope to cover other scope such audios and 
videos files. 
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APPENDIX I 

A python simulation of the implementation of Harricent_RSECC data protection model: 

 

Fig. 9. A Snapshot of the Simulation of the Harricent_RSECC Data Protection Model. 
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APPENDIX II 

Following are some python code snippets for the implementation of Harricent_RSECC Data Protection Model: 

import unireedsolomon as r 

# encoders 

rs4a = rs.RSCoder(15, 9, generator=2, prim=0x13, fcr=0, c_exp=4) 
rs8d = rs.RSCoder(255, 251, generator=2, prim=0x11d, fcr=0, c_exp=8) 

remainderpass = [ ]     

codewordpass = [ ] 

#the Encoding 

                if self.codevariable.get() == "RS(53, 37)": 

                    if thewordlength > 9: 
                        #messagebox.showinfo(title="Encoding", message="Message length cannot be greater than 37") 

                        newfxd = self.chunkmydata(fxd, 37) 

                        fxdlength = len(self.chunkmydata(fxd, 37)) 
                        if fxdlength > 10: 

                            messagebox.showerror(message="File Size is too big. Please Choose Another Encoder.") 

                        else: 
                            for elem, data in enumerate(newfxd): 

                                codeword = rs8a.encode(data) 

                                remainder = codeword[-16:] 
                                print('remainder(hex)= %s ' % remainder.encode().hex()) 

                                self.codeworddisplay(codeword) 

                                remainderpass.append(remainder) 
                                codewordpass.append(codeword) 

remainderpass.append(remainder) 

                        codewordpass.append(codeword) 
                    encoder = "RS(15, 9)" 

Listing. 1. The Generation of RS Codeword and Remainder. 

from ecies.utils import generate_eth_key, generate_key 

from ecies import encrypt, decrypt 

#encryption-key generation 

secp_k = generate_key() #random number 

sk_bytes = secp_k.secret  # generate priv-k using the random key 
pk_bytes = secp_k.public_key.format(True)  # generate pub-k using the random key 

#encrypting data using ECIES 

data = bytearray(fxd, "utf8") 
encrypted_data = encrypt(pk_bytes, data) #encrypt data using pub-k 

self.functiondisplay(newdata, encrypted_data) 

Listing. 2. The Implementation of the Data Encryption Module using ECIES. 

from fastecdsa import curve, ecdsa, keys 

from fastecdsa.curve import P256 
from fastecdsa.keys import export_key, gen_keypair, import_key 

from fastecdsa.encoding.der import DEREncoder 

from hashlib import sha3_256 
#encryption-key generation 

# integrity 

                private_key, public_key = gen_keypair(P256) 
# sign 

r, s = ecdsa.sign(fxd, private_key, hashfunc=sha3_256) 

Listing. 3. The Implementation of the Message Signature using Fast ECDSA Algorithm. 


