

Implementation of a Secured Data Communication between

Heterogeneous Systems using Web Services Case Study: Kumasi

Polytechnic

by

EVANS KOTEI

A Thesis submitted to Department of Computer Science

Kwame Nkrumah University of Science and

Technology

in partial fulfilment of the requirements for the degree

of

MASTER OF PHILOSOPHY: INFORMATION TECHNOLOGY

Institute of Distance Learning (IDL)

JUNE 2016

ii

Declaration

I, Evans Nana Agyei Kotei, declare that this submission is my own work towards the MPhil and that

to the best of my knowledge, it contains no material previously published by another person nor

material which has been accepted for the award of any other degree of the University, except where

due acknowledgement has been made in the text.

Evans Nana Agyei Kotei

.....................

PG8310612

Certified by:

Signature Date

Dr. Michael Asante

Supervisor

Certified by:

Signature Date

Dr. Hayfron Acquah

Head of Computer Science Signature Date

iii

Abstract

Web services are believed to be the future of distributed applications since they access a little

resource from the host machine to operate. Though many developers have bought into this idea,

the development of web services still needs a wide implementation and deployment (Du , 2004).

Organizations are still finding it difficult to grasp its make up and deployment. Many organizations,

still depend on partners infrastructure for data processing and its transfer. For example with

respect to our case study (Kumasi Polytechnic), school fees data of students takes a long time before

the institution acknowledges receipt. This is due to the fact that the banking institution involved

has to do some internal reconciliations. In actuality this reconciliations do not benefit the

institution but they bare its consequence in the area of student registrations.

In transferring or sending real time data, web service developers claim web services are the

smartest way (Du , 2004), but customers would want to know whether it is really what it is meant

to be. Its performance coupled with high security is very key to the customers who would want to

implement such services. In this case web service providers need a well tested framework before

the actual commercialization of the web services. For the past years, the Kumasi Polytechnic

Institute had had many challenges with the the real time access to school fees data for other

iv

process. Transactions sent over raw the hyper text transfer protocol(http) are susceptible to

common attacks such as the man-in-the-middle attack. When this attack occurs, the attacker will

be able to retrieve important messages from the http request and later use it against the real person

the message was meant for. This is a main problem of raw http.

In this thesis, we showcase a secured way of transferring highly sensitive data through Hyper Text

Transfer Protocol (HTTP) by implementing two kinds of security levels i.e. the Secure Socket Layer

and the a single key data encryption algorithm. The results proved that encrypting data over the

internet and also encrypting the transfer protocol has no significant effect of the data that is

transfered.

v

Contents

Declaration .. ii

Abstract .. iii

List of Tables ... ix

List of Figures ... ix

Acknowledgements ... xii

Dedication ... xiii

1 Introduction ... 1

1.1 Background of Study ... 1

1.1.1 Extensible Markup Language (XML) .. 3

1.1.2 Web Service Definition.. 4

1.1.3 Service Oriented Architecture (SOA) ... 5

1.1.4 Universal Description Discovery ana Integration (UDDI) ... 6

1.1.5 Web Service Description Language (WSDL) .. 6

1.1.6 Simple Object Access Protocol (SOAP) .. 7

1.2 Problem Statement ... 7

1.3 Motivation ... 8

1.4 Objective .. 8

1.5 Research Questions ... 9

1.6 Significance of study ... 9

1.7 Methodology ... 9

1.8 Scope .. 10

1.9 Organization of Thesis ... 10

2 Literature Review... 11

2.1 Introduction .. 11

2.1.1 Background ... 11

2.1.2 Distributed Computing ... 12

vi

2.2 Service-Oriented Architectures .. 16

2.2.1 Definition and Concepts ... 18

2.3 Web Service .. 20

2.3.1 Web Service Technology ... 21

2.3.2 W3C Web Service Architecture ... 21

2.3.3 Web Service Description Language (WSDL) .. 23

2.3.4 Structure of WSDL ... 23

2.3.5 Work-flow of Web Services .. 26

2.3.6 Web Services Limitations ... 27

2.3.7 Extensible Markup Language (XML) .. 27

2.3.8 XML and Documentation .. 28

2.3.9 Universal Description, Discovery and Integration, (UDDI) ... 28

2.3.10 Simple Object Access Protocol, SOAP .. 29

2.3.11 Representational State Transfer (REST) .. 31

2.3.12 SOAP vs. REST services ... 33

2.4 Web Service Security .. 34

2.5 Development Tools and Technologies .. 34

2.5.1 PostgreSql Database .. 35

2.6 Service Developmental Strategies ... 36

2.6.1 Code First Approach .. 37

2.6.2 Contract First Approach: WSDL .. 37

2.7 Summary ... 39

3 Methodology .. 41

3.1 Introduction .. 41

3.2 Test Case Development .. 41

3.2.1 Deploying over Java Client ... 45

3.2.2 Deploying over PHP Client ... 46

3.3 Existing System .. 46

3.4 Proposed System ... 47

vii

3.4.1 Message Ciphering ... 48

3.4.1.1 Ciphering Algorithm... 50

3.4.2 Message Deciphering .. 50

3.4.2.1 Deciphering Algorithm .. 51

3.5 Web Service Performance Test ... 52

3.5.1 Test Suite:soapUI .. 52

3.5.2 Functional Testing .. 52

3.5.3 Performance Testing ... 53

3.5.3.1 Number of Transactions .. 53

3.5.3.2 Transaction Size .. 56

3.5.3.3 Load Test ... 60

3.5.4 Testing Over a Network (LAN) .. 62

3.6 Security Implementation ... 63

3.6.1 Secure Socket Layer (SSL) Implementation ... 63

3.6.2 RSA algorithm for the Web Service Certificate Generation .. 64

4 Results and Discussion ... 68

4.1 Design, Results, Analysis and Discussion ... 68

4.2 Functional Test ... 68

4.3 Non Functional Test .. 70

4.3.1 Load Test .. 70

4.3.2 Transaction Size ... 71

4.3.3 Testing Over a Network (LAN) .. 74

4.3.4 Security Test .. 75

4.3.4.1 HTTP Encrypted Transaction Mode ... 75

4.3.4.2 HTTPS Encrypted Transaction Mode ... 77

4.3.4.3 HTTP Raw Transaction Mode(Existing System) .. 79

4.4 Summary ... 81

5 Conclusion .. 82

5.1 Conclusion ... 82

viii

5.2 Summary of Findings .. 82

5.2.1 Support for Heavy Load .. 83

5.2.2 Response Time.. 83

5.2.3 Managing Internet Resource ... 83

5.2.4 Secured ... 84

5.3 Recommendation and Future Work .. 84

Appendix ... 88

ix

List of Tables

2.1 Elements of Service Contract (w3schools , 2014) . 38

3.1 HTTP with Raw Message . 53

3.2 HTTP and HTTPS with Encrypted Message . 54

3.3 Transactions per Minute for Same Character (HTTP) 55

3.4 Transactions per Minute for Mixed Characters (HTTP) 56

3.5 Transactions per Minute for Same Characters-HTTPS medium 57

3.6 Transactions per Minute for Mixed Characters (HTTPS) 58

3.7 Thread Load for HTTP transmitting Raw Message 59

3.8 Thread Load Results for Encrypted Transactions over HTTP and HTTPS 60

3.9 Number of Transactions per Minute on LAN . 61

4.1 Mean Number of Transactions per Minute on LAN 74

List of Figures

2.1 A time line of distributed computing taken from (Leitner , 2007) 13

2.2 An example of client server application(Leitner , 2007) 14

2.3 CORBA architectural model . 15

2.4 MOM architectural model . 16

2.5 Service Oriented Architecture . 17

2.6 Main principles of Service-Oriented Architecture and their relations (Felipe , 2010) . 19

2.7 The General Process of Engaging a Web Service (Felipe , 2010) 21

x

2.8 WSDL extensibility . 23

2.9 Work-flow of Web Services .

2.10 Types of Registries and their relationships (Organization for the Advancement of

26

Structured Information Standards , 2014) . 29

2.11 A SOAP Envelope . 30

2.12 A typical SOAP Envelope . 30

2.13 SOAP Architecture (Du , 2004) . 31

2.14 . 32

2.15 Web service technologies comparison.(Felipe , 2010) 33

3.1 Service Interface . 41

3.2 Service Implementation Class . 42

3.3 Service Publisher Class . 43

3.4 Auto Generated WSDL File . 43

3.5 Java Client Code . 44

3.6 Java Client Response . 44

3.7 PHP Client Response . 45

3.8 Single Key Encryption . 48

3.9 Soap Fault Generated by soapUI (Error) . 52

4.1a Validation Test a . 68

4.1b Validation Test b . 69

4.2 Thread Load . 70

4.3 Transactions per Minute for Mixed Characters (HTTP) 71

4.4 Mixed Characters (HTTPS enabled service . 72

xi

4.5 Mean Number of Transactions per Minute . 73

4.6 LAN Performance . 74

4.7 Plain Logs showing Requested Files . 75

4.8 Plain Logs of Request . 76

4.9 Logs of Secured Service . 77

4.10 Logs of Secured Service . 77

4.11aClient Soap Request . 79

4.11bResponse from HTTP . 79

4.11cServer Soap Response . 80

xii

Acknowledgements

I am particularly grateful to the Almighty God for guiding me throughout this thesis. Many thanks

to my Supervisor, Dr. Asante, for guiding and directing the success of this thesis. I am most grateful

for his support during my stay at the Department of Computer Science. I feel honored to have

collaborated with Mr. Allen Eben Tetteh of Department of Mathematics for multiple reasons.It was

he who believed in me and supported me at difficult times. Thank you so much.

xiii

Dedication

 I would like to dedicate this thesis to my beloved wife, Mrs. Kotei.

1

Chapter 1

Introduction

1.1 Background of Study

The bond between the Internet and the users have become great over the years since web pages

have gone through a lot of changes from a time where the Internet mostly provided static pages to

now where the internet is full of dynamic pages. The high increase of Internet users to day has

compelled a lot of companies,businesses and organizations to move their services or products

online.

In serving users well and also winning users loyalty on the Internet, Companies like Internet

Service

Providers (ISPs) have created portals to integrate and classify their information services (Felipe ,

2010) like news so that users could get access to any news around the world at a single place just

to facilitate information retrieval. In the late 90s, saw the introduction of search engines that allows

users to search for services and content from a variety of service providers that addressed their

needs, thus reducing the influence and patronage of the portals. The internet has since received a

tremendous growth in terms of technology and standards. These standards and technologies like

XML,AJAX, web services have enabled companies to develop a wide range of media based or social

components (e.g.: Facebook, YouTube, delicious.com etc). The way users and companies also

interact with the Internet has changed over time because now even non-technical people can create

content and share information among themselves and because of this, the Internet has become a

2

space where new services and content are continuously growing at a faster pace. Integrated

services has also become common in the web community since several businesses and Government

organizations have embraced the act of developing web services which are some times in the form

of applications created on the fly out of programs and data that live on the Internet.

Since Internet came to existence, web-applications have played a pivotal role in the

development of businesses and organizations by way of moving them from the traditional brick and

mortar infrastructures to online infrastructure which are situated in different locations (Ramesh et

al , 2003).

At the moment, software applications are previewed to content or data over the World Wide

Web regardless of the programming languages they are written in. The Web Service technology

insures a paradigm where two or several heterogeneous software applications share data among

themselves. The data or information sharing is typically delivered through the Internet over the

Hyper Text Transport Protocol (HTTP). By this the applications are sort of webified in order for the

transfer to take place. Incorporating a web service into any software application enables the

application to expose specific functionalities that are consumed by other software. Every web

service that one develops must be reliable and its performance should be tried and tested to build

the confidence of organizations and companies, that web services are reliable and that they can

always rely on any published service that addresses their need rather than building a new system

which will save them time and money.

Kumasi Polytechnic Institute has had many challenges with the sale of admission forms and

subsequently resolving the payment of students tuition fees. Kumasi Polytechnic has several

vendors that assist the institution in the sale of admission forms all over the country. These include

3

financial institutions and non-financial institutions like the post office and other governmental

agencies.

This possess some sort of threat to Kumasi Polytechnic especially since the non monetary

institutions sometimes fail to render proper accounts on the sale of admission forms. In addition

to this students are made to queue every academic year for tuition fees receipt verification and

clearance. The cashiers at the polytechnic go through this process in order to make sure that

students pay their tuition fees before they are ”cleared” to register. This has been a menace to the

entire student populace and the institution. The idea of web services could be channeled in a

unified manner in building an integrated system that could facilitate the easy flow of some activities

in the school.

1.1.1 Extensible Markup Language (XML)

This is a stractured language that describes a set of regulations for presenting documents in a

format that is readable to the user and the computer. Web service is the latex technology in

distributed computing, based on XML standards and Internet protocols and also a powerful tool

that facilitates communication and collaboration between business applications which were

developed on different platforms and are also running on different resources to work as one.

Extensible Markup Language, XML have been neglected by many developers in terms of its strength

and capabilities. It is powerful tool such that its capabilities stem from documentations,

development of databases, a medium of data or information exchange between heterogeneous

systems etc.

4

1.1.2 Web Service Definition

This is a tool or technology that is used for data communication between applications through the

use of Extensible Markup Language (XML) tags, JavaScript Object Notation (json) and network

protocols like HTTP. These technologies come together to offer services in a more natural way

where by there is a request of service and an offering of that service if that service is available. In

actual sense web service(s) is/are method(s) or function(s) that is/are described by a WSDL and

are made available or published via UDDI. Web services can be seen as the bench mark or the

standard for integrating applications in order for them to communicate very easily based on its

XML component. Web services unlike web pages do not have GUI connecting the sever and the

client. They rather share the application logic, processes and data through the Internet or a network

interface (Chandrasekar, 2003).

It is distributed system of loosely coupled applications whose backbone is the service oriented

architecture (SOA) deployed over the HTTP. A typical example is Amazons Web Services (AWS).

This infrastructural setup provides online services for other websites or client-side applications.

The world wide web consortium (W3C) defines a web service as

”a software system designed to support interoperable software-to-software interaction over

the Internet. It has an interface described in a machine-processable format (specifically Web

Service Description Language (WSDL))”,(Brown et al, 2004). This shows that once a web

service is up and running, any other system or application can request for the services given the

right access.

5

1.1.3 Service Oriented Architecture (SOA)

Web services operates on the Service-oriented Architectures (SOA) (Jones, 2205) which uses

interoperability as its communication protocol and a broker-request architectures to facilitate

exchanges of service. The Organization for the Advancement of Structured Information Standards

(OASIS) (Leitner, 2007) (OASIS, 2006) defines SOA as paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership domains.

SOA can also be defined as a form of technology architecture that adheres to the principles of

service-orientation. Looking into Web service technology platform, SOA depicts the power to

support and promote these principles of the entire business process and automation of an

enterprise

(Leitner, 2007). SOA in detail has specific features which are listed below:

• loosely coupled - services are self-contained and self-managing. The number of necessary

connections to systems outside of the service are minimal. Services have low

representational, identity and communication protocol coupling (Papazoglou et al, 2006).

• defined by a service contract - services adhere to a communications and interface definition

or to a service description,

• autonomous - services have the absolute control over the function that they realize,

• abstract - services hide all implementation details from the rest of the world,revealing only

the service contract,

• reusable - services are intended for and promote reuse,

• simple services can be assembled and coordinated to build composite services (service

composition) (Curbera et al,2003)(Michael et al , 2005)

6

• stateless - services do not have a state, and

• discoverable - services can be found and evaluated via external discovery or registry

mechanisms.

A typical SOA architecture consist of three main actors. The Provider,the Broker and the Requester.

In this scenario a service provider creates the services which is then made available to the service

requester through the service broker(Simmonds , 2011). The service requester accesses the

components of the service through the Universal Description, Discovery and Integration, UDDI

which has all the information that the requetser needs.

1.1.4 Universal Description Discovery ana Integration (UDDI)

This contains all the needed information, parameter, and function about a published webservice to

enable client invocation It enables service providers to showcase all their services in other for

service requesters to find and consume those services. The UDDI has two main parts or attributes.

Firstly, it has a registry of all the web service’s meta data and secondly a set of Web S Description

and the port type definitions for searching that registry (The Tutorials Point , 2014).

1.1.5 Web Service Description Language (WSDL)

This is the main language that the UDDI uses in its operations. It is commonly used in conjunction

with XML data schema to serve a web service on the Internet. A service requester searching for a

service to consume looks for the UDDI from the WSDL file for all the method that the service

provider has served. The requester then uses a SOAP to connect to the specific function which it

needs(?).

7

1.1.6 Simple Object Access Protocol (SOAP)

This is a protocol for exchanging messages written in XML. Its way of transferring data on a network

is achieved in conjunction with the Hyper Text Transfer Protocol, HTTP(S). A extensive view on

SOAP,UDDI,WSDL and SOA will be carried out in detail later in the next chapter.

1.2 Problem Statement

Web services are believed to be the future of web applications since they access a little resource

from the host machine to operate. Though many developers have bought into this idea, the

development of web services still needs a wide implementation and deployment (Du , 2004).

Organizations are a still finding it difficult to grasp its make up and deployment. Many

organizations, like the one cited in this thesis still depend on partners infrastructure for data

processing. For example data on school fees delays a day or two before the finance office of the

institution gets access to it. This is because their banking institution has to do some reconciliations

which do not benefit the institution when it comes to student registration. This goes a long way to

affect student registrations and some other pertinent activities in the school. In transferring or

sending real time data, web service developers claim web services are the smartest way, but the

requesters would want to know whether it is really what it is meant to be. Its performance is very

key to the development of their businesses. In such a situation service providers need an above

experimental proceedings before the actual commercialization is deployed. For the past years, the

Kumasi Polytechnic Institute had had many challenges with the the real time access to school fees

data for other process. If even they had one, their main concern is the level of security the system

would be endowed with. Due to this, students are made to queue every academic year for receipt

8

verification. In other to solve some of this problems and unleash the capabilities and advantages of

web services, this thesis was proposed.

1.3 Motivation

More than two decades ago saw the advent of Extensible Markup Language by a group of developers

in association with the W3C (?). Since then few technologies have captured its capabilities for

deploying systems that can be used in industries. More recently, many developers are beginning to

unleash the potentials and power of the XML language in developing web service driven

applications that could seamlessly connect with any other application (Singh, , 2004). Web services

can be used to leverage different applications between the same or different companies instead of

rebuilding them. This is able to remove all forms of platform or hardware issues since web services

are platform independent. Web service is less expensive to implement since it takes less time to

develop and also improving some of the service components which helps in saving time in terms of

service adaption. The learning curve for developers can also be reduced as well when considering

that it is not necessary to learn specific details behind the services. The risk involved in web

services is mitigated since there are already tried and tested services available that can be reused.

This reduce failures when developing new services. There is also easy adaptability since the

configurations about integrated services can be changed easily. This allows easy and quick

deployments.

1.4 Objective

This thesis addresses the following objectives:

9

• To use web service as a tool to send data between two heterogeneous applications

• To secure pertinent data (fees) before being transacted

• To measure the performance of the developed web services.

• This research is geared towards the development and deployment of a service which will

seamlessly integrate the systems of Kumasi Polytechnic and its agents.

1.5 Research Questions

• How can the transportation medium of data be encrypted before sending data through it?

• How can fees data be secured before being sent over the internet?

• Would the performance and security of the new web services hinder the existing system?

1.6 Significance of study

This work addresses the performance issues associated with web services that organizations,

companies and individuals are not aware of. The study has also proven that web services are very

reliable, efficient and secured platform for two or more applications to communicate without any

regards to the hardware or platform on which each was developed.

1.7 Methodology

The main web service developed in this thesis is Java based. In every system, performance

measurement is very keen to ensure optimum usage of the system. In other to determine the

performance of the web service created, this study took upon itself to measure some key properties

10

of the developed service. This was done to ensure the efficiency of the service. We demonstrated a

simple web service with two clients notably Java and PHP clients as a test case before the main web

service for sending school fees data was developed and deployed. Secured Socket Layer (SSL) was

implemented to secure the web service. The tools and technologies used for this work are eclipse

Integrated Development Environment,PostgreSql, Ubuntu 12.04 LTS. We proposed an experiment

for testing the service functionally and non functionally with a simulator known as soapUI.. The

service performance and its security was also tested.

1.8 Scope

This thesis is focused on web services and its implementation. The technology used is the Service

Oriented Architecture (SOA). A SOAP based web service is developed for both the client and the

server. In this thesis the RESTful architecture which is another SOA technology and similar to

SOAP was not used for the service development but it was reviewed in the literature. Added to the

above the thesis dwells the development of a secured communication system between Kumasi

Polytechnic and all its financial agents.

1.9 Organization of Thesis

Chapter one in this thesis talks about the introduction and background of the study.Chapter two is

the literature review. Literature in the area of this study are reviewed and summarized.The

methodology employed in this study is presented in chapter three.The analysis and simulation

results are presented in chapter four. Chapter five encompasses the conclusion and

recommendations for further research.

11

Chapter 2

Literature Review

2.1 Introduction

There has been a considerable amount of previous academic research in this field. Web service is a

self-contained, modular application built on a deployed network infrastructure including XML and

HTTP. Its description uses pale standard for its description (WSDL), discovery (UDDI) and

invocation (SOAP). Web services are widely known now and its base on its performance .

In this chapter is an introduction of Web services, and an overview tried and tested technologies

in reliability and web service composition techniques (?). Then, a literature review of current

reliable Web service systems and Web service composition is presented. Also a lot of accademic

researchs, journals, videos, audio, books, electronic materials and articls relating to this research

area have been reviewed.

2.1.1 Background

The Internet today is used for several purposes base on your needs and your request These web

enabled applications are built using different software applications to generate HTML codes and

their access is limited through web browsers or by using an application specific client (Ramesh et

al , 2003). HTML and web server technologies are only for presentation and are not able to interract

with othe applications. The introduction of web services has brought a change in the exchange of

12

information across the internet base on Internet standard and technologies. Web services are able

to encapsulate applications and publish them as services in the form of XML. Web services has

leverage the communication channel between programming languages there by ensuring

interoperability of applications.

2.1.2 Distributed Computing

In recent years Main Frame computers and applications were considered to be the best solution for

solving large scale data processing applications. Few years later saw the introduction of personal

computers which could contain more applications as compared to the Main Frame era. Personal

computers became more popular interms of cost and ownership and ease of application used. As

the number of applications running on individual PCs grew up, communications between such

application programs became more complex and it prvented application to application interaction.

Soon after the introduction of personal computes, network computing which has gained much

importance and enabling remote procedure calls (RPCs) over a network protocol called Control

Protocol/Internet Protocol(TCP/IP) turned out to be a widely accepted way for application

software communication. Network computing also faced a number of challenges since the software

applications were running on different hardware platforms, operating systems, and different

hardware networks needed to communicate with each other and share data. These challenges led

to the introduction of Distributed Computing applications. It can also be defined as an

application that is made up of N(with N greater than 1) physically independent computers,

but looks like one single coherent system to the user (Leitner , 2007) (?).

Since the introduction of Distributing Computing, many are the organizations that have benefited

from it, interms of information technology. Newly developed and implemented systems have always

13

Figure 2.1: A time line of distributed computing taken from (Leitner , 2007)

been done with distributing computing in mind. Distributed computing existed for a while and

Enterprise Application Integration (EAI) was born but it did not receive much petronage beacause

it was hard to implement. The systems were developed on different applications and hardware

platforms which were using various proprietory protocols and the number of applications that had

to be integrated was growing day by day. The above difficulties gave birth to several distribution

and integration technologies such as message-oriented middleware (Leitner , 2007) (Guruduth et

al , 1999) (Gregor et al , 2003).

The Message Oriented Middleware rendered a smooth integration patterns such as

Publish/Subscribe middleware systems for remote procedure calls (Leitner , 2007) (RPC) which

massively simplified the task of writing distributed software systems. With the introduction of

object oriented programming, the RPC middleware was expanded to distributd object middleware

which had the tendancy to call objects on remote machines as if they were stand-in memory objects

(?).

Distributing Computing comes in different technologies which includes Client/server application,

CORBA, JavaRMI, MicrosoftCOM, DCOM and MOM. Client Server Application The client server

architecture is of two parts. The first part is the upper tier which is made up of the presentation

and business logics where as the other part (lower tier) is made up of the application and its

14

backend database. The server is a database that is mainly responsible for managing and retrieval

of data. The client handles the business processing and provides the graphical user interface of the

application Enterprise Resource Planning (ERP) is one application that is widely operated base on

the client server architecture. The client application is installed on different multiple desktops and

connected to central database system which is the server. Even though this architecture is widely

used by organizations, it has some limitations which are listed below:

• To process complex transactions and business processes, a robust client system is needed.

• Security is always an issue since the client machines are always exposed to the outside world

and that makes it vlnerable to hackers.

• Bigger bandwidth is needed to be able to process many calls to the server which can impose

scalability restrictions.

• There is also difficulty in maintenance since each client machine would have to be dealt with

individually.

Figure 2.2: An example of client server application(Leitner , 2007)

Common Object Request Broker Application The common object request broker(CORBA), is

an open standard developed by the Object Management Group (OMG) for enabling distributed

15

computing that supports a wide range of application environments. OMG ensures production and

maintenance of framework specifications for distributd and interoperable object oriented systems.

CORBA is different from client server architecture because CORBA has certain features that

the traditional client server architecture does not have.

CORBA is in two versions now, version 1.1 and 2.0. Version 1.1 focused on the creation of

component level and portable object applications without interoperability whilst the version 2.0

ensures interoperability between distinct ORB vendors through the Internet Inter ORB

Protocol(IIOP). This protocol actually explains the backgroud of the ORB. In CORBA’s operations,

the ORB is used as a communication bus that provides an avenue for tranporting requests and

receiving acknowledgements irrespective of the location. ORB intercepts all requsts from the client

and looks for the corresponding server that works on the request and lays its parameters,invoke its

function and sends back the findings to the client. Another function of the ORB is to provide an

interface for the CORBA services which facilitates the bulding of custom distributed application

environment. The CORBA architecture consists of the following: IDL. The IDL spcifies the

application boundaries and creates interfaces with the its clients. ORB It provides a communication

bus that is used for sending and receiving request/response from the client or server It also

provides interoperability in heterogeneous environment. Below is the CORBA architecture

Figure 2.3: CORBA architectural model

16

Message Oriented Middleware This is a loosely coupled asynchronous communication model

of which the client need not to be aware of its recepient or its functional parameters. Some of the

widely known MOM -based technologies are SunONE Message Queue,IBMQseries,TIBCO, SonicMQ

etc. This is a typical MOM architecture Despite all the advantages associated with the

Figure 2.4: MOM architectural model

MOM based architecture, it has som challenges:

• The messaging format for application integration do not follow any standards but it is based

on proprietary message format.

• Most MOM implementation has an API that talks directly to their core infrastuctures there by

making portability with other applications very difficult.

2.2 Service-Oriented Architectures

This thesis report focuses on serviced-based applications but before anything else the background

knowledge would be explored first. This will entail the familiarization with the web service

architecture, service-oriented concepts and then construct a framework suitable for experiment.

The services that make up these type of applications are not necessarily provided by the application

17

owner but can be provided by a third party. More recently there have been several advancement on

how these type of applications are built. The most common framework is the Service- Oriented

Architecture(The Open Group, , 2014). With SOA’s, one is capable of developing systems written in

different languages capable to connect and interract with on another. Every Service Oriented

Architecture consist of three main actors namely the Provider,Broker and Requester. Here the

service provider creates the services which is then made available to the service requester through

the service broker(Simmonds , 2011). Figure 2.1 depict the architecture of an SOA.

Figure 2.5: Service Oriented Architecture

In a web service, the Universal Disccription Discovery and Integration (UDDI) is used to acess the

componets of the web service which is in the form of an XML. The UDDI gives description about the

published web service and also helps in location it. It enables service providers to showcase all

their services in other for service requesters to find and consume those services. The UDDI has two

main parts or attributes. Firstly, it has a registry of all the web service’s meta data and secondly a

WSDL port type definitions for searching that registry (The Tutorials Point , 2014).

More on UDDI will be discussed later in this chapter.

The WSDL is an XML language used for data or information communications over a network. In

this case it is the main language that the UDDI used in its operations. It is commonly used in

conjunction with XML data schema to serve a web service on the Internet. A service requester

18

searching for a service to connect to reads or consume looks for the WSDL file which contains all

the method that the service provider has served. The requester then uses a SOAP to connect to the

specific function which it needs(?). An extensive discussion on WSDL will be carried out later in

this chapter. The SOAP way of transferring data on a network is achieved in conjunction with the

Hyper Text Transfer Protocol, HTTP(S). A broad view on SOAP will be mentioned later on in the

chapter. Service-Oriented Architectures is one of the technologies that in computing now that is

receiving a tremendous growth in the field of computer science or industry. It has also received a

lot of attentionfrom researchers and practitioners. SOAs are considered as the next major step in

distributed computing (Leitner , 2007) (?) by a big part of the research community today.

2.2.1 Definition and Concepts

The Organization for the Advancement of Structured Information Standards (OASIS) has recently

published a reference model for Service-Oriented Architectures (Leitner , 2007) (?)which defines

a SOA as follows: Service-Oriented Architecture (SOA) is a paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership domains.citePhilip

SOA can also be defined as a form of technology architecture that adheres to the principles of

service-orientation. Looking into Web service technology platform, SOA depicts the power to

support and promote these principles of the entire business process and automation of an

enterprise.(Leitner , 2007)

Looking at the two definitions above, the one from OASIS and Philip, they are not detailed and

explanatory enough since SOA goes beyond the concept of a service built on top of an architecture.

SOA in detail specific features which makes it a very powerful tool. These features are listed below:

19

• loosely coupled - services are self-contained and self-managing. The number of necessary

connections to systems outside of the service are minimal. Services have low

representational, identity and communication protocol coupling (?).

• defined by a service contract - services adhere to a communications and interface definition

or to a service description,

• autonomous - services have the absolute control over the function that they realize,

• abstract - services hide all implementation details from the rest of the world,revealing only

the service contract,

• reusable - services are intended for and promote reuse,

• composable - in order to promote reuse services are easily composable, i.e.

• simple services can be assembled and coordinated to build composite services (service

composition) (?)(Michael et al , 2005)

• stateless - services do not have a state, and

• discoverable - services can be found and evaluated via external discovery or registry

mechanisms.

The figure below depicts these properties, their relations and how each property strengthens and

is strengthened by the others. All the elements, relations and constraints that makes up the SOA

20

Figure 2.6: Main principles of Service-Oriented Architecture and their relations (Felipe , 2010)

architecture have been defined in the OASIS reference model.

2.3 Web Service

Web service uses XML tags and Java Script Object Oriented Notation(json) technologies and some

network protocols for its operations. These technologies come together to offer services in a more

natural way where by there is a request of service and an offering of that service if that service is

available. In actual sense web service(s) is/are method(s) or function(s) that is/are described by a

WSDL and are made available or published via UDDI. Web services can be seen as the bench mark

or the standard for integrating applications in order for them to communicate very easily based on

its XML component. Web services unlike web pages do not have gui connecting the sever and the

client. They rather share the application logic, processes and data through the Internet or a network

interface (Manoj et al , 2003). SOA sees a web service as an instance of the SOA and it can be

21

published, discovered and activated over a network using a SOAP message protocol framework in

XML format (Du , 2004). The world wide web consortium (W3C) defines a web

service as

”a software system designed to support interoperable software-to-software interaction over

the Internet. It has an interface described in a machine-processable format (specifically Web

Service Description Language (WSDL))”,(Haas et al, , 2004). This shows that once a web service

is up and running, any other system or application can request for the services given the right

access. At this point it is clear that web services architecture are facilitated by three main standards

i.e. WSDL, SOAP and UDDI.

Web Services operates on the idear of SOAs and it is a loosely coupled application that is

developed using XML which facilitates deliver an application to users as a service for easy

accessibility irrespective of your location and platform.

2.3.1 Web Service Technology

Web service uses standard protocols such as TCP/IP XML and HTTP for its operations and not

object model specific protocols like DCOM,RMI or IIOP any lon. Web services L (?).

2.3.2 W3C Web Service Architecture

The world wide web is an internal organization that designs and develop Web standards,

procedures and protocols that suports the world wide web. An example of these standards that the

organization has set up is the Web Service Architecture (W3C WSA) which provides a framework

to share a common definition of what a Web service is and the elements related to it. The figure

below shows machine to machine interaction when ever a service is invoked over a network.

22

Figure 2.7: The General Process of Engaging a Web Service (Felipe , 2010)

1. A relashinship is established between the entity,requester and the provider even though

sometimes it is only the provider entity that is known by means of service broker. 2. An agreement

is also established which is also supported by the service registry which allows the provider to

register a description of the service of which the requester examines to see if it fits his needs. 3.

Agents receives WSD and semantic as input, to realise the service 4. Communication is started by

means of exchanging messages between the requester and the provider agents that represents the

entities. From the digram, three main elements are mentioned. These are: Agent:An agent is an

application that acts as a requester or a provider and sends or receives messages during

interactions. WSD and semantic: The WSD contains detailed information about the service such

as message format, data types, protocols, service location and the interaction mechanics that can

be expected when invoking the service. The semantic part ensures understanding of the concept

and the behaviour between the requester and the provider. Message: A message is unit sent

between agents. It is composed of a header, which contains metadata and it is defined in the WSD.

It also contains a body which contains the message content.

23

2.3.3 Web Service Description Language (WSDL)

WSDL is a tool the (W3C) has recommended and it is defined as a virtual and concrete interface of

a web service. (Leitner , 2007) (World Wide Web Consortium , 2002) WSDL is an XML language and

that makes it platform independent.Within the WSDL file are the parameters that described the

service. It shows what the web service renders, its location and how it can be invoked.(?) With

WSDL, the virtual definitions are separated from the network deployment and binding details. One

of the functions of the WSDL is its interface description language. This makes it similar to the IDL

which is used in distributed object middleware. This similarities between the IDL and WSDL has

problems and misconception. WSDL currently has two versions, which is the versions 1.1 and 2.0.

Currently the lower version which is version 1.1 is the most widely used one compared to the 2.0.

Even though the version 2.0 is the latext version, the problem with it is it is not widely supported.

This has discouraged people from using it.(Leitner , 2007)

2.3.4 Structure of WSDL

WSDL version 1.1 has six major elements that makes up the WSDL descriptions. These elements

are (Leitner , 2007) 1.Type: This provides the data type elements using XML schema

2.Messages:This represents a virtual notifications that service accepts or sends 3.Port types: These

are abstract operations 4.Bindings: It binds the porttype to a specific protocol and data format

specification 5.Ports This is normally considered as the end points of bindings that the address of

a certain. 6.Services: These are sets of ports that they group a number of related ports. WSDL also

has one unique advantage which is its language extensibility which it uses to provide language

bindings for SOAP and HTTP.(World Wide Web Consortium , 2006) Belew is a WSDL

estensibility

24

Figure 2.8: WSDL extensibility

WSDL operates on the Message Exchange Pattern (MEP) which means that the WSDL endpoints

are often invoked in a request /response manner. WSDL also supports the following in terms

(World Wide Web Consortium , 2002) of communication:

• Single Direction - there is no message response after receiving it.

• Request-Acknowledgement - the endpoint receives a message and an acknowledgement is

sent.

• Solicit-Acknowledgement - a message is sent and an Acknowledgement is received .

• Notification - a message is sent and there is noAcknowledgement .

WSDL Binding Styles WSDL is used together with SOAP in several occations to form a WSDLto-

SOAP binding. This is made possible through two main predefined styles (Leitner , 2007) which are

RPC style and document style. These two encoding styles have two main uses which are literal use

or encoded use. Base on this we have four different combinations:RPC/encoded, RPC/literal,

document/encoded and document/literal, all of them mutually incompatible. To rectify these

anomalies, an organization known as the Web services interoperability organization (WS-I) was

formed and they have released a basic profile that defines interoperable Web services. This basic

profile that the organization released banned the encoded use because of its interoperability issues

and recommended the use of document literal instead. Recent SOAP frameworks have adopted the

25

WS-I recommendations and have ignored the RPC/encoded style as an opted for the

document/literal. The document/wrapped or document/literal is the most widely (Web service

interoperability organization , 2014)used version because of its wrapped parameters. It also has

further and better confinements:

• Messages in document/wrapped has one message parameter.

• The wrapper has a local name equal to the operation name of the operation that this message

is associated with.

• The wrapper type is defined using the sequence compositor. Other compositors (all or choice)

may not be used.

• The wrapper type has no attributes.

In practical terms, all wrapped/documents have one name which is the same as the name of the

operation to be invoked. This is a merit beacause the operation name is contained in the SOAP as

the name of the wrapper type. This makes it possible to use XML schema validator to validate the

WSDL descriptions. The only demerit (Butek , 2014) of this style is that it can not support

overloading of WSDL operations. A typical WSDL file or document is a machine and human

readable language used to describe web services. It is made up of mainly XML grammar generated

from a web service and it describes the methods and functions exposed in the web service. In a

typical WSDL file, one may also find the data types of the method or function parameters, the adress

which is the Uniform Resource Identifier(URI) and the protocol carrying the service. Its actual

content is all the necessary information the user needs to invoke the service. Figure 2.2 and 2.3

shows a typical wsdl file generated from a prototype web service. Figure 2.2 depicts three sections

of the wsdl. The first section is the header of file that describes XML version, message encode type

26

and the XML criteria resource. The second portion is the interface description of services object. In

this example it shows the names of the methods (two of them) being exposed as services and their

data types. Thirdly, the operations that the service will execute are encoded here. The location of

service as i.e. ”http://127.0.0.1:9876/ts” can also be seen in the last section of the wsdl file.

2.3.5 Work-flow of Web Services

Web services work on the principle that a Service provider may have to create the web service and

its service definition and (UDDI) is used to publish it the service registries. As soon as the service

is published or made known to the public any body who wants to consume the published service

can do so through the UDDI.The service requster looks for the registry and the URI that points to

the web service. The requsterIt binds these two information to its and its able to invoke the

service

Figure 2.9: Work-flow of Web Services

27

2.3.6 Web Services Limitations

Transaction

There is no atomicity since HTTP is a stateless protocol mean while business processes and

transactions are useful

Security

Security is an issue since there is the need for add-on measures like encryption to deal with the

insecure Internet transportation.

Reliability

It is justified that all the transport protocols suchas as HTTP,FTP,SMPT cannot addresses issues

concerning reliabilty ,safe delivery and elimination of duplicated transaction (Leitner , 2007).

2.3.7 Extensible Markup Language (XML)

XML has come a long way since its advent. XML can be used to structure electronic files or

documents. By so doing the actual content is detached from the way its presented. Due to its ability

to work with data, it is now seen in most kinds of data representation including databases (Pelz-

Sharpe , 2010). XML marks different sections of a document with custom labels or tags which are

unlimited. Because of its unlimited labels or tags a wider range of the document can be sectioned.

XML is made up of markup tags which are wrapped around data in order to define it in a finer state.

Data can be read easily from an XML based document by breaking down the marked sections or

tags. XML documents are very simple to understand and move within other platforms. (Pelz-Sharpe

, 2010). Due to its cross-platform nature, XML can be used to integrate systems written in different

languages in a data driven style. In this case the systems would communicate by exchanging and

processing XML-based documents.

28

2.3.8 XML and Documentation

As explained earlier, XML is a very powerful documentation tool. The advantage of XML for

documentation is that it can be used to define the common traits in books, magazines, stories,

advertisements, and so forth. The best thing about XML for documentation is that the XML is easy

to understand by humans, both of the actual documentation and the XML code surrounding

it(Kyrnin , 2014).

2.3.9 Universal Description, Discovery and Integration, (UDDI)

Instead of exposing a WSDL document to every client, the UDDI serves as a central hub which

registers or hosts the WSDL document (services). By so doing the same service(s) will not be

replicated to different clients thereby curbing redundancy. The main question still pends. What

actually is UDDI and how does it function. UDDI was originated by the Organization for the

Advancement of Structured Information Standards Consortium in year 2000. It is an XML-based

registry which houses the data and meta data about the web service being published (Organization

for the Advancement of Structured Information Standards , 2014). The information presented in a

UDDI is written in xsd because it provides data in a more natural and hierarchical way. XSD is very

rich when it comes to data types and also has the natural ability to validate information encoded in

any type of schema.(Organization for the Advancement of Structured Information Standards ,

2014). In size comparison, the UDDI registry is much larger than the WSDL document. This is due

to the fact that the UDDI actually has the entire meta data of a particular service. For instance a

service that displays the business details of a client will have all the attributes about the client like

his or her first name, last name, address etc listed in the UDDI while the WSDL file will contain only

the service name and other descriptions about the service.

29

To sum it up on UDDI registries, let us discuss about their flavors. UDDI registries exist in three

basic types or flavors. An organization can actually choose any of the flavors based on the type of

system being implemented or deployed. There are three main ways of implementing UDDI

registries and this include Private also known as Corporate, Affiliated and Public. Figure 2.6

showcases the conceptual illustration of how the registries are affiliated or related.

2.3.10 Simple Object Access Protocol, SOAP

SOAP is an XML that serves as a link between the service requester and the web service. It actually

defines a standard protocol for passing lightweight XML messages or information between

distributed systems or applications (Du , 2004). SOAP also depends on HTTP(S) to send its

messages . Because of its XML nature its is very much inter operable and can seamlessly send

messages across systems with different operating system, hardware, network and applications of

heterogeneous programming languages.Every SOAP message consists of an envolop, a header and

a body. A simple code illustrating a SOAP envelope is shown in Figure 2.7.

The envelope makes the XML a SOAP message and that differentiates it from a normal XML. Without

the envelope, the document would just be any XML document hence translated into another

meaning. The SOAP Header tags contain any information the provider would want display.

30

Figure 2.10: Types of Registries and their relationships (Organization for the Advancement of

Structured Information Standards , 2014)

The header tag is not very much required. The main service information are placed in the SOAP

Body tags. It contains all the calls and responses information. A typical example is presented in

figure 2.8. Lastly in this chapter, we present an example of a SOAP architecture based on a Java

Web service.

Figure 2.11: A SOAP Envelope

31

Figure 2.12: A typical SOAP Envelope

In the above architecture, a client application (another programming language) makes a remote

procedure call over HTTP using SOAP. SOAP runtime environment passes the request to Java object

and waits for the response from it. Methods of Java object can access both local and remote

resources then pass them through the SOAP runtime back to the client application.

2.3.11 Representational State Transfer (REST)

(REST) can be defined as a set of architectural constraints which are defined by fielding and are

used (Felipe , 2010) implement RESTful services. These architectural constraints can be

categorized into: a stateless client/server protocol; a uniform interface; use of hypermedia; a

universal syntax for addressing; self-descriptive messages. The costraints facilitates the creation of

services which are exposed to APIs. The created services can be consumed through the

client/server protocol. This protocol allows all kinds of tools like desktop applications or web

applications

32

Figure 2.13: SOAP Architecture (Du , 2004)

to access or consume the service provided they have the ip address to access the service. The

hypermedia and the uniform interface which are part of the architectural constraints of REST

allows clients to surf for services and consume them without any need for the codes from the

service provider. REST architecture is stateless and that makes it more scalable. This charateristic

ensures that the server does not keep any previous information about clients. The selef descriptive

messages helps to decouple resources from their representations so different media types can be

used to display its content. The minimal information unit in REST is a resource. Resources are data

sources which keeps the functionalities and the application state of a system.

All resources are to have a unique names so that they can easily be identified. The identification

is done through some sort of globaly unique identifier(GUID). A resource can not be accessed

directly but it can be manupilated by means of representations. Through representations a client is

able to access a resource, manipulate and transfer it to other components. The world wide web is

known to be implemented on REST and this is used to explain how the world wide web works on

HTTP. REST uses HTTP as an application layer and for that matter uses its mechanisms, metadata

and semantic elements to provide RESTful services by means of implementing

33

its contraints.

The uniform interface in such implementation is obtained through HTTP methods: GET, POST,

PUT and DELETE, which defines a CRUD (Create, Retrieve, Update, Delete) interface for any REST

resource. HTTP also provides stateless interactions through hyperlinks. Resources are identified by

means of URIs (Felipe , 2010) which provide with a syntax to build unique identifiers. Finally, self-

descriptive messages are obtained by means of MIME types which allows decoupling resources

from its representations through different formats (e.g.: HTML, XML, JPEG). These formats are open

standards, so any client can understand them.

2.3.12 SOAP vs. REST services

Below is a detailed comparison between REST and SOAP From ealier reviews it was made clear

Figure 2.14

that REST has certain charateristics that provides several advantages over SOAP. Rest:

34

• REST requires a minimum infrustructure support.

Figure 2.15: Web service technologies comparison.(Felipe , 2010)

• REST is scalble, simple and low performance overhead

• It has a uniform interface that do not give problems to APIs and this has given a high rise of

services. REST applications are executed in the web browser using the HTTP protocol.

• It creates a uniform platform for all resouces and it does not require WSDL to define it.

2.4 Web Service Security

Web applications, web service and the Internet as a whole cannot be fully secured hence the HTTP

being vulnerable. Eaves droppers can listen on an HTTP in other to siphon pertinent information

or messages. In web service development, it is very imperative to incorporate some security

features so as to protect the data being sent. In fact there are several ways that security could be

improvised into web services. A survey conducted by Web Services-Interoperability Organization

(WS-I) identified some key threats opposing Web services (Government of Hong Kong , 2008).

These threats includes the threats associated with http (the man-in-the-middle-attack). Their

proposed solution was to find a means to secure the transportation channel using https.

2.5 Development Tools and Technologies

In developing the web service certain tools and technologies were paramount. In order to gain

ample experience and not reinventing the wheel, certain third party products and software were

35

adopted. The first which is discussed here is the renowned eclipse integrated development

environment (eclipse IDE). The eclipse IDE has an extensible plug-in system for customizing the

development environment. Eclipse IDE which support alot of application development tools like

Ruby ,Python, PHP, C++ etc based on its plug-in capabilities. It is licensed under the Eclipse Public

License which is free. The reason why eclipse IDE was chosen was the fact that it supports a whole

of plug-ins for the deployment of a web services. This makes it very easy to design and deploy web

services in such an environment. Due to these capabilities and some other favorable factors, it was

chosen over other IDE’s for this study. Another essential technology or framework when it comes

to the deployment of web services is the Apache web server.

The programming language used in developing the proposed system is the widely used scripting

tool, Hypertext Preprocessor version five(PHP 5.0+)which is a scripting language was used because

it suports the SOAP connection as a client and as a server. With the versions 4.0 and below a pseudo

class library called NuSOAP needed to be included. As already mention PHP can be used to develop

a web service and a corresponding client to consume it. Since the demonstration of the cross-

platform capability of a web service is keen in the writing of this thesis, the PHP is used as the web

service server while other languages like Java and Python were used as the clients.

2.5.1 PostgreSql Database

The database management system chosen from this study is PostgreSql. PostgreSql is worlds most

advanced object-relational database management system. It is free and open-source software. It is

developed by PostgreSql Global Development Group consisting of handful of volunteers employed

and supervised by companies such as Red Hat and EnterpriseDB (Andurkar , 2012). MySQL and

PostgreSql both compete strongly in field of relational databases since they both have advanced

36

functionalities and also comparable performance and speed and most importantly they are

opensource. PostgreSql is Object-relational in the sense that it is similar to relational database but

its database model is object-oriented. Objects, classes and inheritance are directly supported in

database schema and query language.(postgresql.org , 2014).

2.6 Service Developmental Strategies

In the chapter 3, a simple prototype web services that displays the current date and time on a

remote server is developed. This is to enlighten readers on how an actual web service would

function. For any chosen programming language, there will always be a service interface, a service

implementation class, a publisher and lastly a remote client which can be of any other programming

language. In this work, the client service will reside on the banks’ servers where as the main service

will be hosted on the institutions’ servers. The transaction is expected to be in real time. It may be

some few seconds. The service is developed using PHP programming language. As already stated,

it does not necessarily mean the client should also be developed using the same language. The

implementation of web services ensure easy integration between heterogeneous systems since it

is endowed with a flexible communication port which improvises XML and HTTP to be precise. The

following sections describe clearly how the proposed web service is developed.

In developing a web service, one can actual stick to two main styles or processes. There is the code

first approach and the contract first approach. The code first approach is sometimes called the

bottom-up approach. In this approach we first start with the source code of the web service and

then eventually publish it as a service i.e. developing the main service first. More concretely, the

code first approach helps to easily convert an existing application into a web service. On the other

hand, the contract first approach is very much analogous to the code first approach. It is most often

37

referred to as the top-down approach. In this style, we first write the Web Service Description

Language (WSDL) document according to the service contract. Entities participating in the service

invocation come up with a set of APIs (methods and functions) and then map them into the WSDL

document. Once we have the WSDL document, we can now go ahead to write the code and then

complete the business logic of the main service. In both cases the web service would function as

expected but notably, with the code first approach, you might not be able to harness the full power

of the service, but you can still achieve your goal. In this research work, the contract first approach

was used. The following sections describe both approaches in details.

2.6.1 Code First Approach

This approach is the same as the one described when developing the test case. In this approach, the

web service methods are developed first. Here our main concern is to develop the functionalities

of the web service and then use a third party means to auto generate the contract document which

is the WSDL file. Though web services developed with this approach works perfectly, the developer

is not given full power to the generation of the contract document. This makes it difficult when

more capabilities are supposed to be included in the contract file. To sum it up, the approach says

echoes that services is to be granted first before a contract which is contrary to real world

situations.

2.6.2 Contract First Approach: WSDL

In real world before a person or an entity provides a service to another entity, there should be a

form of a written contract between both entities. In this contract all the business logic of the service

is written in order for the service provider and the client to have a guide through the transaction.

38

In the same manner, creating web services with the contract first process deals with the contractual

terms of the service first. This approach starts by developing or writing the XML Schema/WSDL

document or contract first followed by the code for its implementation. The point to note here is

that once the client and the provider of the service have the WSDL document, it acts as a contract

according to how the service is to be developed. The contract document describes the format of a

request and response, the service endpoint location and other useful things like security

implementations. Before we start writing the contract for our Data Communication Service lets

discuss some types of contracts there is. There are two main types of contracts in the world of web

services. We have the data contract and the service contract. Both of these two contracts are fused

together to form the WSDL document. In the data contract, we define the message formats that our

service will accept. The most common approach used in creating the data contract is the use of XSD

which is an XML Schema. In creating the data contract for the Payment Service, the data types of

the the parameters of the methods which will be exposed as well as their return types are written

in the XSD file and saved with a .xsd extension. An example of this file is included in the appendix

for reference. The second part is the service contract. The service contract file is more or less the

WSDL file. It is basically an extension of the data contract file. In writing this file we start with the

WSDL definitions and include the target name space of service. Next we have to include the data

contract in the WSDL element labeled types. Table 3.1 shows the essential portions of the

remainder of the service contract file.

Table 2.1: Elements of Service Contract (w3schools , 2014)

Section/Element Description

39

< message >
Defines the type of data being communicated in the ac-

tivity

< portType >

Specifies all the operations which are supported by the

service endpoint

< binding > A protocol assigned to a particular port type

< service > Houses the service name and the location address of
the

service

The next on the deck is the inclusion of the WSDL port type element. The port type element houses

the all the operations in the web service. It defines each operation in an operation element listing

its input(request) and output (response) messages. So far we have discussed the abstract portions

of the service contract file. What is left to complete this contract is the binding and service elements.

This constitutes the concrete part of the service contract. The binding element communicates with

the client on how to invoke or call the operations in the port type element.

2.7 Summary

Most of the the works done in the area of web service talks little about the reliabilty of web services,

performance and security. It is necessary and important to look at these areas which have received

little attention by researchers. literature governing this work speeaks less about web service

security and performance. We proposed a framework to develop a web service and measure its

performance as well as incorporate security mechanisms in it to ensure safe delivery of data.

40

During the study we proposed a secured way of sending data through heterogeneous applications

and a systematic analysis of the performance of the service insatnces that have been developed.

41

Chapter 3

Methodology

3.1 Introduction

This chapter of the thesis dwells on the deployment and development of the web service. The

existing system at Kumasi Polytechnic and its ”modus operandi” was studied. In studying the

existing system’s operational mode, another means was suggested to effectively beef-up the

security of the service. During the development a simple test case was deployed to give a fair idea

about how the main service would function. Various technologies and tools needed for the

development were also discussed. In every system, performance measurement is very keen to

ensure optimum usage of the system. In order to determine the performance of the web service

developed, some key properties such as the load exerted on it, the bytes of data it processes and

the time it takes for the processing is measured. This was done to ensure efficiency of the service.

3.2 Test Case Development

This section of the thesis deals with a hypothetical example of a web service and its client for

invocation. In other to pose a mock up description of web services two simple applications that

would consume a given Java web service were developed using Java and PHP programming

languages. The PHP was used in other to establish the heterogeneous capabilities of web services.

This simple exercise was to demonstrate how a Java web service is created, published and invoked

42

by several clients. In this section the idea of homogeneity/uniformity and heterogeneity/non

uniformity in programming languages were demonstrated through the service clients. The main

simple duty of the web service developed in this section was to print the current date and time of

a server. The simple applications which are Java and PHP made a remote call to the service, invoked

it and then the current date and time on the server was displayed. To start it all, the service object

or interface was developed. The service interface is the part of the web service that defines all the

methods or functions that will be published for public consumption. In actual fact, it is the

warehouse of the web services. It has all the methods needed by the client to consume. Whenever

the client makes any call or invocation, it will actually be searching for the the methods declared in

the services interface. Figure 3.1 shows the simple code describing this service interface.

Figure 3.1: Service Interface

The next thing to do was to write the service implementation object or class. The service

implementation class actually defines what the interface method does. In this test case, it defined

the codes that retrieved a systems current date and time. This class extends the service interface in

order to use the method declarations in the interface. In this class, also the data types used to

43

declare the methods in the interface was maintained for consistency. A screen shot of the service

implementation class is shown in figure 3.2.

Figure 3.2: Service Implementation Class

After the implementation class, comes the publisher class. This class defined the service endpoint

i.e. the URI where the service was deployed in a Web Service Description Language (WSDL) file.

When the publisher class was executed, it auto-generated the WSDL file which sets the service up

for client consumption. A sample code of this class is found in figure 3.3 and as well as the WSDL in

figure 3.4.

44

Figure 3.3: Service Publisher Class

Figure 3.4: Auto Generated WSDL File

45

3.2.1 Deploying over Java Client

When the Java client code in figure 3.5 was executed, a connection was made with the WSDL file at

the specified URI through HTTP. The client then searched through the WSDL file for the < portType

> tags. Within this tags are sub tags specified as < operation >. The client then retrieved the value

of the name attribute which was the web service method or function and executed it. Sequel to this

action, a client response which was the date/time of the remote server was generated as shown in

figure 3.6.

Figure 3.5: Java Client Code

Figure 3.6: Java Client Response

46

3.2.2 Deploying over PHP Client

Aside the deployment in the Java based environment, the service instance was also tested using a PHP Client.

XAMPP (Apache, MySQL, PHP and Perl) web server was setup on a Microsoft windows operating system.

Cascading Style Sheet (CSS) was used to style the PHP client in order to give it a flashy look. The web service

was invoked at the url: http://localhost/xampp/realapp/test.php through a browser. The PHP client was

also able to retrieve the methods there by displaying the current date and time on the remote server. This

is shown in figure 3.7.

Figure 3.7: PHP Client Response

3.3 Existing System

For the past years, the Kumasi Polytechnic Institute have had many challenges with payment of

student tuition fees. The system operated by the institution is not real-time since fees paid by

students at various banks takes a day or two before it is reconciled. Normally the fees are sent in a

spread sheet format with most of its fields distorted. Personnels at the institutions’ finance office

have to always spend weeks before getting the spread sheets into a proper order. The whole process

is so manual that it is prone to a lot of human errors such as misspelling student names and

47

sometimes misquoting the amount paid by the students. In some cases the amount paid by the

students are over estimated and/or under estimated. In solving this problem a real time system

was developed to eliminate much of the human errors.

The developed system was to seamlessly interface between the banks and the schools’ databases

for data communication. In choosing the appropriate technology for the system, much

consideration was given to the systems run by the financial agents (banks) of the school. A situation

whereby the agents would be made to entirely change their current software was avoided. Web

Services are able to seamlessly integrate heterogeneous systems to share common data. In the

literature review of this thesis much information has been given on web services.

The existing system utilizes plain HTTP in accordance with XML to perform the data transaction.

The security level implemented is just a password authentication on the server side. By this

structure one can only send data if and only if his password exists in the schools database. The

whole process begins with a a connection request from the client to check whether there exist a

connection. If a connection exists, the service will then be allowed to post data into the schools

database through the soap envelop path so long as the client submits a correct password alongside

the payment details.

3.4 Proposed System

The proposed system was designed in other to eliminate security loop holes. Situations where by

the message will be intercepted, changed and resent into the schools database was critically looked

at (man-in-middle-attack). In such a case a sniffer would be sniffing on the network, retrieve the

sent message, alter the fees with wrong values and resend it to the schools database. This loop hole

was determined using the tcpdump utility on linux to capture raw packets of data in transit from

the existing system. Through this process, all the essential information transported to the system

48

were seen. This can be seen at section 4.3.4.1 in chapter 4. In view of this, a single key data

encryption method was used to encrypt the data before transmitting it over a secured channel (SSL)

to remedy the situation.

3.4.1 Message Ciphering

A single key encryption algorithm base on modulo arithmetic as illustrated in section 3.4.1.1 was

used to cipher the message string using python programming language. Each character that

constituted the message string was converted into an integer using its position in a given alphabet

of characters. A key value which is an integer was then added to the position integer and the result

fed into a modulo function. This produced a new position integer for each character. The new

position integer was then fed into a number base function. The number base function transformed

all the position integers into a large integer before it was sent. This part of the process occurred at

the encryption stage of figure 3.8. In this case, a network sniffer would see these integers instead

of the original transaction. Using this technique, the sniffer can still get access to this large integer

and temper with it. The question is, how can the sniffer be prevented from intercepting the

message. To remedy this, a checksum algorithm was implemented and the result was padded

alongside the large integer. The large integer was again fed into another modulo function and the

anticipated result which was to be a two digit integer was padded at the extreme right of the large

49

integer.

Figure 3.8: Single Key Encryption

50

3.4.1.1 Ciphering Algorithm

In this section the single key encryption algorithm that was designed for the ciphering of the raw

transaction has been presented.

1. input Original Message, [OMi], key,k where i is the index of each character in the message

including spaces and k is the encryption key

2. define Character Set, [CSi]

3. for each omi ∈ [OMi]

4. if omi ∈ [CSi] then i = omi ∈ [CSi] and the new index, j = (i + key) mod M where M is

the size of [CSi]

5. Code Index, ci = [j]

6. set Message Integer, MI = 0

7. for) where Z is a double digit integer

8. new input message string, IM = MI concatenated with MI mod N

3.4.2 Message Deciphering

The next level was to decipher the transaction on reaching the server side which is endowed with

the decryption algorithm described in section 3.4.2.1. This stage of the process happened at the

decryption side of figure 3.8. As the server gets the large integer, it strips off the last two digits

which is the checksum. The server then computed a modulo arithmetic of the large integer and

compared it to the checksum. If these numbers are similar then the transaction was not tempered

51

with. If they are not similar then the transaction must have been altered hence the server will reject

the transaction and notify the client. In an event where by the checksum were the same, a reverse

of the ciphering mechanism was computed over the large integer hence the original transaction

was retrieved and inserted into the database. Another means of ensuring double level security was

to use Secure Socket Layer (SSL) which is described in much detail in section 3.6 of this chapter.

3.4.2.1 Deciphering Algorithm

This section presents the algorithm for the decrypting portion of the implementation.

1. accept input message string, IM

2. strip off the checksum as pd

3. if pd = MI mod N

while MI ≥ Z MI =

MI/Z

input message string, MI = [MI mod Z] end

for i in [MIi]

newi = (i + 36 − key) mod M Decoded

Message + = [CSnewi]

else break end

52

3.5 Web Service Performance Test

In testing for the performance of the web service, the following questions were set as a guide

through out the testing.

• Does the service respond with the correct values?

• How many transaction can the service send withing a given time?

• Can the service handle expected and unexpected user loads?

3.5.1 Test Suite:soapUI

SoapUI is one of the common tools or simulators used for the functional test of a web services. It is

not limited to web services, though it is the de-facto tool used in web services testing. In web

services testing, soapUI is capable of performing the role of both client and service. It enables users

to create functional tests quickly and in an efficient manner by using a single environment.

3.5.2 Functional Testing

Web Services with incorrect responses can lead to problems. Web Service Functional Testing

ensures that the web service is functionally correct. This was done by parsing the alphanumeric

value yaw nti 05120000314 1 tsn64 directly to the service to test whether it would respond with

the expected output. The result is shown in figure 3.9. The figure shows the soap faults or errors

which was generated due to wrong parameter sets. The soap fault reads postgres7 error:

[-1: ERROR: ValueError: invalid literal for int() with base 10: ’yaw nti 05120000314

1 tsn64’.

53

Figure 3.9: Soap Fault Generated by soapUI (Error)

3.5.3 Performance Testing

Once the functionalities of the web service had been satisfied, another test that was carried out was

the performance test. This stage of service testing is most often called non functional testing. Here

the testing was based on number of transactions per minute, the load on the service and the size of

message in bytes.

3.5.3.1 Number of Transactions

During the simulations the following parameters were tested in other to have a clearer view of how

the service performed. These parameters included load test, number of transactions per a given

time and bytes of data transfered. In testing for the number of transactions the web service might

send with a given time, it was invoked for 60 seconds. The execution was performed for all the three

services on the local development server. Each web service was invoked 10 times in other to obtain

the mean number of transactions.

54

Table 3.1 shows the transaction per minute for the unencrypted message over HTTP. This particular

service was invoked 10 times and each lasted for 60 seconds. In the table the 3rd trial of the

experiment registered 409 transaction per minute where as the 10th trial had 402 transaction per

minute. Averagely the web service was able to send 403 transactions per minute.

Experiment 1 2 3 4 5 6 7 8 9 10

Number of Transaction 398 408 409 402 401 403 403 402 403 402

Table 3.1: HTTP with Raw Message

55

The same experiment or investigations were repeated for the encrypted message or transaction

with both the HTTP and HTTPS transportation media. Invoking the client at 60 seconds, both

services generated the number of transactions as shown in the Table 3.2 in page 65. It is very clear

that the HTTP medium allowed more transactions than that of the HTTPS transport medium.

During trial 5, the HTTP registered 403 transactions where as the HTTPS recorded 383

transactions. The difference in transaction was about 20 transactions. The highest number of

transactions in both cases are 406 and 388 respectively. On the part of the HTTP medium, the 406

transaction occurred during the first trial while as the 388 occurred during the 3rd, 8th and 9th
trials.

Experiment Number
HTTP with

Message

Encrypted
HTTPS

Message

with Encrypted

1 406

383

2 404

383

3 403

388

4 405

381

5 403

383

6 402

382

7 403

383

8 404

388

9 402

388

56

10 403

387

Table 3.2: HTTP and HTTPS with Encrypted Message

3.5.3.2 Transaction Size

The simulations were carried out the second time to investigate whether the transaction size affects

the number of transactions per minute. This experiment was performed by starting with a

transaction size of one character which is equivalent to 1 byte. Gradually, the transaction size was

increased from 1 byte to about 40 bytes. In the first set of the investigations, the same character

string was used and varied from 1 byte to 40 byte. Secondly the characters used were mixed since

that represented the ideal case of the usage of the web service. These two kinds of investigations

were performed for the encoded transaction on both the HTTP and HTTPS media. The results of

the two experiments are presented in the tables that follows. In Table 3.3 are the results for the

same character HTTP transfer medium. Sending 2 bytes of data through HTTP is averagely
equivalent to 30 bytes of data.

Size(bytes)

Characters)

(Same
Number of Transac-

tions

1

403

2

406

3

405

5

406

10

407

20

405

57

30

406

40

408

Table 3.3: Transactions per Minute for Same Character (HTTP)

In table 3.3, 406 transactions were sent for 30 bytes of data. Similarly 406 transactions were equally

sent for 2 bytes of data. The same results were obtain for 3 bytes and 20 bytes of data which

registered 405 transactions. The highest number of transactions were obtained when 40 bytes of

data were sent. It registering an average of 408 transactions.

During the mixed characters experiments, the number of transactions were found to be averagely

the same. In table 3.4 are the values obtained for the mixed characters HTTP encrypted

transactions. From the table 30 bytes of mixed characters registered 408 transactions which was

the highest. It was rather amazing that the starting character registered an average transaction of

402 which was the least. Here 10 bytes and 30 bytes of mixed characters registered 406 number of

transactions.

Size(bytes)

Characters)

(Mixed
Number of Transac-

tions

1

402

2

404

3

403

58

5

405

10

406

20

408

30

406

40

407

Table 3.4: Transactions per Minute for Mixed Characters (HTTP)

In Table 3.5 the results for the same character HTTPS transfer medium are presented. Here sending

2 bytes of data averagely transacts 386 records per minute. In the same table, 387 transactions

were sent for 30 bytes of data. The same results were obtain for 5 bytes and 40 bytes of data which.

The highest number of transactions obtained was the 387 where as the least was 385.

Transaction Size (bytes) 1 2 3 5 10 20 30 40

Number of Transactions 386 386 385 387 386 385 387 387

Table 3.5: Transactions per Minute for Same Characters-HTTPS medium

59

During the mixed characters experiments in the HTTPS, the number of transactions were also found

to be averagely the same. In table 3.6 are the values obtained for the mixed characters HTTPS

encrypted transactions.

Transaction

(bytes)

Size
Number of Transac-

tions

1

386

2

387

3

385

5

386

10

385

20

387

30

386

40

385

Table 3.6: Transactions per Minute for Mixed Characters (HTTPS)

From the table 3.6, 2 and 20 bytes of mixed characters registered 387 transactions which was the

highest. The lowest number of transactions which was 385 were registered by 3, 10 and 40 bytes

of mixed characters. Averagely the transactions were found to be between 385-387.

60

3.5.3.3 Load Test

The next experiment that was performed on the web service was the load test. The web service was

subjected to several loads to determine its robustness and also to investigate whether the service

would break if it is subjected to heavy loads. Five threads were configured to send one transaction

each to the web service simultaneously. The experiment was repeated 10 times for each of the

developed services. The results are presented in table 3.7.

Trial Number 1 2 3 4 5 6 7 8 9 10

Number of

Transactions 912 910 909 915 913 918 917 914 910 912

Table 3.7: Thread Load for HTTP transmitting Raw Message

During the load test for the Raw message, the least number of transactions recorded was 909 where

as the highest was 918. Both was registered during the 3rd and 6th trials respectively. Both the

1st and 10th trials also recorded the same transactions which was 912.

61

In the case of the encrypted message, the experiment was performed for both the HTTP and the

HTTPS transport media. The experiment was also carried out with 10 trials for each situation. The

results have been presented in table 3.8. In the table, it was very obvious that the HTTP medium

registered a little more transactions than the HTTPS medium. The highest transaction which was

realized in the HTTP was 944 whiles that of the HTTPS was 927. Both values occurred in the 1st

and 5th trials respectively. The transactions recorded in the HTTPS were between 910 and 927.

That of the HTTP were between 935 and 944. The least number of transactions were 910 and 935

for the HTTPS and the HTTP media respectively.

Trial Number
HTTP with

Message

Encrypted
HTTPS

Message

with Encrypted

1 944

910

2 938

913

3 935

921

4 940

917

5 939

927

6 936

914

7 941

919

8 940

920

9 941

918

62

10 938

915

Table 3.8: Thread Load Results for Encrypted Transactions over HTTP and HTTPS

3.5.4 Testing Over a Network (LAN)

After testing the performance of the web service of the local server, another client was developed

on a separate machine on a local area network (LAN). The web service was then invoked from that

machine in other to determine the number of transaction within a minute. The experiment was

performed for the HTTP with Encrypted Message and the HTTPS with Encrypted Message. The

investigations were also carried out with 10 trials for each situation. The results have been

presented in table 3.9. In table 3.9, it was very obvious that the HTTP medium continued to register

a little more transactions than the HTTPS medium. The highest transaction which was realized in

the HTTPS was 359

Experiment Number HTTP with Encrypted Message HTTPS with Encrypted Message

1 401 353

2 395 358

3 396 358

4 398 359

5 400 357

6 396 358

7 399 357

8 391 354

9 390 358

10 393 359

Table 3.9: Number of Transactions per Minute on LAN

63

whiles that of the HTTP was 401. In the HTTP, the value occurred during the 1st but it highest value

occurring in the HTTPS were recorded at during the 4th and 10th trials. The transactions recorded

in the HTTPS were between 353 and 359. That of the HTTP were between 391 and 401. The least

number of transactions were 353 and 401 for the HTTPS and the HTTP media

respectively.

3.6 Security Implementation

As discussed in chapter two, the security mechanism implemented in the payment service is the

Transport Layer Security. This is because of the web services are based on HTTP transactions hence

the need to use some of its security measures to secure the payment service. The kind used here is

the Secure Socket Layer (SSL).

3.6.1 Secure Socket Layer (SSL) Implementation

The SSL transaction has two phases: the SSL Handshake (the key exchange) and the SSL data

transfer. These phases worked together to secure the transaction. The handshake begun when the

client connected to the SSL-enabled server, a secured connection was requested, and a list of

certificates were presented. From this list, the server picked the strongest cipher and a hash

function that it also supports and notified the client of the decision. Additionally, the server sends

back its identification in the form of a digital certificate. This certificate usually contained the server

name, the trusted certificate authority (CA), and the servers public encryption key. The client then

verified that the certificate was valid and that the Certificate Authority (CA) listed in the clients list

of trusted CAs issued it was valid. Upon verifying that the certificate is valid, the client then

generated a master secret key, encrypted it with the servers public key, and sent the result to the

64

server. When the server received the master secret key, it then decrypted it with its private key.

Here only the server can decrypt it using its private key. Both the client and server then converted

the master secret key to a set of symmetric keys called a keyring or the session keys. These

symmetric keys are common keys that the server and browser used to encrypt and decrypt the

data. This is the one fact that makes the keys hidden from third parties, since only the server and

the client have access to the private keys. This concluded the handshake and begun the secured

connection allowing the bulk data transfer, which is encrypted and decrypted with the keys until

the connection closes. If any one of the above steps fails, the SSL handshake fails, and the connection

is not created.Though the authentication and encryption process may seem rather involving, it

happens in less than a second. Generally, the user does not even know it is taking place. However,

the user is able to tell when the secured tunnel has been established since most SSL-enabled web

browsers display a small closed lock at the bottom (or top) of their screen when the connection is

secured.

3.6.2 RSA algorithm for the Web Service Certificate Generation

A keystore was generated on the web service server. In this keystore was a self-signed certificate

generated using the RSA algorithm. RSA stands for Ron Rivest, Adi Shamir, and Leonard Adleman

the three authors of that algorithm in 1977. RSA involves a public key and a private key. The public

key can be known by everyone and is used for encrypting messages. Messages encrypted by

RSA can only be decrypted by the private key and only the client and the server knows that key. In

RSA, party A carefully selects two numbers, M and e publicly. Party B will then use these two

numbers to encrypt a message and then send it back to party A. During the transmission of the

encrypted message from B to A, party C intentionally intercepts the encrypted message, M and e

65

since they are public (T. Davis , 2003). The duty of RSA is to make it practically impossible for party

C to decrypt the message. This is because there exist a private key, d which is used to decrypt the

message and it is only known by A. At the heart of the RSA algorithm is the RSA modulus, M. This

modulus is chosen carefully by multiplying two distinct prime numbers, r and s.

 M = r.s (3.1)

For instance M can be 667 = 23*29 where r=23 and s=29. But in practice, M is chosen to be a very

large value which cannot easily be factorized into r and s. Now i which is the encryption exponent

is also chosen such that

 gcd(i,(r − 1)(s − 1)) = 1 (3.2)

In other for the RSA algorithm to work, equation 3.1 must hold. Using the case of party A, B and C,

lets show how RSA can be used to encode a given message. For B to encode a message g intended

for A, B would calculate the modulo arithmetic of gi and M.

 E = gimodM (3.3)

where E is the encoded message. On receiving the encoded message E, party A then computes k

using 3.4.

 k = i−1mod(r − 1)(s − 1). (3.4)

The final stage of the decoding is to compute the original message g by the following relation:

 g = EkmodM (3.5)

66

Here we present some examples of the RSA with some small numbers. Lets say A chooses an

encryption index, i = 17, r=5 and s=11. M becomes M=5*11=55. It is very essential to obtain

gcd(i,(r − 1)(s − 1)) = gcd(17,(5 − 1)(11 − 1)) = gcd(17,40) = 1 If B

wants to encrypt a message g=37, B will calculate

E = 3717mod55 = 27

So the encrypted message is 27 is sent to A. Before A decodes the E, A will calculate

k = i−1mod(5 − 1)(11 − 1) = 17−1mod40 = 33

This can be verified by

ik mod (r − 1)(s − 1) = 17 ∗ 33 mod 4 ∗ 10 = 561 mod 40 = 1

Party A can decode the encoded message by using

g = EkmodM = 2733mod55 = 37

The above described algorithm is already implemented in the openssl utility on most unix based

machines including the development workstation used for this thesis. The Openssl was used

generate both the public and private keys including the encryption index by invoking the following

command on the linux box.

$ sudo openssl x509 -req -days 365 -signkey evans.key -out evans.crt

This Openssl command prouced the files evans.key and evans.crt which were the private and the

public keys respectively. These two files were stored on the server on which the web service

67

resided. After this stage a configuration file in the web server was edited to support secure

connections which is HTTPS. In production environment, it is advisable to consider buying a signed

certificate from trusted SSL service providers such as Verisign Both keys were designed to last for

365 days after which it had to be renewed. A transaction was then sent over the HTTPS protocol.

The protocol was able to encod the transaction before sending it. The client (a certificate enabled

browser, e.g. Mozilla Firefox) is the only entity that knows the private key, hence decoding the sent

message. Illustrations of these have been presented in section 4.3.4.2 in chapter 4.

The listing below shows some of the content of the private key which was generated. The content

includes the name of the keystore, the date it was created and the type.

Your keystore contains 1 entry evanskotei, Oct 17,

2014, PrivateKeyEntry,

Certificate fingerprint (MD5): EB:28:A5:83:56:58:86:59:A4:CA:7F:3E:0E:A4:C7:22

68

Chapter 4

Results and Discussion

4.1 Design, Results, Analysis and Discussion

In this chapter a detailed performance analysis is given on the performance of the service. The

analysis is presented under the various conditions the web service is subjected to. The section is

divided into two sections i.e. the functional and the non-functional tests. The functional test is

mostly based on the core functions of the service where as the non-functional test is responsible

for the robustness of the service. Notwithstanding these two categories, each category of the test is

performed on both the plain and secured HTTP services. This was done in other to identify the

advantages of the proposed service. Tables and charts are also included where necessary in other

to give a clearer understanding to the results.

4.2 Functional Test

The service was able to pass the functional test. As explained already the functional test deals with

the fact that the service would accept the right input data types. It is aform of validation on the web

service. The service developed in this thesis accepts only integers casted into string formats. Due

to this, if the client passes any string apart from an integer in string format, the web service would

respond with a soap fault. In figure 4.1a, it could be seen that the character string yaw nti

69

05120000314 1 tsn6453 was sent directly to the service instead of its integer string equivalence.

The soap fault generated can be seen on the right hand side of figure 4.1a.

Figure 4.1a: Validation Test a

The service functioned well when an integer string was parsed. In figure 4.1b the integer string

459672791429391524286927014226912629655799441043330669456458 of yaw nti

05120000314 1 tsn6453 was parsed and the web service responded correctly. The response is shown on

the right hand side of figure 4.1b.

70

Figure 4.1b: Validation Test b

4.3 Non Functional Test

4.3.1 Load Test

The service which comprises of the secured message sent over HTTP was able to submit an average

of 939 records into the database. This implies that approximately 16 records were submitted

within every second and since there were five loads, approximately 3 records were sent by each

thread per second. So each thread submitted approximately 188 records per minute. The same test

was performed for the secured message sent over HTTPS and the raw message sent over HTTP

which is synonymous to the existing system. Figure 4.2 shows the mean number of transactions of

the three web services invoked for 60 seconds.

71

Figure 4.2: Thread Load

Obviously from the table values, we can confidently say that the transactions were not so much

affected by the new algorithm which has been implemented. Encrypting the raw message would

not affect the number of transactions of the web service. This means that adding the data encoding

security feature to the existing implementation will not affect the number of transactions per

minute. The existing system measured 913 average transactions, 939 for the HTTP with Encrypted

Message and 917 for the HTTPS with Encrypted Message.

4.3.2 Transaction Size

Figure 4.3 represents the transactions in relation to the message size for the HTTP with the

encrypted transaction service. The sizes were varied from 1 byte to 40 bytes for mixed character

message. For instance a transaction of mixed character character with size 10 bytes was able to

register 406 transactions per minute. Similarly a mixed character message with 30 bytes registered

72

the same number of transactions i.e. 406. From these results it can concretely be said that, the

number of transactions do not depend so much on the size of the message being sent.

Figure 4.3: Transactions per Minute for Mixed Characters (HTTP)

Figure 4.4 on the other hand represents the transactions in relation to the message size for the

HTTPS with the encrypted transaction service.

73

Figure 4.4: Mixed Characters (HTTPS enabled service

For instance a transaction of same character with size 10 bytes was able to register 386 transactions

per minute where as that of the mixed characters with 10 bytes registered 385 transactions.

Similarly, the number of transactions do not depend so much on the size of the message being sent.

Comparing both services, the HTTP enabled web service was able to send more transactions than

the HTTPS enabled service. This is attributed to the medium of message transfer. Since the HTTPS

transfer protocol has RSA algorithm implemented in it, it used extra time for the computation of

the public and private keys as described in chapter 3. Due to this, the HTTPS medium is able to send

lesser transactions than the HTTP which has no encryption algorithm.

This can be seen from the fact that a transaction size of 40 bytes registered 387 for HTTPS and 408

for HTTP.

An analysis based on mixed characters are presented here. Since the web service was used to send

student data, a transaction with the following entries were sent over all the web services. The

transaction consists of a student with name yaw nti, student number 05120000314, paying an

amount of 1 Ghana cedi with transaction code tsn6453. This transaction was parsed with white

spaces. So in all the size of the transaction was 29 bytes. Figure 4.5 shows the results for the 29

bytes message. The results in this section confirms what was discussed in the previous paragraph.

The average transaction of mixed characters over HTTPS is 385 where that of HTTP was 404. Since

the HTTPS transfer protocol has RSA algorithm implemented, it used extra resources for calculating

the RSA based keys.

74

Figure 4.5: Mean Number of Transactions per Minute

4.3.3 Testing Over a Network (LAN)

The same conclusion can be made from the experiment which was performed on the LAN. In

sending 29 bytes of message, the average number of transaction registered for the HTTPS based

transportation was 353 as compared to that in the HTTP medium which was 401. About 8.3% of

the transactions on the HTTPS were dropped when the LAN was introduced.

HTTP with Encrypted Message HTTPS with Encrypted Message

Mean 401 353

Table 4.1: Mean Number of Transactions per Minute on LAN

75

Figure 4.6: LAN Performance

Figure 4.6 also graphically describes table 4.1. More transactions where recorded in the HTTP

encrypted mode than in the HTTPS encrypted mode. The reduction in transactions was about

8.3%.

4.3.4 Security Test

4.3.4.1 HTTP Encrypted Transaction Mode

Figure 4.7 shows the logs of the tcpdump when the HTTP encrypted message mode was invoked

at port 80. In the logs, we can clearly see the files consistuting the web service. In the bottom of the

figure 4.7, the requested flagged with POST /ws/payment/wsserver.php?wsdl are shown in the

logs. A malicious person could siphon some pertinent information in these files and later used them

to attack the system.

76

Figure 4.7: Plain Logs showing Requested Files

Figure 4.8 also shows the plain soap request of the service. Clearly, the original information was

encoded into a long string of integers as shown at the upper most of the figure. Supposing a an

unencrypted message was sent, an attacker could get hold of the messages with ease. But in this

case though he could get the transacted message, he would have to decipher the long string

459672791429391524286927014226912629655799441043330669456458 to retrieve

the original transaction, but how? If even the attacker can decipher the information, it will take a

lot of computing time since he does not know how the encoding was done.

77

Figure 4.8: Plain Logs of Request

4.3.4.2 HTTPS Encrypted Transaction Mode

Unlike the plain HTTP service, the HTTPS service is invoked at the SSL port number 443, which is

the secured port for Apache Web Server. In the generated logs, there are no traces of the soap

request and response envelops as the HTTP exhibited. All the messages have been encrypted and

only the server and the client can have access to them. This is shown in figure 4.9. In this figure the

only messages that can be seen are the acknowledgements from the server on receiving the request

from the client. In the figure, the acknowledgements are indicated with dark backgroud.

78

Figure 4.9: Logs of Secured Service

Figure 4.10 is a portion of figure 4.9. This actually depicts the encrypted data being transmitted

through an encrypted channel. The alphabets and periods in the figure are all essential information

that have been encoded.

Figure 4.10: Logs of Secured Service

The certificate issued during this transaction contains the entries shown in the listing below. It

shows the public key that was used to encrypt the transaction. It also shows the signature algorithm
used in the encryption. In the listing the modulus,

79

CipherSuite : TLS ECDHE RSA WITH AES 128 CBC SHA

PeerPrincipal : CN = evanskoteithesis,OU = ICT,O = ICT,L = Ksi,ST = Ksi

PeerCertificate1 :

Subject : CN = evanskoteithesis,OU = ICT,O = ICT,L = Ksi,ST = Ksi,C = GH

SignatureAlgorithm : SHA1withRSA,OID = 1.2.840.113549.1.1.5 Key : SunRSApublickey,1024bits

modulus : 1362517129531230445439830608547366097244577362459710070268778838911609

05658592023442119059853793257633184900970436076226927812092114873487719840787

63

480203312661777424334731676318553893450106550703286184966007874454270974453543
13

909620596877215832037051238477796969596820890697024950158778247357986634613350

23

which is a very large integer is used as the public key. It would take a huge computing resources to

be able to easily factorize this number. Also shown here beloww in this listing is the private key

signature.

publicexponent : 65537 Signature

:

0000 : 845EEE42499630F2168EDF144B1DB754..BI.0.....K..T Y

ourkeystorecontains1entry

evanskotei,Oct17,2014,PrivateKeyEntry,

Certificatefingerprint(MD5) : EB : 28 : A5 : 83 : 56 : 58 : 86 : 59 : A4 : CA : 7F : 3E :

0E : A4 : C7 : 22

4.3.4.3 HTTP Raw Transaction Mode(Existing System)

Figure 4.11a,4.11b and 4.11c all shows the logs from the existing system when a transaction is sent

through it. In figure 4.11a, the transactional request, yaw nti 05120000314 1 tsn6453 is shown

plainly in the logs.

80

Figure 4.11a: Client Soap Request

Figure 4.11b depicts the HTTP response to the request. the data sent was which is exposed to any

attacker listening to that particular port could retrieve the information. It indicates the web server

which is Apache version 2.4.7 running on Ubuntu Operating System. It also shows the content type

of the request which is xml being the soap request.

Figure 4.11b: Response from HTTP

In the figure 4.11c, the soap response from the server is shown. The server response with with the

same message which was sent. This transactions are exposed to any attacker who is listening to the

port on which the web services is hosted. He could retrieve the transactions and later alter it.

Figure 4.11c: Server Soap Response

81

4.4 Summary

In this chapter, various investigations have been made on an improved way of data communication

through web services. A new system had been developed from an existing one. Both systems were

subjected to various test scenarios to see how best the new system would behave. The analysis

showed that the existing system (HTTP with Raw Message) had an advantage over the new one in

respect of the number of transactions per every 60 seconds. Though this was its advantage, the

reduction was only about 8.3% of transactions. Security-wise, the new system demonstrated

tremendously well since it was able to encode essential data sent through it. Hence the new system

sacrificed about 8.3% of its transactions to compensate for securing the data.

82

Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we showcased a secured way of transferring highly sensitive data through Hyper Text

Transfer Protocol (HTTP) by implementing two kinds of security levels. One being an algorithm for

data encryption and securing the transmision mode.

The results proved that encrypting data over the internet and also encrypting the transfer

protocol has no significant effect of the data that is transfered..

5.2 Summary of Findings

This thesis was to examine the performance of web service instances and its deployment between

two actors i.e. Kumasi Polytechnic and its financial agents. Typically this study was to come up with

an effective and efficient mode of school fees transaction between the school and its banking

partners. In the earlier chapters of this thesis a background study was made about XML, SOAP and

the concept of web services. Carrying out this thesis has unleashed an in-depth understanding on

how to develop and deploy web service instances to perform various activities.

83

5.2.1 Support for Heavy Load

The payment web service actually supported much load as expected. From the analysis it was

noticed that the payment service was able to carry a heavy load of users at the same time. This

makes the service robust enough to support real world transactions without breaking down.

5.2.2 Response Time

In addition, the response time of the payment service was very convincing since it took few seconds

to transmit the transactions. To elaborate much on this, this study had in mind that the existing

mode of transaction took so long i.e. about a day or two before the institution gets access to student

fees data from its banking agents. As it has been stated already, this hinders students registration

and other activities on Kumasi Polytechnic Campus. The payment web service has proven so

efficient that the time between transactions is cut down drastically to a few seconds. What this

means is that, students can actually register a few minutes after paying their school fees without

queuing unnecessarily.

5.2.3 Managing Internet Resource

In contrast to other mode of transactions such using an API from the banking agent to monitor fees

payment, the payment web service help both parties to manage some network resources well.

Imagine a situation where by the banking agent providing an API for the school. This means that,

the school has to always log onto the banks systems in other to access school fees. This can make

the Internet up-link of the banking agent ran out allowing very slow connections from other users.

With this payment notification web service, no or very infinitesimal up-link is involved. Here both

84

parties do not fully log onto any system which necessitates high up-link but only methods are

exposed to the Internet.

5.2.4 Secured

Lastly this mode is also secured since the entire systems are not exposed to network. Here we

exposed a small portion of a software which is just a method or function in the software. In addition

to the above, the url for the transaction is secured and the messages are encryted to prevent man-

in-the-middle-attack.

5.3 Recommendation and Future Work

All the experiment performed in this thesis represents latency response time and load support of

the web service developed. These tests mentioned above help us to strengthen the cognition

towards service performance and their disadvantages. Hence, we can seek after possible solutions

to enhance their performance. In a word, there are still many things to do towards the research on

Web Services. We recommend that a web service should be deployed on a windows server and

tested.

Bibliography

1. Andurkar, A. D. 2012 Column-Oriented Database Implementation in PostgreSql for

ImprovingPerformance of Read-Only Queries, Masters Thesis.

2. Chen et al 2006 An efficient approach to web services discovery and composition when

largescale services are available. In Proc. of IEEE Asia-Pacific Conference on Services

Computing (APSCC 06), pages 3441, 2006.

85

3. Chinthaka, E. 2006 AXIOM- Fast and Lightweight Object Model for XML.

4. Davis, T. 2003 RSA Encryption October 10, 2003

5. Du, G. 2004 Web Services Performance Study, MSc Thesis

6. Felipe, L. O. 2010 Design and development of a REST-based Web service platform for

applications integration February 2010 Thesis

7. Gregor et al 2003 Enterprise Integration Patterns: Designing, Building, and Deploying

MessagingSolutions. and Addison-Wesley, 2003.

8. Gross, E. 2013 CICS Web Services as a Provider and Requester, Circle Software Incorporated

9. Guruduth et al 1999 A Case for Message-Oriented Middleware. In Proceedings of the 13th

International Symposium on Distributed Computing, 1999.

10. Haas, A. Brown, A. 2004 Web Services Glossary http://www.w3.org/TR/2004/NOTE-ws-

gloss-20040211/#webservice.

11. Huhns et al 2005 Service-Oriented Computing: Key Concepts and Principles. IEEE

InternetComputing, 9(1), 2005.

12. Jayasinghe et al 2011 Apache Axis2 Web Services, 2nd Edition. ISBN 978-1-849511-56-8

PacktPublishing House 2011

13. Jones, S. 2005 Toward an acceptable definition of service [service- oriented architecture].

IEEETransactions on Software, 22(3):8793, May-Jun 2005.

14. Kyrnin, J. 2014 Who Uses XML? http://webdesign.about.com/od/xml/a/aa060401a.htm

Accessed: June 22, 2014

86

15. Leitner, P. 2007 The Daios Framework - Dynamic, Asynchronous and Message-oriented

Invocation of Web Services 18th September 2007 Masters Thesis

16. Manoj et al 2003 A Literature Review on Trust Management in Web Services Access

ControlInternational Journal on Web Service Computing (IJWSC), Vol.4, No.3, September

2013

17. Pelz-Sharpe, A. 2010 What is XML and Why Should Companies Use

 It?

http://www.inc.com/guides/2010/04/why-companies-should-use-xml.html Accessed: June 21,

2014

18. Ramesh et al 2003 Developing Java Web Service Architecting and Developing Web

ServicesUsing Java 2003

19. Russel, R.2014 Which style of WSDL should I use? http://www.ibm.com/

developerworks/webservices/library/ws-whichwsdl/. Visited: 2014-09-19.

20. Simmonds, J. 2011 Dynamic Analysis of Web Services, PHD Thesis, University of Toronto

21. Singh, R. R. 2004 Collaborative Urban Information Systems: A Web Services approach, Doctors

Thesis at the Massachusetts Institute of Technology.

22. Tapang, C. C. 2001 Web Services Description Language (WSDL) Explained, Infotects,

July2001.

23. The Open Group, 2014 The Open Group. The SOA Work Group.

http://www.opengroup.org/subjectareas/soa Accessed: May, 2014.

24. The Tutorials Point 2014 The Tutorials Point http://www.tutorialspoint.com/uddi/uddi
overview.htm

87

Accessed: May, 2014

25. OASIS, 2004 Organization for the Advancement of Structured Information Standards,

OASIS,2004 Introduction to UDDI:I mportant Features and Functional Concepts. October,

2014.

26. postgresql.org 2014 postgresql.org http://www.postgresql.org/ Accessed: August 10, 2014

27. Web Services Security 2008 Government of Hong Kong Web Services Security.

28. webservices 2014 webservices http://www.w3schools.com/webservices/ws wsdl

document.asp

Accessed: September 01, 2014

29. O3b Networks 2011 What is Network Latency and Why Does It Matter?

30. Oracle Fusion 2012 Oracle Fusion Middleware Security and Administrator’s Guide for Web

Services.

31. World Wide Web Consortium 2002 WSDL, Web Service Description

 Language.

http://www.w3.org/TR/wsdl, 2002. Visited: 2007-07-31.

32. World Wide Web Consortium (W3C) 2006. Web Services Description Language (WSDL)

Version 2.0 Part 0: Primer - W3C Candidate Recommendation 27 March 2006.

http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/, 2006. Visited: 2014-09-19.

33. Web service interoperability organization (WS-I) 2014 Basic Profile

 Version 1.2.

http://www.ws-i.org/Profiles/BasicProfile-1.2.html. Visited: 2014-09-19

88

Appendix

Ciphering Codes

import string import random

from fractions import gcd

import time

print "Welcome to Messsage Cipher!"

#key = input("Please enter the encryption key: ")

raw_message = raw_input("Input the payment information in this order(name,studentno,amonut,transid) : ")

key=45 message = string.lower(raw_message) ### inpute message to lower case code = "" chars =

’abcdefghijklmnopqrstuv wxyz4728139506’ for letter in message: ### loop through original message

index = string.find(chars, letter) ### get index of letters from chars number = str((index + 1 + key)%37) ###

since its a 37 alphabet chars, add one, key to index and compute mod 37 to string code += "%s " % number

 ### form string of new indces with spaces

sd = code.split(’ ’) ### convert them to array strings with comma separation sd.pop() ###

remove the last space sd = map(int, sd) ### convert the array strings to integer array

msgint=0

modw=95

for i, item in enumerate(sd): ### loop through the integer array where i is the index of each item

msgint += item * pow(modw,i)

89

Deciphering Codes

modw=95

retd = "" codio = "" rmpad = raw_message[:-

2] pad = int(raw_message[len(rmpad):]) if

modofrmpad == pad: while int(rmpad) >=

modw: ret = str(int(rmpad)%modw) rmpad =

int(rmpad)/modw retd += "%s " % ret

reta=(retd + str(rmpad)) reta =

reta.split(’ ’) sd = map(int,

reta) codio=""

for i in sd:

pos = (i + 36 - keyy)%37 codio +=

"%s" % chars[pos]

