
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

133 | P a g e

www.ijacsa.thesai.org

Implementation of a Data Protection Model dubbed

Harricent_RSECC

Frimpong Twum
1
, Vincent Amankona

2
*, Yaw Marfo Missah

3
, Ussiph Najim

4
, Michael Opoku

5

Department of Computer Science, KNUST, Kumasi, Ghana
1, 3, 4

Department of Computer Science, CUCG, Sunyani, Ghana
2

Department of Computer Science, UENR, Kumasi, Ghana
5

Abstract—Every organization subsists on data, which is a

quintessential resource. Quite a number of studies have been

carried out relative to procedures that can be deployed to

enhance data protection. However, available literature indicates

most authors have focused on either encryption or encoding

schemes to provide data security. The ability to integrate these

techniques and leverage on their strengths to achieve a robust

data protection is the pivot of this study. As a result, a data

protection model, dubbed Harricent_RSECC has been designed

and implemented to achieve the study’s objective through the

utilization of Elliptic Curve Cryptography (ECC) and Reed

Solomon (RS) codes. The model consists of five components,

namely: message identification, generator module, data encoding,

data encryption and data signature. The result is the generation

of the Reed Solomon codewords; cipher texts; and generated

hash values which are utilized to detect and correct corrupt data;

obfuscates data; and sign data respectively, during transmission

or storage. The contribution of this paper is the ability to

combine encoding and encryption schemes to enhance data

protection to ensure confidentiality, authenticity, integrity, and

non-repudiation.

Keywords—Elliptic curve cryptography; encoding; encryption;

Reed Solomon; security

I. INTRODUCTION

A. Background of Study

The advent of computerized systems and networks has
been beneficial to organizations and has subsequently
enhanced their operations. This has resulted in the generation
of larger quantum of data to augment the activities of these
organizations. Data produced by these organizations are
considered a major resource, therefore resulting in
organizations adopting strategies that can protect this
important resource from being misused. As a quintessential
resource, comprehensive techniques are provided and
instituted by these organizations frequently to offer protection
to this data [1].

Though protective mechanisms are instituted, there is also
an increase in threats to undermine organizations’ operations.
Notwithstanding, the insurgence of adversary’s attacks have
consistently hampered the functional activities of
organizations over the past years and was colossal during the
COVID-19 pandemic era. To ameliorate this insurgence,
organizations started scrambling for solutions to protect their
data. In this regard, researchers began to also seek for

solutions to mitigate this insurgence of threats and attacks
through the development of robust techniques and methods to
prevent loss of data and unauthorized access and modification.
It is on the basis of the aforementioned, that it is always
important for industry and researchers to stay a step ahead of
attackers in the preservation of data in transit and storage,
hence, the call for this research.

As several research have postulated, most security systems
have focused on either using encoding or encryption
strategies/techniques to guarantee the safety and accuracy of
data [2]. Whereas the encoding schemes add extra bits to the
original data to aid in error detection and correction, in order
to maintain the integrity of messages. The encryption
schemes, on the other hand, ensure messages transmitted or
stored are obfuscated to prevent unauthorized access and
modification in order to maintain the authenticity and
confidentiality of messages.

Examples of data encoding and encryption schemes
include Reed Solomon codes, Reed-Muller codes, checksum,
and AES, RSA, ECC, Blowfish among others have emerged to
offer protection to data [3]. The encoding and encryption
schemes are aimed at preserving the confidentiality,
authenticity, integrity and non-repudiation (CAIN) of data.
The utilization of encoding scheme over encryption
algorithms, even though, offers security but it is ineffective to
provide optimal protection due to unauthorized access or
alteration of data as a consequence of adversaries’ activities.
This illicit access and modification of the data by the attacker
causes data compromise. Also, the utilization of encryption
algorithms offer protection to data but it is inadequate as a
result of inadvertent modification, loss of data or hardware
failures. Data can be destroyed by hardware failures, un-
trusted communication channels or attackers when accessed.
This also leads to data compromise and therefore requires the
application of different security measures to offer optimal
security.

This research therefore focuses on how to harness the
strengths of encoding and encryption security techniques to
achieve a robust data protection system.

B. Aim of Study

The study’s aim is to implement a data protection model
by integrating Elliptic Curve Cryptography (ECC) and Reed
Solomon (RS) coding schemes.

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

134 | P a g e

www.ijacsa.thesai.org

To achieve the stated aim the following questions are
raised:

1) Can ECC and RS codes be used to ensure secure data

transmission and secure data storage?

2) Can a proposed Harricent_RSECC data protection

model enhance data security by ensuring an uncompromised

data transmission and data storage?

3) Will the implementation of the proposed

Harricent_RSECC data protection model offers the required

security to data?

II. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Elliptic Curve Cryptography (ECC) is a contemporary
group of public-key cryptosystems premised on the algebraic
structures of elliptic curves over finite fields and the
complexity of the Elliptic Curve Discrete Logarithm Problem
(ECDLP).

An ECC curve can be illustrated as a curve that intersects
two lines on a graph. This type of curve is determined by the
properties of the mathematical group consisting of set of
values for which operation on two of its members produces a
third member [4] depicted in Fig. 1. Multiplying a point by a
number on the curve produces an additional point on the
curve, but finding what number has been used is very difficult,
although parties involved know the original point and results.
ECC uses elliptic curves in which elements of a finite field are
all limited to variables and coefficients. The ECC is
mathematically represented using the Weierstrass form of an
elliptic curve denoted in (1) as follows
where . Each "a" and "b" value has an elliptic
curve that is different.

 (1)

Fig. 1. ECC Representation.

ECC constructs all of the substantial functionalities of
asymmetric cryptosystem, including encryption, signatures,
and key exchange. ECC cryptography is regarded as an
effective modern replacement to the RSA cryptosystem since
it utilizes smaller keys and signatures than RSA for the same
level of security and offers extremely fast key generation, key
agreement, and signatures.

A. ECC Keys, Algorithms, Curves and Key Length

In the ECC, the composition of private keys are generally
numbers within a range of integers (usually 256-bit integers),
thereby making it easier and faster for private key generation.
The public key on the other hand is generated from points
which lay on an elliptic curve, usually a pair of integer

coordinates (x, y). Ultimately, a shared key is a public key that
is derived after multiplying the private key of the sender to the
public key of the receiver and vice versa [5].

Besides, basing on the mathematical properties of elliptic
curves over finite fields, the elliptical cryptography offers
varied sets of algorithms. Three major categories of ECC
algorithms are available consisting: signature algorithms such
as elliptic curve digital signature algorithms, fast elliptic curve
digital signature algorithms and Edwards digital signature
algorithms; encryption algorithms for instance elliptic curve
integrated encryption scheme and ElGamal Encryption using
ECC (EEECC); and lastly is the key agreement algorithms
including elliptic curve Diffie Hellman X25519 and Fully
Hashed Menezes-Qu-Vanstone (FHMQV) [6].

Moreover, diverse sets of curves exist that elliptic curve
crypto algorithms can utilize to achieve different purposes.
Goals such as determining the level of cryptographic strength
(security), the length of key and the performance are rational
for implementing a different set of curves. Consequently,
every curve consists of the following parameters (curve name;
size of the field/key; the cryptographic strength – expressed as
ratio of field size to 2; and the speed – also expressed as ratio
of operations to seconds). Examples of ECC curves and their
corresponding key sizes include “curve secp192r1 with 192-
bit, curves secp256k1 and Curve25519 with 256-bit, curve P-
521 with 521-bit among others” [6].

Therefore, it can be advanced that digital signature,
encryption and key agreement algorithms utilizes any of the
curves above for computations which heavily rely on the
difficulty of ECDLP to provide adequate level of security to
data while performing with minimal key length.

B. Key Benefits of Elliptic Curve Cryptography

The benefits of using elliptic curves stems from the fact
that with shorter keys, equivalent levels of protection can be
obtained compared with other algorithms. The ECC
cryptosystem is useful in our contemporaries with massive
upsurge in the development and usage of mobile devices.
Thus, as the use of smartphones grows, more robust
encryption is necessary for businesses to meet the increasing
security requirements [7]. Some of the benefits are discussed
below:

1) Stronger keys: ECC represents the latest encryption

method, providing more security in elliptical curve

cryptography. The underlying math problem of the ECC

algorithm implies it is more difficult for hackers to crack

compared to RSA and DSA, which makes the ECC algorithm

more reliable than conventional methods for websites and

infrastructure [8]. ECC algorithms rely on the difficulty of

ECDLP to provide adequate level of security to data while

utilizing minimal key length [5]. This invariably has improved

performance and enhanced storage requirements.

2) Short key size: Comparably, Because ECC keys are

substantially smaller than DSA/RSA keys; the size of the

public and private keys in ECC is relatively short. As a result,

the National Institute of Science and Technology (NIST)

recommended that ECC can employ substantially lower

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

135 | P a g e

www.ijacsa.thesai.org

parameters for the same degree of security bits as RSA/DSA

[9]. The choice for these algorithms is that elliptic

cryptography uses lesser keys to achieve same security levels

contrary to the other PKCs. For instance, the RSA/DSA

technique requires a key length of 7680 bits to achieve 192

bits of security, whereas ECC requires a key size of 384 bits.

Furthermore, the RSA/DSA algorithm requires a key size of

15360 bits to obtain 256 bits of data protection, whereas ECC

requires a key length of 512 bits.

As a result, processing times are reduced while memory
and bandwidth requirements are limited. ECC is especially
suitable for applications with limited memory, bandwidth,
and/or computing capability, and its use is expected to
increase in this area.

III. REED SOLOMON (RS) CODING SCHEME

A. The Theory of Reed Solomon (RS) Coding

The RS code is a systematic, linear cyclic and non-binary
block code. During RS coding, redundant symbols are created
and appended to the symbols of the message by using a
polynomial generator [10]. The position and magnitude of the
error in the decoder are determined using the same polynomial
generator [11]. The correction is then applied to the code
received. RS coding is commonly used for error detection in a
variety of communications and computer infrastructures,
including storage, wireless or mobile communications,
satellite communications, digital television, and high-speed
modems [12].

RS codes were opted over other error detection and
correction codes because of their faster decoding capabilities,
i.e., their ability to detect and/or correct significant numbers of
omitted or compromised data items; and the fact that they
require the fewest additional error correcting codes bits for a
known number of data bits [10]. Fig. 2 provides a framework
representation of RS encoding/decoding process:

Reed-Solomon codes are by far the most extensively
utilized for burst error correction [13]. The benefit of utilizing
RS codes is that the likelihood of an error persisting in the
decoded data is (generally) substantially lesser than if RS
codes are not employed. Coding gain is a common term for
this benefit. Because Reed Solomon code has a high coding
rate, it is suited for a broad array of applications, comprising
storage and transmission [12].

B. Properties of RS Code

RS code is specified as with s-bit symbols [10].
Given a symbol size s, the maximum codeword length (n) for
a Reed-Solomon code is n = 2

s
 – 1. For instance, an 8-bit

symbol will produce a maximum length of 255 bytes. This
signifies that the encoder creates a symbol codeword by
adding parity symbols to data symbols of bits each. There
is a total of parity symbols, each with s bits. A Reed-
Solomon decoder can fix up to symbols in a codeword that
have errors, where . A typical Reed-Solomon
codeword (known as a Systematic code because the data is not
altered and the parity symbols are attached) is shown in Fig. 3
[14].

Fig. 2. Framework of RS Scheme.

Fig. 3. Reed Solomon Codeword Generation.

A code such as Fig. 3 can detect and correct up to
 symbol where each symbol represents an element
within the finite fields . This implies that any
symbols that may be corrupted can still be recovered from the
original message [15].

An RS(255, 223) with 8-bit symbols is an example. Each
codeword is made up of 255 bytes, with 223 bytes of data and
32 bytes of parity. The following can be derived from the
code:

n = 255; k = 223; s = 8; 2t = 32, t = 16

As a result, the decoder can automatically correct any 16
symbol errors in the codeword: that is, errors of up to 16 bytes
can occur anywhere in the codeword.

In Fig. 4, the sender uses the RS encoder to encode the
message in a codeword and transmits it through the
communication channel. Channel noise and other disorders
may disrupt the codeword and corrupt it. This corrupted
codeword comes to the recipient end (decoder) and transfers
the tested message to the receiver. If the error caused by the
channel is larger than the decoder's error correction capability
it may result in a decode failure. Decoding errors occur when
a codeword has not been passed and a decoding error leads to
an incorrect message [16].

The representation of an instance of an RS protected
communication channel while transferring data is illustrated in
Fig. 4.

Source

Receiver

ENCODER
Encodes the Message into

Codeword

DECODER
Corrects and reclaims the Source

Message

CHANNEL
Introduces Error
into the Message

1011010

1011

Fig. 4. Reed Solomon Protected Channel.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

136 | P a g e

www.ijacsa.thesai.org

IV. REVIEW OF RELATED WORK

This section explores the extant works of ECC and RS.
Elliptic curve cryptography (ECC) is by far the most effective
public-key option for providing security services to devices
with limited resources and it has been employed in a variety of
business applications [5]. ECC, since its emergence has been
considered the preferred option with notable efficiency for
ensuring authenticity, encryption, signatures and key
agreements [5]. To achieve these, He et al. deployed an ECC
authentication model in a smart grid environment to obfuscate
smart meter anonymity [17]. However, Sadhukhan et al
pointed some security flaws in [17] such as internal and
masquerading attacks [9]. Besides, by utilizing ECC and
image steganography to maintain the legality and accuracy of
medical health data, Eshraq et al.’s model obfuscated health
data from being accessed by unauthorized access [18]. To
ensure ECC’s applicability in diverse contexts, the authors
[19], [20], [21], [22] and [23] utilized ECC to achieve
confidentiality, integrity, non-repudiation and authenticity
levels of security.

On the contrary, the establishment of a reliable
communication channel is very necessary as there exist
security breaches within satellite or telephone channel which
can compromise data security [10]. To overcome these
security breaches many techniques of correcting errors have
been introduced over time. One of such method is RS code
which is a key non-binary BCH coding sub-class. These are
useful cyclic codes utilized in detecting and correcting burst
errors. RS codes have been prevalent due to its simplicity in
encoding and well-structured decoding capabilities. In
appraising the efficiency of RS codes, Wonshik & Jae-Yeon
appraised the performance of RS(255, 239) in a smart
transmission medium and an intelligent system [12]. The
implementation of their system depicted RS code efficiency
over a chaotic communication channel as the higher the
codeword length, the greater the bit error rate improvements.
Besides, Mounika [10] postulated that there exist security
breaches on a satellite or telephone channel. Therefore, the
establishment of a reliable communication channel is very
necessary. To this end, [10] implemented a modified version
RS codes for performing error corrections. Further, studies by
[13] indicated that the decoding capabilities of RS codes have
been efficient against deletion errors. And it was validated
through the simulation results by [24] where the proposed RS
decoder achieved a higher coding gain in contrast to algebraic
decoding methods.

The identifiable gap is the ability to combine both
techniques to achieve a robust security model and that’s the
goal of this study.

V. IMPLEMENTATION OF THE HARRICENT_RSECC MODEL

A. Conceptual Framework of an Efficient Data Security

Quite a number of studies have been carried out relative to
mechanisms that can be deployed to enhance data protection.
However, most of these studies have either focused on
encryption or encoding schemes as postulated in [2]. The
ability to integrate these two techniques and leverage on their
strengths to achieve adequate data protection has been the

major concern in this study. To this end, the
Harricent_RSECC data protection model has been designed
and implemented to achieve the objective of this study
through the utilization of Elliptic Curve Cryptography (ECC)
and Reed Solomon (RS) codes. The prime goal for integrating
ECC and RS is to achieve a fast, small, and portable
cryptographic protocol, which would support elliptic curve
digital signature generation and verification together with data
reconstruction.

Fig. 5 shows the design of the Harricent_RSECC data
protection paradigm, which integrates RS encoding and two
variants of ECC to serve a purpose of improving data
protection while achieving data integrity and confidentiality.
Generally, the implementation of the model is achieved by the
following steps.

B. Metrics used for Harricent_RSECC Data Protection

Model

As a defensive system, it is always important to identify
any messages or data received. Since messages come in
different forms, understanding the different message types
received play a crucial role when identifying the message/data
received. The process for an unwanted message to be detected
or identified is important to ensure the right defensive
mechanisms are applied.

Having identified the type of message, a second defense
module, the generator module, ensures proper defense by
identifying which encoding level is crucial in identifying and
correcting the right amount of errors that may occur in the
system. This module also provides the chunking of data to
ensure faster processing of the messages received.

Thereafter, messages received are transferred for security
mechanisms to be applied to the message. The mechanisms
are to encode, encrypt and sign the messages. These three
effective security mechanisms will prevent unauthorized
access to the message received.

As different attacks can be performed, each stage in the
framework provides a defensive approach in protecting the
message received.

Harricent_RSECC

MESSAGE

(TEXT / IMAGE)

Encrypting

using ECIES

Encoding using

RS

Signing using

ECDSA

View or

Save?

Store Data

View Data

GENERATOR
Codeword

&
Remainder

Ciphertexts

Signed
Message

Fig. 5. Schematic Diagram of Harricent_RSECC Data Protection Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

137 | P a g e

www.ijacsa.thesai.org

Therefore, the metrics that defined the functional
requirements for Harricent_RSECC are:

1) The model must be able to identify the message type in

order to perform the proper analysis. This maintains the scope

of the study (text and images) prevent unclassified messages

from being uploaded.

2) The model must be able to identify the message

size/length in order to apply appropriate RS coder levels.

3) The model should be able to detect if a message has

been compromised and correct eventually.

4) The model should be able to obfuscate the message and

prevent unsolicited access and modification.

5) The model should be able to maintain the integrity of

the message and associate messages transmitted or stored with

the sender (i.e., ensuring non-repudiation).

The primary focus of this model is the ability for the
system to identify a message type received, chunking of large
messages for faster processing, obfuscation of the message,
signing of the message, detection and correction of
compromised messages. This work attempts to provide a
protective mechanism which organizations can rely on to
protect their resources.

C. Implementation of Harricent RSECC Components

From the design of the model, the following principal
components are implemented: Message Identification,
Generator Module, Encoding, Encryption, and Signature.

1) Message identification: A message is submitted by the

user into the Harricent_RSECC model. This phase is to

identify the type of message that is permissible to be uploaded

into the model, be it a text or an image. This module consists

of a rule-based component where rules are defined based on

the list of file types and type of file uploaded or sent by the

user.

For example, a typical rule might be
if(filetype==filetypeslist) return true. The module identifies
the message/data based on the type of file received/uploaded.
The received message/data is processed and categorized to
compute a value Mt based on two outputs, text (Dt) and Image
(Di). Messages are identified based on f(Mt) as follows:

 {

If new message types are identified, there is the need for it
to be added to the file type list to improve the efficiency of the
system. If new message types are identified, there is the need
for it to be added to the file type list to improve the efficiency
of the system.

Files uploaded are checked by a function to prevent
unclassified files from being uploaded.

#function file upload

if (filetype = “.txt” or filetype = “.doc” or filetype = “.docx” or

filetype = “.png” or filetype = “.jpg” or filetype = “.jpeg” or

filetype = “.gif”):

upload file

else

print(“file type not supported”)

2) The Generator Module (GM): This module prepares

image and text files for the RS encoding scheme to be applied.

It determines the length of message, chunks message based on

encoder level and generates ASCII codes from message. The

received message could be preprocessed by this module to

determine the message’s length. Message length, ,

determination effectively enables how the message can be

encoded. If a message, M, is presented as a number of

characters then is determined by , where

n is the last returning value, resulting in . This module

also takes into accounts the coder level during processing to

determine the bits-type needed during encoding. The size of

the bits-type is determined based on the message length .

The bits size, k, of a message is the bits-type to be used during

RS encoding. Selection of the bits-type for a message is

determined based on

 {

where α is a pre-defined threshold value of thirteen
characters.

The algorithm for determining the length of text messaging
is presented below.

#def determine the length of message.

Take the length of message using the length library.

#def set bit size.

 if messagelength < 13 and Bit_size=="8-bits":

Display a message that coder level must be either 'RS(15, 11)

and RS(15, 9).

Set bit_size to 4-bits.

Else.

Pass

After the message length has been determined, a decision
has to be made where the received message will be chunked
(1) or not-chunked (0), utilizing the encoder level. The
encoder level utilizes message length CML and codeword
length CWL in its operation. All encoder levels are in the
format: CL(CWL, CML), where CL is for coder level.
Chunked messages are determined based on.

 {

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

138 | P a g e

www.ijacsa.thesai.org

The algorithm for chunking a message is presented below.

#code for chunking data.

#def chunkmydata(self, string, n):

chunks = [string[i:i + n] for i in range(0, len(string), n)].

return chunks.

The last operation of this module is the conversion of a
message to its ASCII format. Each character (C) in the
message is converted to its ASCII code (AC) (ie.
C1=>AC1,…,Cn=>ACn).

The algorithm for messaging to their equivalent ASCII is
presented below.

#def convert message length to ASCII codes.

letters = take the ordinal of the message characters to give

their ASCII Codes.

3) Data encoding: This module utilizes the RS error

correcting code to encode messages prepared from the GM to

generate codeword. This is to guarantee that messages in

transit or storage are devoid of corruption or contain errors by

appending redundant data to it. The framework employed

multiple encoder levels to encode. The RS code is built on

finite fields, which have the feature that any computation on

field elements always returns an element in the field-set [14].

To generate an RS codeword, a polynomial generator
 is used with the following notations: information
block , codeword and a primitive element of the
field. A polynomial generator is illustrated in (2) below:

 (2)

with the codeword generated as follows (3):

 (3)

Following steps are employed in the generation of
codewords and remainders:

a) An encoder level (RS) must be selected. To encode,

Reed Solomon coder makes use of different encoder levels.

Eight (8) RSCoder levels (RS) were selected ranging from (15,

9) to (255, 251) as follows:

RSCoder(15, 9), RSCoder(15, 11), RSCoder(53, 37),
RSCoder(255, 223), RSCoder(255, 239), RSCoder(255, 251),
RSCoder(255, 247), RSCoder(255, 191).

The above RS encoder levels determine the message
(RSM) and codeword (RSC) lengths.

b) Message (M) length is determined based on the

encoder level (RS) selected.

Message length = len(Message)

c) If message (M) length is less than or equal to the

message (RSM) length of the encoder, message (M) is encoded

and a remainder (R) is generated.

d) A message (M) length that exceeds the encoder level

message length (RSM), message (M) is chunked based on the

message (RSM) length of the encoder level using a chunk

function explained above. Each chunked message is encoded

and a remainder (R) generated for each.

Chunked Data = (M, RSM).

Chunked Data Length = len(Chunked Data).

If Message length > RSM:

Chunked Data = (M, RSM).

codeword = rs4a.encode(Message).

remainder = codeword[-6:].

remainderhex = remainder.encode().hex().

4) Data encryption: The Encryption module provides

obfuscation and protection of message/data. The framework

used the ECIES to accomplish this. In an unsecured channel,

ECIES will safeguard the contents from being read or altered

with by unauthorized parties. During implementation, the

ECIES combines the Secp256k1 curve with the Advanced

Encryption Standard – 256 – Galois Counter Mode (AES-256-

GCM) to offer the needed security. The AES-256-GCM

algorithm is a symmetric encryption algorithm with a 256-bit

key size [25]. To achieve ECIES encryption the following

steps are followed:

a) Generation of Key Pairs: The first step in ECIES is to

generate private (PRk) and public key (PUk) pairs. In the

elliptic curve, private keys (PRk) that are generated are in

integers and public keys (PUk) are points on the curve.

Therefore, to encrypt file contents, the Harricent_RSECC

model generated both public (PUk) and private keys (PRk). A

private key (PRk) was created by obtaining 32 bytes from

randomly generated numbers (R). A new private key (PRk) is

generated if there is none; otherwise the private key already

generated will be loaded. A private key (PRk) is just a

sequence of raw bytes. To ensure better security, small

numbers must not be chosen as private keys.

PRk = rand()

If PRk = NONE then

PRk = rand()

Else

PRk

Example: the limit of the integer number (N) as agreed by
the communicating parties.

N =

10015792089237316195423125709850085568790718528137

56427907490438260516314

PRk = random.randint(1, N)

PRk =

95193991353039061015378100235213857196721754949810

9375643560636694135579

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

139 | P a g e

www.ijacsa.thesai.org

The public key, on the other hand, is determined by
multiplying a point on the elliptic curve (G) and the private
key (PRk).

PUk = PRk × G

Therefore,

PUk = (PRk × Gx) + (PRk × Gy)

b) Generation of Shared Secret Keys: The second step of

using the ECIES was to create a shared secret key by

multiplying the private (PRk) and public (PUk) key using

Elliptic Curve Diffie-Hellman (ECDH) algorithm. The ECDH

algorithm is principally used to prevent eavesdropping by

facilitating the exchange of the AES shared secret key. This

shared key is a public key derived after multiplying the private

key of the sender to the public key of the receiver and vice

versa. Thus,

Shared Secret key (S) = PRk × PU

c) Key Derivation Function (KDF) - AES Key and

HMAC Key: The third step of the ECIES algorithm utilized the

shared secret key to derive an Advanced Encryption Standard

(AES) key and a Hash-Based Message Authentication Code

(HMAC) key via a Key Derivation Function (KDF). The KDF

component provides another layer of security to prevent man-

in-the-middle attack which is a major issue in ECDH. The

KDF ensures the hashing of the shared secret key (S) generated

using SHA256 algorithm. The steps involved in implementing

the key derivation function (KDF) are:

i) Convert Shared key (S) to bytes

ii) Using the SHA256 hash library, the bytes are hashed to

produce a hash key (H).

The AES key derivation is based on the key length and the
hash (shared) key (H). AES-256-GCM has the key length of
256 bits. To generate an AES key that was used for
encryption, the hash (shared) key (H) length should be equal
to 256 key bits length.

AES Key Length = 256 bits

AES Key = H [: AES Key Length]

// AES key picks the first part of shared //key whiles the
latter is for the HMAC key

More so, HMAC secret key utilized was also based on the
key length and the hash (shared) key (H). HMAC’s
cryptographic strength depends on the size of its output as
well as the size and quality of the key. HMAC-SHA256
operates on a bit size of 256. This size produces a sizable
output and key. To generate HMAC secret key:

HMAC Key Length = 256 bits

HMAC Secret Key = H [HMAC Key Length:] // HMAC key

picks the later //part of the shared key

d) Message Encryption: The fourth step in adopting the

ECIES is message encryption. To encrypt a message, a random

initialization vector (IV) was created and XOR’d with the

message in addition to the AES key to generate a ciphertext.

Initialization vector (IV) is an abbreviation of “nonce” which

connotes the number used once. The randomly generated bits

were based on the AES block size and the number of bits in the

key length.

The generated IV is converted to bytes depending on the
AES block size.

IV = random.getrandbits (AES block size * number of bits per

byte).

IV = IV. to_bytes (AES block size).

Ciphertext (C) = (IV XOR message, AES Key).

e) Hash-Based Message Authentication Code (HMAC):

In the fifth step, HMAC was created to be used for

initialization vector (IV) and Ciphertext (C). To create HMAC,

two keys are generated from the HMAC Secret Key. The two

keys are named, inner key (Ik) and Outer key (Ok). The first

256 hash (Fh) value is generated from the message and Ik. A

second 256 hash value is generated from Fh and Ok. These

keys are sent to the recipient for verification/decryption.

f) Transmitting PUk, IV, C and HMAC: The final step

involves the sending of PUk, Initialization Vector (IV),

Ciphertext (C) and Hash-Based Message Authentication Code

(HMAC). The transmission is through a communication

channel to the server facility for storage.

Encrypted data or ciphertext sent (Cs) is decrypted using
the private key PRk,

Messagedecrypted = (Cs, PRk,)

5) Data signature: This component uses Fast ECDSA to

digitally sign files to uphold the integrity of the message. In

comparison to other types of digital signatures, the Fast

ECDSA technique is designed to conduct fast elliptic curve

cryptography. In comparison to ECDSA, it takes very little

time to perform its instructions. In the elliptic curve, private

keys are integers, and public keys are points on the curve. To

offer 128 bits of security, the curve adopted is

P256/secp256r1. Creation curves are done using Weierstrass

form: .

The Fast ECDSA algorithm employed to digitally sign
messages combines P256 / secp256r1 curve and SHA3_256.
The curve is imported for use in this study as shown in the
example below:

Example:

curve = ec.SECP256R1()

The following are the steps involved in the implementation
of Fast ECDSA algorithm:

a) Generation of Key Pairs: Private (EPRk) and Public

(EPUk) keys were generated to sign and verify messages by

using P256 curve. Private (EPRk) keys are integers that were

randomly generated and Public (EPUk) key were derived by

multiplying the EPRk and a point on the curve (GE). Public

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

140 | P a g e

www.ijacsa.thesai.org

Keys are considered points on the curve.

EPRk = rand().

EPUk = PRk × G.

b) Signing the Message: The private key (EPRk) is used

to sign the message and the hash function SHA3_256. ECDSA

signature (r, s) is generated after signing and returned as 256

bits.

Message = b"This message will be signed and verified".

signature_algorithm = ec.ECDSA(hashes.SHA3_256()).

signature = privatekey.sign(Message, signature_algorithm).

c) Verifying the Signatures: To verify that the message

has not been compromised, the ECDSA signature (r, s)

together with public key (EPUk), decrypted message and hash

function SHA3_256 are utilized.

valid = publickey.verify(signature, message,

signature_algorithm)

if valid is True then

print(“Valid Message”)

else

print(“Invalid Message”)

D. Securing Data with the Harricent_RSECC Data Protection

Model

To demonstrate the feasibility and performance of
Harricent_RSECC Data Protection Model, a python
implementation has been developed. Consider the message:

“CAREER OBJECTIVE: To secure a position where I can
efficiently contribute my skills and abilities for the growth of
the organization and build my professional career”

The message is firstly identified as text through the
message identification module. Following the model utilized a
“unireedsolomon” library to facilitate in message encoding to
generate the codeword and remainders for each message.
Several predefined RS coder levels were setup in the
Harricent_RSECC Data model. However, in Listing 1 (see
Appendix II), an implementation instance RS(15, 9) and
RS(255, 251) are presented. The two encoder levels have
codeword lengths of 15 and 255 and message lengths of 9 and
251, respectively. The remainders are derived by subtracting
the length of the message from the codeword length.

Reference to the case, a user can encode this message and
by selecting a coder level of RS(53, 37). The Generator
Module is invoked to chunk the message into five different
parts for encoding shown in Fig. 6 below. Each of these parts
of the message is encoded to the codeword length of 53. This
ensures that enough redundant bits are appended to the
message to offer the opportunity for data reconstruction in the
event of data corruption.

Fig. 6. Codeword and Remainders Generated from the given Message.

Concurrently, the model takes the message, and by
utilizing ECIES and Fast ECDSA, the message is encrypted
and signed respectively. Fig. 7 shows the output of the
encrypted text of the above message.

To encrypt, the model uses the key generating and
encrypting libraries from ecies.utils to generate random
values, private, public keys and encrypt the message. Listing 2
(see appendix) is a code snippet of the implementation of the
data encryption module using ECIES algorithm.

The Fast ECDSA technique used to digitally sign
messages combined P256 / secp256r1 curve and SHA3_256.
Secret and shared keys are generated automatically from the
P256 / secp256r1 curve to sign and verify messages. The
message content is signed using the private key and the hash
function SHA3_256. Fast ECDSA signature (r, s) is generated
after signing and returned as 256 bits. Listing 3 (see
Appendix II) is a code snippet of the implementation of
signing the message using Fast ECDSA algorithm.

Appendix I provides a python simulation of the
implementation of Harricent_RSECC data protection model
and the various stages of interactions of the model. Altogether,
the remainder, encrypted and signed texts are transmitted for
storage. These files provide adequate information to ensure
confidentiality and integrity of organizational data.

Fig. 7. Encrypted Text.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

141 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

The Harricent_RSECC data protection model provides
data owners with the guarantee of data security in transit and
storage while preserving data validity. It contributes to the
field of security by incorporating encryption, encoding, and
signature techniques to provide confidentiality, authenticity,
integrity, and non-repudiation levels of security. Should an
adversary intercept any of the ciphertexts, the model ensures
data secrecy by utilizing ECIES to prevent unauthorized
access and eavesdropping. The ECC key size for the
Harricent_RSECC data protection model was 256. This
provides a 128-bit security equivalent (RSA/DSA will use a
key length of 3072). Furthermore, the model employs Fast
ECDSA to digitally sign a message, ensuring its integrity and
non-repudiation. Fast ECDSA generates hash values from the
message which are used for signing the messages and
verifying the authenticity of the ciphertexts. The model
additionally leverages RS codes to identify and corrects errors
that arise in order to provide the capability of retrieving
corrupted data files that occurred during transmission or
storage, which further enhances data protection in transit or at
storage.

The model affirms the studies conducted by [19], [20],
[25], [26], [27], [21] that applied elliptic cryptographic
algorithms to encrypt and decrypt the selected data and this
guarantee the safety of private information, sensitive data, and
can enhance the security of communication between computer
systems. The Harricent_RSECC model through the use of Fast
ECDSA validates the identity of the sender that transmitted
the message which upholds the studies conducted by [19], [20]
[28]. By employing Fast ECDSA, the content of the message
cannot be altered without detection. This ensures the integrity
of the message is maintained and, moreover, the signer cannot
deny association with the signed content. Moreover, studies
conducted by [13], [12], [10], [23] through the utilization of
RS codes endorses the benefits of error detection and
correction that may emerge.

A comparative discussion supported with existing
literature is presented in this section. The security of the
Harricent_RSECC data protection model was evaluated using
five metrics: Message Identification, faster processing through
chunking, obfuscation, detection and correction of
compromised messages and signature of message. This is to
ensure that the confidentiality, authenticity, integrity and non-
repudiation (CAIN) levels of security are provided to the data.
By obfuscating message, the confidentiality and authenticity
of information stored on computer systems or transferred
between its users across the internet is assured. By encoding
and decoding the message, the integrity of the message is
maintained through the addition of redundant data. By signing
the message, the integrity and non-repudiation of the message
is ensured. The selected metrics, as adduced in chapter 3, aids
in appraising the security potentials of the system.

In analyzing the studies of [19] and [20], it was observed
that their system partly used the message identification metric
by concentrating on either text or image on separate studies.
To ensure fast computational process, their studies utilized
message groupings to chunk messages. However, their

adopted message groupings will slow the processing of
messages as compared to the chunking component (generator
module) in the Harricent_RSECC model. In our study, the
GM chunks each message based on the RS coder level which
leads to faster encoding processing. Even though, the authors
utilized the ECC to obfuscate the messages, the two distinct
studies lack the functionality of detecting and correcting of
compromised messages in an event of error occurrence. More
so, [19] and [20] studies failed to offer and maintain integrity
of messages by not signing and associating messages
transmitted or stored to the sender (i.e., ensuring non-
repudiation); which have been ensured through fast ECDSA in
Harricent_RSECC model.

In a related study, [23] developed a technology that allows
messages to be hidden based on numerical ruler-bundle. It’s
worthy to note that message hiding is one of the reliable
methods of preserving and ensuring the CAIN. Notably,
[23]’s study partially made use of only one part of message
identification (i.e., image) in comparison with
Harricent_RSECC model. Analysis of [23]’s technology also
reveals that the authors failed to decompose the information
extracted from the image as their system read each stream of
input sequence to determine its encoding alphabet; however,
their technology hampers efficient computational processes.
Their studies enable the hiding of an image inside another
image in addition to noise tolerant codes. The model of noise-
tolerant codes provided an opportunity to correct up to 25% of
errors in the code word. Though, the technology has the
capacity to detect and correct errors in comparison with
Harricent_RSECC Model, but it lacks the capacity to ensure
non-repudiation as their technology does not sign messages
that are transmitted and stored.

Also, a study conducted by [21] concentrated on text
messages the author’s message identification at the exclusion
of images. Besides, [21]’s study failed to highlight the imports
of chunking which Harricent_RSECC model dwells because
chunking is beneficial to ensuring faster computational
processes. Like the Harricent_RSECC model, [21]’s model
obfuscates the content of the message through the utilization
of ECC. However, it lacks the ability to sign, detect and
correct compromised messages; hence integrity and non-
repudiation levels of security are not maintained.

More so, [22] designed a secure model for data protection
in the cloud but the system lacks the ability to differentiate the
types of data the study seeks to secure. Data identification is
consequential in ensuring CAIN because each data has its own
way of processing to offer the needed protection. Also, [22]’s
model was not clear on how message chunking is being
handled; however, much concentration was given to usability
in the study. Whiles the latter is good, the former is equally
important to ensure fast computation. More so, [22]’s model
obfuscated messages, but the methods employed are AES and
RSA, which in literature this study has adduced that the
benefits ECC far outweighs RSA. Again, the [22]’s study
indicated the concepts of non-repudiation and integrity but the
methods in achieving those security metrics are not explicit.
Lastly, their system lacks the ability to detect and correct
compromised messages which inadvertently affect the
integrity of the transmitted or stored data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

142 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARATIVE ANALYSIS OF SOME EXISTING WORK WITH HARRICENT_RSECC MODEL

Authors MI C O EDC S

[19] Image Yes Yes – ECC No No

[20] Text Yes Yes - ECC No No

[21] Text No Yes, ECC Not No

[22]
No message

identification
Not clear Yes, AES and RSA No

Non repudiation and integrity are

mentioned but method not clear

[23] Image No
Yes - numeric ruler

bundle

Yes - numeric ruler

bundle
No

Harricent_RSECC Texts and Images Yes Yes - ECIES Yes - RS Yes – Fast ECDSA

Table I presents a comparative analysis of some existing
work with Harricent_RSECC model in achieving secured
system by basing on the stated metrics:

MI – Message Identification,

C – Chunking,

O – Obfuscation,

EDC – Error Detection and Correction,

S – Signature,

From the levels of security espoused, it can be asserted
that it is only the Harricent_RSECC model that combines the
functionalities of encrypting, encoding and signing to achieve
confidentiality, authenticity, integrity, non-repudiation.
Therefore, the Harricent_RSECC data protection framework
offers the data owner the assurances of data protection in
transit and storage, while maintaining the validity, integrity
and confidentiality of the data. It is valid, therefore, to assert
that Harricent_RSECC model is the efficient framework
comparatively and offers protection to text and image datasets
by using both ECC and RS encoding protocols.

To advance this section, the questions posited in section
1.3 are discussed.

A. Can RS and ECC be used to Ensure Secure Data

Transmission and Secure Data Storage?

The characteristics of RS and ECC are advanced in
Sections 2 and 3. To offer protection to data, several data
encoding and encryption techniques have been proposed. In
the case of the encryption, such schemes are utilized to
obfuscate messages to prevent unauthorized access and
modification to protect the validity and secrecy of messages
transmitted/stored. While the encoding scheme adds extra bits
to the original data to aid in error detection and correction in
order to keep the messages from corruption or damage.

This study evaluates the RS encoding scheme and ECC
encryption technique to create a data protection model. Data in
transmission and/or storage are susceptible to attacks or
security threats. Most security systems focus on either extra
bit of data to messages or obfuscate the message. The
utilization of one scheme over the other offers security but it is
ineffective to provide optimal protection due to the inadvertent

loss of data as a consequence of adversary’s activities or
hardware failures. Therefore, it is essential to combine both
encoding and encryption strategies for ensuring effective data
protection.

As a public key cryptography, ECC characteristically
consists of a public key and a private key which augment the
communication between the parties involved. As a result, ECC
use significantly smaller parameters than RSA/DSA to
achieve the same level of security.

B. Can a Proposed Harricent_RSECC Data Protection

Model Enhance Data Security by Ensuring an

Uncompromised Data Transmission and Data Storage?

The Harricent_RSECC model and implementation (shown
in Fig. 8) achieved the study’s purpose of providing enhanced
data confidentiality and integrity model by using Reed-
Solomon encoding scheme and elliptic curve cryptography.
This ensures that the data owner participates in the provision
of security to the datasets before storing or outsourcing it to a
storage infrastructure [21].

Firstly, from the implementation of the model, a message
must be encrypted Using ECIES to inhibit unauthorized access
and intrusions if any of the ciphertexts are intercepted.
Secondly, prior to transmission, the message is signed by
computing a hash value to enable the receiver to authenticate
the validity and genuineness of the source message. This aids
in detecting any compromises that ensued during transmission
by untrusted channel or by an attacker.

Fig. 8. A Snapshot of an Encoded and Encrypted Data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

143 | P a g e

www.ijacsa.thesai.org

Moreover, in the event of data compromise, the Reed
Solomon scheme is utilized to decode and correct the
corrupted message. Thus, at the receiving end, the receiver
validates the validity and accuracy of the message by
computing the hash value on the decrypted message to verify
the authenticity of the message. The unmatched values
computed from the verification algorithm would render the
invalidity of the message.

C. Will the Implementation of the Hybrid Data Protection

Scheme Offer Necessary Security to Text and Image

Datasets?

The Harricent_RSECC data protection model is a robust
model that offers higher security levels to texts and image
datasets as it combines the strengths and efficiency of two
outstanding data protection schemes. The implementation of
the Harricent_RSECC data protection model offers necessary
security to both image and text dataset including
confidentiality, integrity and non-repudiation. From Appendix
I, the Harricent_RSECC model provides confidentiality of the
owner’s data at the first level of security through encryption
by using the ECIES. Again, at the second level of security, the
ciphertexts are signed using the fast ECDSA to sign,
authenticate and validate the source of the transmitted data.
The Harricent_RSECC model provides protection from data
loss or corruption using the Reed Solomon coding. Data
integrity provided by both fast ECDSA and RS is achieved at
the second and third level of the Harricent_RSECC model.

VII. CONCLUSION

In this paper, we appraise that data is vulnerable to attacks
and security threats while in transit and/or storage. The study
focused on integrating encoding and encryption schemes to
offer optimal protection due to unintended data loss as a result
of adversary actions or hardware failures. The study
implemented a data security model, dubbed Harricent_RSECC
data protection model, to improve CAIN of data by dwelling
on five key metrics. Through data identification and
classification process, the study was scoped with texts and
images. The use of RS codes enabled the detection and
correction of compromised messages so as tom maintain the
integrity of the message. To prevent man in the middle attack
and message eavesdropping, the model obfuscated the
message prior to transmission and storage. Consequently, the
confidentiality and authenticity of the message guaranteed.
Moreover, through message signing, the model achieved the
security levels of integrity and non-repudiation.

VIII. FUTURE WORK

The future study will focus on improving the
computational processes so that instead of three deliverables,
authors may compress all output into one file. More so, study
will expand the scope to cover other scope such audios and
videos files.

REFERENCE

[1] M. M. Kirman, S. M. Saif and A. T. Siddiqui, "Big data : a study of Its
issues and challenges," International Journal of Modern Computer
Science & Engineering (IJMCSE), vol. 5, no. 1, pp. 29-35, 2016.

[2] V. Amankona, F. Twum and J. B. Hayfron-Acquah, "A framework for
securing data by using elliptic curve cryptography and Reed Solomon

coding schemes," in 2021 International Conference on Electrical,
Computer and Energy Technologies (ICECET), Cape Town, 2021.

[3] R. Denis and P. Madhubala, "Hybrid data encryption model integrating
multi-objective adaptive genetic algorithm for secure medical data
communication over cloud-based healthcare systems," Multimed Tools
Applications, p. 21165–21202, 2021.

[4] D. Sadhukhan, S. Ray, G. Biswas, M. Khan and M. Dasgupta, "A
lightweight remote user authentication scheme for IoT communication
using elliptic curve cryptography," Journal of Supercomputing, 2020.

[5] C. A. Lara-Nino, A. Diaz-Perez and M. Morales-Sandoval, "Lightweight
elliptic curve cryptography accelerator for internet of things
applications," Elsevier: Ad Hoc Networks 103, 2020.

[6] C. Nakov, "Elliptic curve cryptography (ECC) - practical cryptography
for developers," 2019. [Online]. Available:
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-
cryptography-ecc. [Accessed 11 12 2021].

[7] J. Fadyn, "Basic elliptic curve cryptography using the TI-89 and maple,"
26th International Conference on Technology in Collegiate
Mathematics., 2015.

[8] J. Gruska, "Elliptic curves cryptography and factorization," IV054,
2020.

[9] D. Sadhukhan and S. Ray, "Cryptanalysis of an elliptic curve
cryptography based lightweight authentication scheme for smart grid
communication," in 2018 4th International Conference on Recent
Advances in Information Technology (RAIT), 2018.

[10] J. Mounika, "Analysis of modified Reed Solomon error correcting
codes," International Journal of Recent Scientific Research, vol. 9, no.
6(A), pp. 27225-27228, 2018.

[11] I. S. Reed and G. Solomon, "Polynomial codes over certain finite
fields.," Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, p. 300–304, 1960.

[12] W. N and J.-Y. C., "Performance Analysis of (255, 239). Reed Solomon
Code for Efficient Knowledge-based Systems in Ubiquitous
Environment," International Journal of Innovative Technology and
Exploring Engineering (IJITEE), vol. 8, no. 852, 2019.

[13] S. Liu and I. Tjuawinata, "On 2-dimensional insertion-deletion Reed-
Solomon codes with optimal asymptotic error-correcting capability,"
Elsevier: Finite Fields and Their Applications, vol. 73, 2021.

[14] F. Twum, J. Hayfron-Acquah, W. Oblitey and M.-D. William, "Reed
Solomon encoding: simplified explanation for programmers.,"
International Journal of Computer Science and Information Security
(IJCSIS), vol. 14, no. 12, 2016.

[15] F. Twum, B. J. Hayfron-Acquah, W. W. Oblitey and R. K. Boadi, "A
Proposed Algorithm for Generating the Reed-Solomon Encoding
Polynomial Coefficients over GF(256) for RS[255,223]8,32,,"
International Journal of Computer Applications (0975 – 8887), vol. 156,
no. 1, 2016.

[16] W. J. Leis, "Data Transmission and Integrity.," 2018.

[17] D. He, H. Wang, M. Khan and L. Wang, "Lightweight anonymous key
distribution scheme for smart grid using elliptic curve cryptography,"
IET Communications, vol. 10, no. 14, pp. 1795-1802, 2016.

[18] E. S, B. Hureib and A. A. Gutub, "Enhancing Medical Data Security via
Combining Elliptic Curve Cryptography and Image Steganography,"
International Journal of Computer Science and Network Security, vol.
20, no. 8, 2020.

[19] D. S. Laiphrakpam and M. S. Khumanthem, "Image Encryption using
Elliptic Curve Cryptography.," Procedia Computer Science, Elsevier,
no. 54, p. 472 – 481, 2015b.

[20] D. S. Laiphrakpam and M. S. Khumanthem, "Implementation of Text
Encryption using Elliptic Curve Cryptography.," in Eleventh
International Multi-Conference on Information Processing-2015
(IMCIP-2015)., 2015a.

[21] R. Obaidur, "Data and Information Security in the Modern World by
using Elliptic Curve Cryptography.," Computer Science and
Engineering, vol. 7, no. 2, 2017.

[22] A. M. Sauber, P. M. El-Kafrawy, A. F. Shawish, M. A. Amin and I. M.
Hagag, "A New Secure Model for Data Protection over Cloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

144 | P a g e

www.ijacsa.thesai.org

Computing," Hindawi. Computational Intelligence and Neuroscience.,
vol. 2021, p. 11, 2021.

[23] O. Riznyk, Y. Kynash, O. Povshuk and Y. Noga, "The Method of
Encoding Information in the Images Using Numerical Line Bundles," in
IEEE CSIT , Lviv, 2018.

[24] W. Zhang, S. Zou and Y. Liu, "Iterative Soft Decoding of Reed-
Solomon Codes Based on Deep Learning," IEEE Communications
Letters, 2020.

[25] A. A. Salim and A. B. M. Amal, "Data security for cloud computing
based on elliptic curve Integrated encryption scheme (ECIES) and

modified identity based cryptography (MIBC).," International Journal of
Applied Information Systems (IJAIS), 2016.

[26] A. G. Amar, C. Noureddine and F. Mezrag, "Performance Evaluation
and Analysis of Encryption Schemes for Wireless Sensor Networks,"
IEEE, 2019.

[27] M. Dindayal, A. K. Danish and K. Y. Dilip, "Security Analysis of
Elliptic Curve Cryptography and RSA," Proceedings of the World
Congress on Engineering, vol. 1, 2016.

[28] R. S. Soram, K. K. Ajoy and R. S. Soram, "Performance Evaluation of
RSA and Elliptic Curve Cryptography.," in 2nd International
Conference on Con temporary Computing and Informatics , 2016.

APPENDIX I

A python simulation of the implementation of Harricent_RSECC data protection model:

Fig. 9. A Snapshot of the Simulation of the Harricent_RSECC Data Protection Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

145 | P a g e

www.ijacsa.thesai.org

APPENDIX II

Following are some python code snippets for the implementation of Harricent_RSECC Data Protection Model:

import unireedsolomon as r

encoders

rs4a = rs.RSCoder(15, 9, generator=2, prim=0x13, fcr=0, c_exp=4)
rs8d = rs.RSCoder(255, 251, generator=2, prim=0x11d, fcr=0, c_exp=8)

remainderpass = []

codewordpass = []

#the Encoding

 if self.codevariable.get() == "RS(53, 37)":

 if thewordlength > 9:
 #messagebox.showinfo(title="Encoding", message="Message length cannot be greater than 37")

 newfxd = self.chunkmydata(fxd, 37)

 fxdlength = len(self.chunkmydata(fxd, 37))
 if fxdlength > 10:

 messagebox.showerror(message="File Size is too big. Please Choose Another Encoder.")

 else:
 for elem, data in enumerate(newfxd):

 codeword = rs8a.encode(data)

 remainder = codeword[-16:]
 print('remainder(hex)= %s ' % remainder.encode().hex())

 self.codeworddisplay(codeword)

 remainderpass.append(remainder)
 codewordpass.append(codeword)

remainderpass.append(remainder)

 codewordpass.append(codeword)
 encoder = "RS(15, 9)"

Listing. 1. The Generation of RS Codeword and Remainder.

from ecies.utils import generate_eth_key, generate_key

from ecies import encrypt, decrypt

#encryption-key generation

secp_k = generate_key() #random number

sk_bytes = secp_k.secret # generate priv-k using the random key
pk_bytes = secp_k.public_key.format(True) # generate pub-k using the random key

#encrypting data using ECIES

data = bytearray(fxd, "utf8")
encrypted_data = encrypt(pk_bytes, data) #encrypt data using pub-k

self.functiondisplay(newdata, encrypted_data)

Listing. 2. The Implementation of the Data Encryption Module using ECIES.

from fastecdsa import curve, ecdsa, keys

from fastecdsa.curve import P256
from fastecdsa.keys import export_key, gen_keypair, import_key

from fastecdsa.encoding.der import DEREncoder

from hashlib import sha3_256
#encryption-key generation

integrity

 private_key, public_key = gen_keypair(P256)
sign

r, s = ecdsa.sign(fxd, private_key, hashfunc=sha3_256)

Listing. 3. The Implementation of the Message Signature using Fast ECDSA Algorithm.

