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Abstract 

In this work, we investigate the dynamical behavior of a fractional order cholera model. Here, 

we developed interest in the use of the deterministic model proposed by Codeco in 2001. 

The fractional order cholera model is converted to a system of ordinary di erential equations 

of integer order by using Atanackovic and Stankovic numerical method and is then solved 

numerically by using the fourth order well-known Runge-Kutta method. All the feasible 

equilibria for the system are obtained and the conditions for the existence of interior 

equilibrium are determined. Local stability analysis of the cholera model is studied by using 

the fractional Routh-Hurwitz stability conditions. The ndings reveal that, the disease dies out 

at the disease free equilibrium state but will persist at the endemic state and that the 

concentration of toxigenic vibrio cholerae in water largely depends on (i) the rate of exposure 

to contaminated water (parameter a) and (ii) the contribution of each e ected person to the 

aquatic environment (parameter e).  
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Chapter 1 

Introduction 

1.1 Background 

Cholera is an acute intestinal infection caused by ingestion of food or water contaminated 

with the bacterium Vibrio cholerae. It has a short incubation period, from less than one day 

to ve days, and produces an enterotoxin that causes copious, painless, watery diarrhoea that 

can quickly lead to severe dehydration and death if treatment is not promptly given. Vomiting 

also occurs in most patients. Cholera is an extremely ancient and virulent disease that 

continues to cause epidemic and pandemic infection despite ongoing e orts to limit its spread. 

It a ects both children and adults and can kill within hours. About 75% of people infected with 

Vibrio cholerae do not develop any symptoms, although the bacteria are present in their 

faeces for 7-14 days after infection and are shed back into the environment, potentially 

infecting other people. 

If left untreated, cholera can be fatal in a matter of hours, even in previously healthy people. 

Most people exposed to the cholera bacterium do not become ill and never know they have 

been infected. Yet because they shed vibrio cholerae in their stool for 7 to 14 days, they can 

still infect others through contaminated water. Only about 1 in 10 infected people develop 

the typical signs and symptoms of cholera, usually within a few 

days of infection. 

Diarrhoea: Cholera-related diarrhoea comes on suddenly and may quickly cause 

dangerous uid loss as much as a quart (about 1 liter) an hour. Diarrhoea due to cholera 

often has a pale, milky appearance that resembles water in which rice has been rinsed 

(rice-water stool). 

Nausea and vomiting: Occurring especially in the early stages of cholera, vomiting may 

persist for hours at a time. 
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Dehydration: Dehydration can develop within hours after the onset of cholera 

symptoms. Depending on how many body uids have been lost, dehydration can range 

from mild to severe. A loss of 10 percent or more of total body weight 

indicates severe dehydration. 

Signs and symptoms of cholera dehydration include irritability, lethargy, sunken eyes, 

a dry mouth, and extreme thirst, dry and shriveled skin that’s slow to bounce back when 

pinched into a fold, little or no urine output, low blood pressure, and an irregular heartbeat 

(arrhythmia). Dehydration may lead to a rapid loss of minerals in your blood (electrolytes) 

that maintain the balance of uids in your body. This is called an electrolyte imbalance. Modern 

sewage and water treatment has virtually eliminated cholera in industrialized countries but 

cholera is still present in Africa, Southeast Asia, Haiti and central Mexico. The risk of cholera 

epidemic is highest when poverty, war or natural disasters force people to live in crowded 

conditions without adequate sanitation. Cholera is easily treated and death results from 

severe dehydration that can be prevented with a simple and inexpensive rehydration solution. 

Historically, six out of the seven cholera pandemics have swept the globe since 1816. Most 

recently, the seventh pandemic started from Indonesia in 1961, spread into Europe, South 

Paci c and Japan in the late 1970s, reached South America in 1990s, and has continued to the 

present. The last few years have witnessed many cholera outbreaks in developing countries, 

including Liberia (2002), Mali (2003), Senegal and Chad (2004), West Africa (2005), Angola 

and Sudan (2006), India (2007), Iraq and Congo (2008), Zimbabwe (2008 and 2009), Vietnam 

(2009), Nigeria, Central Africa, Pakistan and Haiti (2010), Sierra Leone (2012) and Ghana 

(2014). Every year there are an estimated 3 to 5 million cholera cases and 100 000 to 120 000 

deaths and that is the reason why cholera represents a 

signi cant public health burden to developing countries in recent years. 

In the last decades, attention to cholera epidemiology increased, as cholera epidemics 

became a worldwide health problem. Detailed investigation of V. cholerae interactions with 

its host and with other organisms in the environment suggests that cholera dynamics is much 

more complex than previously thought. Though many mathematical models have been 

proposed to investigate the complex epidemic and endemic behavior of cholera in the past, 
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notable example among these is the deterministic model proposed by Codeco in 2001 which, 

in the rst time, explicitly incorporated the environmental component, i.e. the V.cholerae 

concentration in the water supply (denoted by B), into a regular SIR system to form a 

combined human-environment (SI-B) epidemiological model. This model enables a careful 

study on the complex interaction between human hosts and environmental pathogen 

towards better understanding the cholera transmission mechanism, and, as such, it has 

motivated the development of several other cholera 

models. 

Fractional-order di erentiation is regarded as the generalization of classical integer-order di 

erentiation to real or complex orders. Fractional di erential equations have gained 

considerable importance due to their application in various sciences, such as physics, 

mechanics, chemistry, and engineering. In the recent years, the dynamic behaviors of 

fractional-order di erential systems have received increasing attention. The existence of 

solutions of initial value problems for fractional order di erential equations will be discussed 

in this work. Here, we will introduce a fractional order Codeco cholera model. The researcher 

will discuss an e cient numerical method to converting the system of fractional di erential 

equations to system of ordinary di erential equations. Finally, numerical simulations are 

presented to illustrate the obtained results. 

Just when it is assumed that cholera outbreak has been brought under check, the Ghana 

Health Service (GHS) reported cholera outbreak in Ghana has hit a record over 28,000 cases 

with over 243 deaths. The last time Ghana su ered such a staggering number of cholera cases 

was in 1982. A report published by the World Health Organisation (WHO) says by the end of 

2011 a total number of 589,854 cholera cases had been 

reported globally, out of which 7,816 deaths were recorded. 

This gure represents an increase of 85% in the number of cases reported in 2010 and a 16% 

increase in the number of countries. However, a total of 188,678 cases were reported from 

Africa only, representing an increase of 64% compared with the 2010 gure of 115,106 cases. 

The rest of the total gure was taken up by Asia˘38,298;Oceania˘1,514; and Europe˘71. The 
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Americas, however, took the largest chunk of 361,266, owing to the epidemic that hit Haiti 

as a result of the earthquake that struck on January 12, 2010. 

Haiti alone reported 340,311 cases, which resulted in 2,869 deaths during the period. For 

Africa, countries that had reported cases during the period were Somalia, Nigeria, Democratic 

Republic of Congo, Cameroon, Niger, Angola, Benin, Burkina Faso, Ghana, and Central African 

Republic. 

The rest were Chad, Congo, Cote d’Ivoire, Djibouti, Guinea, Kenya, Liberia, Mali, Mauritania, 

Malawi, Mozambique, Senegal, Somalia, Togo, Tanzania, Zambia, and Zimbabwe.The chunk 

of cases recorded on the African continent was taken by ve 

countries, with Somalia’s 77,636 reported cases, 1,130 deaths and 1.46% case fatality rate 

(CFR) topping the African chart. 

Nigeria followed at a great distance with 23,377 reported cases, 742 deaths and a rather 

high CFR of 3.17%. On its heels was Cameroon with 22,433 reported cases, but with a larger 

number of deaths 783 and, not surprising, the highest CFR of 3.49% for the period. 

The Democratic Republic of Congo placed fourth with 21,700 cases, 584 deaths and a CFR of 

2.69% while Ghana came fth, having reported a total of 10,628 cases by the close of 

2011 and a total of 105 deaths with a CFR of 0.99%. 

Four countries from Central Africa, the Great Lakes region, and the Horn of Africa accounted 

for 145,164 cases (Cameroon, Democratic Republic of Congo, Nigeria and Somalia), or 77% of 

cases reported from the continent. There was a sharp increase in cases reported from the 

Horn of Africa, with 127 cases (and one death) reported from Djibouti. No cases were 

reported from Ethiopia, Sudan or Uganda. A total of 2,295 cases were, however, reported 

from Kenya (74), Mozambique (1,279) and Tanzania (942). In southern Africa the number of 

reported cases declined to levels never previously reported during the current millennium, 

with 2,949 cases reported: Malawi (120), Mozambique (1,279), Zambia (330) and Zimbabwe 

(1,220). 

In West Africa, reported cases increased to the levels of 2006 to 2008 with a total of 16,088 

cases compared with 3,074 in 2010. Ghana’s 10,628 cases accounted for 66% of cases 

reported from West Africa. Increasing numbers of cases were reported from C te d’Ivoire 
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(1261), Mali (2220), and Niger (2324). Cases were also reported from Benin (755), Burkina 

Faso (20), Guinea (3), Liberia (1,146), Mauritania (46), Senegal ( ve), and Togo (four). The CFRs 

were high for Burkina Faso (10%), Mali (4.3%), and Mauritania (6.5%). 

1.1.1 Problem Statement 

Just when it was assumed that cholera outbreak had been brought under check, the 

Ghana Health Service (GHS) has reported that cholera outbreak has hit a record of over 

28,000 cases with over 243 deaths from June 2014 to April 2015. The last time Ghana su ered 

such a staggering number of cholera cases was in 1982. 

Since this report, the world health Organisation (WHO) and others have provided several 

technical supports to ght cholera outbreak in the country. However, cholera as a disease is 

beyond the health sector alone and there is a need for multi-sectorial approach involving 

ministry of water and resources, work and housing, department of environmental health and 

last but not the least the research institutions to help investigate and educate the public on 

cholera outbreak. 

Though many mathematical models have been proposed to investigate the complex epidemic 

and endemic behavior of cholera in the past, most of these researches has focused only on 

the human-human transmission of the disease using SIR cholera model. On this note, the 

researchers developed interest in the use of the deterministic model proposed by Codeco in 

2001 which, for the rst time, explicitly incorporated the 

environmental component, i.e. the V.cholerae concentration in the water supply (denoted 

by B), into a regular SIR system to form a combined human-environment (SI-B) 

epidemiological model. This model enables a careful study of the complex interaction 

between human hosts and environmental pathogen towards better understanding the 

cholera transmission mechanism. There is also the need to investigate the use of fractional 

order di erential equations instead of an ordinary di erential equations model especially 

because an epidemic like cholera must have memory. 
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1.1.2 Objectives 

The objectives of the study are; 

1. To formulate the dynamics of fractional-order Codeco cholera model 

2. To solve a fractional-order Codeco cholera model by means of Atanackovic and 

Stankovic numerical method and Runge-Kutta fourth order method. 

3. To use simulations to study the behavior of cholera at the disease free equilibrium 

state compared to the endemic state as well as under various scenarios. 

1.1.3 Methodology 

In the study, the researcher intends to investigate a fractional-order Codeco cholera model 

by means of an e cient (Atanackovic and Stankovic) numerical method, based on an idea of 

transforming the proposed model to a system of ordinary di erential equations with initial 

conditions by using the well-known Runge-Kutta method of fourth order. All the feasible 

equilibria for the system will be discussed. 

Also, local stability analysis of the cholera model will be carried out by applying the fractional 

Routh-Hurwitz criterion. To facilitate the interpretation of the mathematical results 

developed for the model; this is investigated by numerical simulations. Matlab will be 

involved in the nal stages to simulate the results. Information is obtained both from the 

internet and the library for the purpose of this work. 

1.1.4 Fractional-order Codeco model 

This model explicitly incorporated the environmental component, i.e. the V.cholerae 

concentration in the water supply (denoted by B), into a regular SIR system to form a 

combined human-environment (SI-B) epidemiological model. 
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1.1.5 Justi cation 

The study investigates the complex epidemic and endemic behavior of cholera on the fact 

that cholera outbreak recurs yearly in Africa killing thousands and sickening many more. 

Cholera has become a signi cant public health burden in Africa but this has been eliminated 

from industrialized countries by water and sewage treatment over a century ago. A erce 

cholera epidemic has hit Ghana in 2014, killing over 243 people despite all e orts to curb it. 

The last time Ghana su ered such a staggering number was in 1982. Recently, there has been 

a call from the government of Ghana that the public should engage in regular clean-up 

exercises all in an e ort to control the current cholera outbreak in this country. Also, several 

organizations, such as Actionaid, World Health Organisation (WHO), China Red Cross (CRC), 

Mind Development Foundation (MDF) and many others have o ered both nancial and 

technical support in an e ort to 

eradicate, prevent and treat cholera. 

However, it is obvious that solutions to outbreaks of communicable disease like cholera go 

beyond poor environmental attitude and poor eating habits. Cholera is beyond health sector 

alone and there is a need for multi-sectorial approach involving ministry of water and 

resources, work and housing, department of environmental health and last but not the least 

the research institutions to help investigate and educate the public on cholera outbreak. With 

early detection and the timely and e ective management of cholera cases, health education 

and researches on cholera epidemiology will prevent the re-emergence of cholera in highly 

endemic settings. 

Though, great progress has been made in mathematical models on cholera transmission 

dynamics in recent years, little interest has been made on models that incorporate the 

environmental component of cholera infection. On this basis, the study will investigate 

the cholera dynamics using model developed by Codeco which employed both the 

environment-human and human-human infection routes. 

Cholera is a global threat to public health and one of the key indicators of social 

development, and with the consequent increase in the reporting of cholera cases in yearly, 

almost every developing country is facing either an outbreak or the threat of an epidemic. 
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Cholera outbreaks bring fear and anxiety in populations and this may have adverse e ects on 

the social and economic structure of communities, thereby blocking developmental 

growth in many sectors of a country, (WHO, 2010). In the implementation of 

national economic development, aspects of the environment, climate, culture, medical 

management, political intention and individual behavioral patterns, as well as researches 

on cholera must be considered because they are related. Nevertheless, cholera will continue 

thriving in endemic regions, survived by its strong links to maritime 

environment, alongside social determinants of poor sanitary conditions, if the situation is not 

addressed with much urgency. Also, the use of Atanackovic and Stankovic numerical method 

is an e cient method for solving the fractional-order cholera model equations and this will 

bring analytically to the oor level better understanding cholera outbreak and its dynamics. 

1.1.6 Thesis Organisation 

This thesis is made up of ve (5) chapters; chapter one deals with the introduction of the study. 

Here, detailed explanations and discussions on cholera is given, key words in the title of the 

thesis are all well explained. This chapter also talks about the purpose and justi cation of the 

study. In chapter two is the relevant literature review of the study, this section review relevant 

previous studies done by others in the past either published or not. Come next is chapter 

three which contains the methodology of this work, here, Codeco cholera model and an e 

cient numerical (Atanackovic and Stankovic) method is well discussed. Finally in this section 

the well-known Runge-Kutta of order fourth is used to solve the obtained ordinary di erential 

equations. Next is the chapter four where the given model is studied numerically and results, 

ndings and discussions are presented. And the fth and last chapter of this work talks about 

conclusion and recommendation. That is, whether or not the topic is properly dealt with and 

the outlined objectives 

achieved. 

Chapter 2 
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Literature Review 

2.1 Introduction 

In this chapter we reviewed the work of other researchers related to the topic. 

2.2 Literature Relevant to this thesis 

Most mathematical modeling of infectious diseases has been restricted to the use of a system 

of integer-order ordinary di erential equations. But of late, fractional calculus has been widely 

applied in many elds, for instance many mathematicians and researchers have tried to use 

fractional calculus to model real life process. 

2.3 Literature on Mathematical models 

According to Das and De (2000), diseases like cholera (+ve) and non-choleric diarrhoea break 

out regularly in greater Calcutta and occasionally in epidemic form. It is interesting to note 

that in the classical susceptible-infected removal (SIR) models for infectious diseases, the 

epidemic can persists only if the susceptibles are being supplied steadily; for example, 

through birth and immigration. Such are the cases which occur in this part of west Bengal, 

the city areas of Calcutta and its neighborhood. Therefore, it is an obvious reason to study 

epidemic disease for this with such a mathematical model. Within this framework of SIR 

epidemic model with time-dependent recovery rate, the time-behaviour of infectives for 

cholera (+ve) and non-choleric diarrhoea has been studied. Here, the population of greater 

Calcutta has been considered. The infectivity curves for these diseases as computed from this 

model have been tted with the data available up to 1991 and have been extrapolated up to 

2000 years. The steady number 

of infectives for the forthcoming year is being predicted here. 
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Leah (2006) studied the patterns of infection of cholera in a human population and 

understood what factors in uence transmission of the disease as well as the dynamics of the 

bacteria in their aquatic environment. In this dissertation, he explore the dynamics of cholera 

on three scales. First, Leah introduced a fairly simple model for cholera in a human population 

coupled to an environmental reservoir of bacteria. This model demonstrates the need to 

understand more fully how V. cholerae survives and evolves in the aquatic environment. Next, 

Leah explored the life histories of bacteria, in particular how aging and environmental factors 

in uence bacterial tness. Finally Leah examined 

the implications of various types of inter-cellular interactions during surface colonization for 

the structure and composition of bacterial communities using an individual based model, as 

well as examining under what conditions living in communities of various sizes would be 

optial. 

Mark et al, (2006) researched on the epidemiological and environmental observations of a 

cholera outbreak in Dhaka, Bangladesh, suggest that lytic bacteriophage speci c for V. 

cholerae may limit the severity of cholera outbreaks by killing bacteria present in the 

reservoir and in infected individuals. To quantify this idea and generate testable hypotheses, 

they analyzed a mathematical model that combines the epidemiology of cholera with the 

population dynamics of the bacteria and phage. Under biologically reasonable conditions, 

they found that vibrio phage can ameliorate cholera outbreaks. If phage predation limits 

bacterial density before an outbreak, a transient reduction in phage density can disrupt that 

limitation, and subsequent bacterial growth can initiate a cholera outbreak. Our analysis also 

suggests that either bacteria in the environmental reservoir are hyper infectious or most 

victims ingest bacteria ampli ed in food or drinking water contaminated by environmental 

water carrying few viable V. cholerae. Their theoretical results make a number of empirically 

testable predictions. 

Richard et al, (2008) reported that there are numerous examples of human pathogens which 

persist in environmental reservoirs while infectious outbreaks remain rare. In this manuscript, 

they consider the dynamics of infectious diseases for which the primary mode of transmission 

is indirect and mediated by contact with a contaminated reservoir. they evaluate the realistic 
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scenario in which the number of ingested pathogens must be above a critical threshold to 

cause infection in susceptible individuals. This minimal infectious dose is a consequence of 

the clearance e ect of the innate immune system. Infected individuals shed pathogens back 

into the aquatic reservoir, indirectly increasing the transmutability of the pathogen to the 

susceptible. They devised two new measures of how likely it is that an environmentally 

persistent pathogen will cause an outbreak: (i) the minimum fraction of infected individuals; 

and (ii) the minimum uctuation size of in-reservoir pathogens. They also nd an additional 

control parameter involving the shedding rate of infected individuals, which they term the 

pathogen enhancement ratio, which determines whether outbreaks lead to epidemics or 

endemic disease states. Their model predicts that in the case of waterborne diseases, 

suppressing the pathogen density in aquatic reservoirs may be more e ective than minimizing 

the number of infected 

individuals. 

According to Yibeltal(2009),Since 2005, the reoccurrence of cholera is linked with the ever-

increasing size of the population living in unsanitary conditions. For instance, from August 

2008 to February 2009, more than 79,000 cases and 3,700 deaths were reported from a single 

country Zimbabwe. Regardless of the advancement of medical science and health care 

service, cholera remains a global threat to public health and one of the key indicators of social 

development. While the disease is not an issue in the developed nations where minimum 

hygiene standards are met, it still remains a threat in developing countries. In this essay, a 

new mathematical model for cholera transmission dynamics was developed and rigorously 

analysed. Historical pandemics of the disease, transmission means and global impact of the 

disease and control mechanisms of cholera disease were brie y discussed. Since the survival 

rate of the vibrio cholerae is often a function of time delay, the researcher incorporated a 

time delay in the V. cholerae population. He found a threshold condition, Ro, in terms of the 

parameters of the model. It is shown that the disease free equilibrium is locally and globally 

stable for no time delay. Furthermore, for the case with time delay τ > 0, it was shown that a 

disease free equilibrium is globally asymptotically stable if Ro < 1. The model has an endemic 

equilibrium when Ro > 1 . Bertuzzo et al, (2009) generalized a recently proposed model for 
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cholera epidemics that accounts for local communities of susceptibles and infectives in a 

spatially explicit arrangement of nodes linked by networks having di erent topologies. The 

mathematical tools used are borrowed from general schemes of reactive transport on river 

networks acting as the environmental matrix for the circulation and mixing of waterborne 

pathogens. Using the di usion approximation, they analytically derived the speed of 

propagation for travelling fronts of epidemics on regular lattices (either one-dimensional or 

two-dimensional) endowed with uniform population density. Power laws are found that 

relate the propagation speed to the di usion coe cient and the basic reproduction number. 

they numerically obtained the related, slower speed of epidemic spreading for more complex, 

yet realistic river structures such as Peano networks and optimal channel networks. The 

relevance of their results lie in the major di erences potentially arising between the 

predictions of spatially explicit models and traditional compartmental models of the 

susceptible infected recovered (SIR) like type. This suggest that in many cases of real-life 

epidemiological interest, time scales of disease dynamics may trigger outbreaks that signi 

cantly depart from the predictions of compartmental models. 

Jianjun et al, (2010) reported that recent years have seen a strong trend of cholera outbreaks 

in developing countries, including, among others, those in Kenya (2010), Vietnam (2009), 

Zimbabwe (2008/2009), Iraq (2008), Congo (2008) and India (2007). According to the World 

Health Organization (WHO), there are an estimated 3 - 5 million cholera cases and 100,000 - 

120,000 deaths due to cholera every year , among which only a small portion were o cially 

reported because of poor surveillance and incomplete records. Due to its huge impacts on 

public health and social and economic development, cholera has been a subject of extensive 

studies in clinical, experimental and theoretical elds .Here, Conducted rigorous stability 

analysis for the well-known cholera model proposed by Codeco using theory of monotone 

dynamical systems, they proved that the endemic equilibrium, when it exists, of the model is 

globally asymptotically stable, implying the persistence of the disease in the absence of 

interventions. They then modi ed Codeco’s model by incorporating various control strategies, 

and study the subsequent dynamics. Jianjun et al found that with strong control measures, 

the basic reproduction number will be reduced below one (1) so that the disease-free 
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equilibrium is globally asymptotically stable. With weak controls, instead, a unique and 

globally stable endemic equilibrium would still occur, though at a lower infection level. The 

analytical predictions were con rmed by numerical simulation results. 

Andrews and Badu (2011) O cial projections of the cholera epidemic in Haiti have not 

incorporated existing disease trends or patterns of transmission, and proposed interventions 

have been debated without comparative estimates of their e ect. They used a mathematical 

model of the epidemic to provide projections of future morbidity and mortality, and to 

produce comparative estimates of the e ects of proposed interventions. They designed 

mathematical models of cholera transmission based on existing models and tted them to 

incidence data reported in Haiti for each province from Oct 31,2010, to Jan 24,2011. They 

then simulated future epidemic trajectories from March 1 to Nov 30,2011, to estimate the e 

ect of clean water, vaccination, and enhanced antibiotic distribution programmes. They also 

projected 779,000 cases of cholera in Haiti and 11,100 deaths between March 1 and Nov 

30,2011. The researchers expected that a 1% per week reduction in consumption of 

contaminated water would avert 105,000 cases and 1,500 deaths. They predicted that the 

vaccination of 10% of the population, from March 1, will avert 63000 cases and 900 deaths. 

The proposed extension of the use of antibiotics to all patients with severe dehydration and 

half of patients with moderate dehydration is expected to avert 9,000 cases and 1,300 deaths. 

Wang et al, (2011) researched that Cholera is a severe water-borne infectious disease caused 

by the bacterium Vibrio cholerae. The dynamics of cholera involve multiple interactions 

between the human host, the pathogen, and the environment which contribute to both 

direct human-to-human and indirect environment-to-human transmission pathways. In an e 

ort to gain deeper understanding of the complex dynamics of cholera, several mathematical 

models have been published. In this paper, they presented and analyzed a cholera 

epidemiological model with control measures incorporated. This model is extended from the 

one proposed by Mukandavire et al in 2008/2009 and included the e ects of vaccination, 

therapeutic treatment, and water sanitation. Equilibrium analysis is conducted in the case 

with constant controls for both epidemic and endemic dynamics. Optimal control theory is 

applied to seek cost-e ective solution of multiple time-dependent intervention strategies 
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against cholera outbreaks. The results in this study showed that the vaccination cost is kept 

the same as before.They again conducted simulations for the optimal strategy of the three 

controls combined and that for vaccination only. The results are presented with the reduced 

costs for therapeutic treatment. Finally it was observed that both the strength and e ective 

period of the optimal vaccination rate are decreased. And the optimal treatment rate shows 

a signi cant increase to achieve the optimal balance between controls. 

According to Mukandavire et al, (2011), beginning in August 2008, a major cholera epidemic 

occurred in Zimbabwe, with 98,585 reported cases and 4,287 deaths. The dynamics of such 

outbreaks, particularly in non-estuarine regions, are not well understood. They explored the 

utility of mathematical models in understanding transmission dynamics of cholera and in 

assessing the magnitude of interventions necessary to control epidemic disease. Weekly data 

on reported cholera cases were obtained from the Zimbabwe Ministry of Health and Child 

Welfare (MoHCW) for the period from November 13, 2008 to July 31, 2009. A mathematical 

model was formulated and tted to cumulative cholera cases to estimate the basic 

reproductive numbers and the partial reproductive numbers from all 10 provinces for the 

2008/2009 Zimbabwe cholera epidemics. Estimated basic reproductive numbers were highly 

heterogeneous, ranging from a low value of just above unity to 2.72. Partial reproductive 

numbers were also highly heterogeneous, suggesting that the transmission routes varied by 

province; human-to-human transmission accounted for 41-95% of all transmission. Their 

models suggest that the underlying patterns of cholera transmission varied widely from 

province to province, with a corresponding variation in the amenability of outbreaks in di 

erent provinces to control measures such as immunization. 

According to Tuite et al, (2011), Haiti is the poorest country in the Western Hemisphere , is in 

the midst of a cholera epidemic that has reportedly killed more than 4,000 people and 

infected about 217,000 (as of 30 January 2011). Approximately one half of those infected 

have been hospitalized and case-fatality rates in both community and hospital settings have 

been approximately 2%. With respect to epidemic spread as a function of population mass 

and distance. They used a gravity model to accurately predict the sequence and timing of 

regional cholera epidemics in Haiti by using publicly available data. They also used a model 
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based on the best available data and calibrated to reproduce the initial reported epidemic 

curve for Haiti and then evaluate the probable time course of Haiti’s cholera epidemic in the 

absence of e ective intervention and explore the potential e ects of competing and 

complementary control strategies, including vaccine distribution and provision of clean water. 

The model projects that the epidemic is likely to last well into 2011 and suggest that adaptive 

strategies for vaccination may provide a modest reduction in morbidity and mortality in the 

economically challenged 

country. 

Saeed et al, (2011) reported that Lytic bacteriophages are hypothesized to contribute to the 

seasonality and duration of cholera epidemics in Bangladesh. In this study, they isolated and 

sequenced the genomes of 15 bacteriophages from stool samples from cholera patients 

spanning a 10-year surveillance period in Dhaka, Bangladesh. Their results indicated that a 

single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal 

Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera 

patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are 

transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome 

comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related 

isolates from this time period indicated a high level of genetic conservation. The ubiquitous 

presence of ICP1 in cholera patients and the nding that the O1 antigen of lipopolysaccharide 

(LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of 

human-pathogenic V. cholerae O1. 

According to Manju et al, (2012), Epidemic models have been studied by several researchers 

[Anderson et al. (1979), Bailey (1975) and Hsu et al. (2004)]. The e ects of the presence of 

bacteria and carriers in the environment on the spread of infectious disease have not been 

studied using mathematical models [Gonzalez-Guzmem (1989)]. Hethcote (1976) discussed 

an epidemic model in which the carrier population is assumed to be constant. Although, 

Codeco et al. (2006) have discussed Trends in Cholera Epidemiology and Ghose et al. (2005) 

and Shukla et al. (2006) have studied the spread of infectious diseases with bacteria in the 

environment they have ignored the role of carriers present in the environment. In this paper, 



 

16 

a nonlinear delayed mathematical model with immigration for the spread of infectious 

disease cholera with carriers in the environment was proposed and analyzed. The model is 

analyzed by stability theory of di erential equations and computer simulation. This study 

shows that the spread of the infectious disease cholera increases due to growth of carriers in 

the environment and disease becomes more endemic due to immigration. 

Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals 

of public health policies, but pose challenging problems because infection patterns are in 

uenced by spatial structure and temporal asynchrony.According to Marino et al, (2012), 

Networked connectivity models, describing the interplay between hydrology, epidemiology, 

and social behavior sustaining human mobility, thus prove to be key tools for emergency 

management of waterborne infections. Here we show that the requirement that all the local 

reproduction numbers R0 be larger than unity is neither necessary nor su cient for outbreaks 

to occur when local settlements are connected by networks of primary and secondary 

infection mechanisms. They showed that geographical outbreak patterns in complex 

environments are linked to the dominant eigenvector and to spectral properties of G0. Tests 

against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, 

as well as against computations for metapopulation networks, demonstrate that eigenvectors 

of G0 provide a synthetic and e ective tool for predicting the disease course in space and time. 

Hailegiorgis and Andrew (2012) wrote that the displacement of people in times of crises 

represents a challenge for humanitarian agencies. This challenge is especially acute within 

developing countries, which home the majority of displaced people. Within this paper, they 

demonstrated a spatially explicit agent based model that explores the spread of cholera in 

the Dadaab refugee camps. Poor sanitation and housing conditions contribute to frequent 

incidents of cholera outbreaks. They modeled the spread of cholera by 

explicitly representing the interaction between humans (host) and their environment, and 

the spread of the epidemic using Susceptible-Exposed-Infected-Recovered (SEIR) model. 

Infected agents spread cholera bacteria through excretion of faeces to the environment and 

this can then be spread throughout the system. Results from the model showed that the 

spread of cholera grows radially from contaminated water sources. This modeling e ort also 
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highlights the potential of agent based modeling to explore the spread of cholera in a 

humanitarian context and its impact on service provision. 

According to Cheng and Xiuxiang,(2012),Over the last decade, quite a few mathematical 

models have been published to investigate the transmission dynamics of cholera. For 

example, Codeco in 2001 proposed a model that explicitly accounted for the environmental 

component, i.e. the V. cholerae concentration in the water supply, into a regular SIR 

epidemiological model. In this paper, They conducted a careful global stability analysis for a 

generalized cholera epidemiological model. Cholera is a water and food-borne infectious 

disease whose dynamics are complicated by the multiple interactions between the human 

host, the pathogen, and the environment. Using the geometric approach, they rigorously 

proved the endemic global stability for the cholera model in three-dimensional (when the 

pathogen component is a scalar) and four-dimensional (when the pathogen component is a 

vector) systems. This work uni es the study of global dynamics for several existing 

deterministic cholera models. 

In 2005,131,943 cases including 2,272 deaths have noti ed from 52 countries. Liman et al,( 

2012) said the year was marked by a particular signi cant series of outbreaks in West Africa, 

which a ected 14 countries and accounted for 58% of all cholera cases world-wide (WHO 

2006). In the same year Nigeria had 4,477 cases and 174 deaths. There was 

reported case of cholera in 2008 in Nigeria in which 429 death out of 6,330 cases. In this 

essay, a new mathematical model (S, I, R and B) for cholera transmission dynamics is 

developed and analyzed. Transmission means, global impact of the disease and control 

mechanisms of cholera disease are brief discussed. They established the existence of 

equilibrium states and analyzed the disease free equilibrium state for stability using 

linearization theorem. The disease died out when the rate at which people are exposed to 

contaminated water and food, and the contribution of those infected with cholera to 

concentration of V.cholerae are checked. i.e T < 0 and D > 0 had given disease- free 

state to be asymptotically stable. 

Motassem et al, (2013) wrote in their paper that recent years have seen a strong trend of 

cholera outbreaks in developing countries, including Haiti (2010/2011), Cameroon 
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(2010/2011), Kenya (2010), Vietnam (2009), Zimbabwe (2008/2009), Iraq (2008), the 

Democratic Republic of Congo (2008) and India (2007). Due to its huge impact on public 

health, and social and economic development, cholera has been the subject of extensive 

studies in clinical, experimental and theoretical eld. Haiti o ers the most recent example of 

the tragedy that can befall a country and its people where cholera striked. While cholera has 

been a recognized disease for two centuries, there is no strategy for its e ective control. They 

formulated and analyzed a mathematical model that includes two essential and a ordable 

control measures: water chlorination and education. They calculated the basic reproduction 

number and determine the global stability of the disease-free equilibrium for the model 

without chlorination. They used Latin Hypercube Sampling to demonstrate that the model is 

most sensitive to education. The researchers also derived the minimal e ective chlorination 

period required to control the disease for both xed and variable chlorination. Numerical 

simulations suggest that education is more e ective than chlorination in decreasing bacteria 

and the number of 

cholera cases. 

Many mathematical models have been proposed to investigate the complex epidemic and 

endemic behavior of cholera. The earliest mathematical model was proposed by Capasso and 

Paveri-Fontana to study a cholera epidemic occurred in the Mediterranean in 1973. Codeco 

in 2001 extended the work in and explicitly accounted for the role of the aquatic reservoir in 

cholera dynamics. In this work, Javidi and Ahmed (2013) investigated the dynamical behavior 

of a fractional order cholera model. All the feasible equilibria for the system were obtained 

and the conditions for the existence of interior equilibrium were all determined. Local 

stability analysis of the cholera model was studied by using the fractional Routh-Hurwitz 

stability conditions. Results in this study indicate the potential of fractional-order cholera 

models to cope with modern epidemics. 

Cholera is said to be the epidemic that urge health education in the early nineteenth century, 

due to its contagious nature which if allow deteriorating, it has no respect to class of people, 

and it is still maintaining this threatening gesture. Mathematical modeling being the main 

stay of epidemiological theory is crucial to apply in studying cholera dynamics because ability 
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to model disease dynamics can be used to forecast the danger of a major epidemic. 

Outbreaks of cholera occur suddenly, if not controlled, can spread like wild bush re. In this 

work,Sani et al, (2013) formulated a deterministic mathematical model of cholera from some 

modi cations of previous cholera models. Analysis was performed on the Jacobian matrix 

assuming zero Vibrio Cholerae environments. The basic reproduction number R0 was 

obtained as   and the critical number or threshold S0 was also obtained as 

. These two values are used to predict 

occurrence of cholera outbreak in a community. Zero equilibrium state is stable when 

R0 < 1 and unstable when R0 > 1 . 

Ochoche (2013) researched that Cholera is generally a disease of the poor, a ecting regions 

that lack a heightened sense of hygiene and access to safe drinking water. In this research, a 

mathematical model for the control of cholera transmission dynamics using water treatment 

as a control strategy is proposed. The model is designed by dividing the system into 

compartments leading to corresponding di erential equations. The model is built on the 

assumption that cholera is contracted only through the ingestion of contaminated water. 

Conditions are derived for the existence of the disease free and endemic equilibria. They 

proved that the disease free equilibrium is locally asymptotically stable under prescribed 

conditions on the given parameters. This means that cholera can be eradicated under such 

conditions in nite time. Numerical simulations are carried out using parameter values from 

published data to investigate the e ect of transmission parameters on the dynamics of the 

infection. They simulated cases with no control, weak and strong control. Their results 

showed that water treatment is an e ective method of controlling cholera however cholera 

cases will continue to be present in the population if the contribution of the each infected 

person to the aquatic environment and the contact rate with contaminated water is high. 

Cholera remains a public health threat in many countries around the world where outbreaks 

occur sporadically and punctuate periods of disease extinction or fade-out. This epidemic 

behaviour is characterized by dramatic variation in the size of individual outbreaks including 

large intermittent and unpredictable events. According to Manojit et al,(2013), Cholera is on 

the rise globally, especially epidemic cholera which is characterized by intermittent and 
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unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic 

dynamics remain however poorly understood. Here, they examined records for epidemic 

cholera over both contemporary and historical time lines, from Africa (1990/2006) and 

former British India (1882/1939). They found that the frequency distribution of outbreak size 

is fat-tailed, scaling approximately as a power-law. This pattern which shows strong parallels 

with wild res is incompatible with existing cholera models developed for endemic regions, as 

it implies a fundamental role for stochastic transmission and local depletion of susceptible 

hosts. Application of a recently developed forest- re model indicates that epidemic cholera 

dynamics are located above a critical phase transition and propagate in similar ways to 

aggressive wild res. These ndings have implications for the e ectiveness of control measures 

and the mechanisms that ultimately limit the size of outbreaks. 

Finger et al, (2014) wrote that Mathematical models of cholera dynamics can not only help 

in identifying environmental drivers and processes that in uence disease transmission, but 

may also represent valuable tools for the prediction of the epidemiological patterns in time 

and space as well as for the allocation of health care resources. Cholera outbreaks have been 

reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging 

the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here 

they employed a spatially explicit, inhomogeneous Markov chain model to describe cholera 

incidence in eight health zones on the shore of the lake. The e ect of human mobility is also 

modeled 

mechanistically. The researchers tested several models on a multiyear data set of reported 

cholera cases. The best fourteen models, accounting for di erent environmental drivers, and 

selected using the Akaike information criterion, are formally compared via proper cross 

validation. Among these, the one accounting for seasonality, El Niæo Southern Oscillation, 

precipitation and human mobility outperforms the others in cross validation. Some drivers 

(such as human mobility and rainfall) are retained only by a few models, possibly indicating 

that the mechanisms through which they in uence cholera dynamics in the area will have to 

be investigated further. 
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Crooks and Atesmachew (2014) in their paper reported that Cholera is an intestinal disease 

and is characterized by diarrhea and severe dehydration. While cholera has mainly been 

eliminated in regions that can provide clean water, adequate hygiene and proper sanitation; 

it remains a constant threat in many parts of Africa and Asia. Within this paper, they 

developed an agent-based model that explores the spread of cholera in the Dadaab refugee 

camp in Kenya, Poor sanitation and housing conditions contributed to frequent incidents of 

cholera outbreaks within this camp. For example, 10,000 Rwandan refugees died from 

cholera in 1994 (Waldor and Chairat,2010). They modeled the spread of cholera by explicitly 

representing the interaction between humans and their environment, and the spread of the 

epidemic using Susceptible-Exposed-InfectedRecovered model. Results from the model show 

that the spread of cholera grows radially from contaminated water sources and seasonal rains 

can cause the emergence of cholera outbreaks. This modeling e ort highlights the potential 

of agent-based modeling to explore the spread of cholera in a humanitarian context . 

According to Sani et al,(2014), in recent years, cholera outbreaks have been on increase, there 

are more than 250,000 cases of cholera each year worldwide. Factors that in uence cholera 

outbreak include ood, draught and river height. Codeco (2001) ‘’Flooding and draught are 

likely to a ect cholera dynamic in a complex way. Flooding washes contaminated faeces and 

sewage into the river. It can also disrupt water distribution service and aggravate hygiene 

conditions. Draught on the other hand shortens the availability of potable water, aggravates 

hygiene condition, by increasing the number of people sharing the same water supply and 

may increase per capita water contamination . The dynamics of cholera is analysed using a 

system of four di erential equations with two control measures τ and ω, which are; 

therapeutic treatment and sanitary measures respectively. A zero Vibrio Cholerae bacteria 

environment was rst assumed and analysed establishing disease free equilibrium state (DFE), 

which is interpreted as R0 < 1. Epidemic equilibrium state assumed as R0 > 1 was then 

obtained after 

analysing the non-zeroVibrio Cholerae bacteria environment. This established the fact that; 

measures aimed at reducing Vibrio Cholerae bacteria in the environment will in turn reduce 

or control cholera. 
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Limited access to safe water and sanitation resources is common in developing countries, 

leaving them vulnerable to cholera outbreaks.Posny and Wang (2014) wrote that Cholera is 

an intestinal infection caused by ingesting food or water contaminated with the bacterium 

Vibrio cholerae. If left untreated, an infected individual may become severely dehydrated and 

die within several days. Besides the transmission route based on environment human 

interaction, the human-to-human direct transmission is also found important in shaping a 

cholera epidemic. A recent cholera outbreak in Zimbabwe, a land-locked country in Africa, 

during 2008/2009 underscores such a direct transmission pathway. They proposed a 

deterministic compartmental model for cholera dynamics in periodic environments. The 

model incorporates seasonal variation into a general formulation for the incidence (or, force 

of infection) and the pathogen concentration. The basic reproduction number of the periodic 

model is derived, based on which a careful analysis is conducted on the epidemic and 

endemic dynamics of cholera. Several speci c examples are presented to demonstrate this 

general model, and numerical simulation results are used to validate the analytical prediction. 

In Nigeria, outbreaks of the disease have been occurring with increasing frequency since the 

rst outbreak in modern times in 1970 (Epstein, 1993 Osemwenkhae et al, 2009). 

Since then, cholera has continued to cause high mortality in humans, in Nigeria. The year 

1999 saw the highest number of reported cases (WHO, 2009). Since then, cholera cases have 

been persistent in the country. Recently, in Kano, on September 22nd 2008, the United 

Nations o ce for the coordination of Humanitarian A airs unit reported that cholera outbreak 

killed 97 persons in Kano. In this work two mathematical models that described the dynamics 

of cholera in Nigeria were presented. The rst model examined the bacteria population using 

a logistic de nition for its growth in the expected habitat and their interaction with the 

susceptible population. The second model is an optimal control model that includes two time- 

dependent control functions with one minimizing the contact between the susceptible and 

the bacteria and the other, the population of the bacteria in the water. The results from the 

numerical solutions of the models presented showed that increasing the susceptible pool and 

the infected population above some threshold values were responsible for epidemic cholera. 

It also showed that the di erence between the growth rate (r) and the loss rate (n) of the 
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bacteria plays a huge role in the outbreak as well as the severity of the disease according to 

Isere et al,(2014). 

In 2005, Nigeria had 4,477 cases and 174 deaths. In 2008, Nigeria recorded 429 deaths out of 

6,330 cases. Furthermore, in 2009, Nigeria reported 13,691 cases and 431 deaths (WHO, 

2012). In summary, the United Nation (UN) unit, reports: despite Nigeria’s oil wealth, more 

than 70% of the country’s 126 million people live below the poverty line and cholera 

outbreaks are common in poor urban areas which lack proper sanitation 

and clean drinking water (UN O ce for the Coordination of Humanitarian A airs Integrated 

Regional Information Networks (IFIN), 2005). In this research, Sulayman et al,(2014) 

presented and analyzed a mathematical model for the control of cholera in Nigeria with modi 

cations as compared to previous cholera models. Their model incorporates treatment, water 

hygiene and environmental sanitation in curtailing the disease. A system of ordinary di 

erential equations is used. Numerical simulation of the full model using maple shows that 

improvement in treatment, water hygiene and the environmental sanitation o ered to about 

fty percent is e ective to eradicate cholera 

epidemic. 

2.4 Literature on Statistical models 

Erin et al, (2002) reported that recently, the role of the environment and climate in disease 

dynamics has become a subject of increasing interest to scientists. Much of the interest has 

been stimulated by the growing problems of antibiotic resistance among pathogens, 

emergence and/or reemergence of infectious diseases worldwide. First, the disease has a 

historical context linking it to speci c seasons and biogeographical zones. In addition, the 

population dynamics of V. cholerae in the environment are strongly controlled by 

environmental factors, such as water temperature, salinity, and the presence of copepods, 

which are, in turn, controlled by larger-scale climate variability. In this review, the association 

between plankton and V. cholerae that has been documented over the last 20 years is 

discussed in support of the hypothesis that cholera shares properties of a vector-borne 

disease. In addition, a model for environmental transmission of cholera to humans in the 

context of climate variability is presented. The cholera model provides a template for future 
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research on climate-sensitive diseases, allowing de nition of critical parameters and o ering a 

means of developing more sophisticated methods for prediction of disease outbreaks. 

Chingayipe (2008) wrote that in Malawi, outbreaks of varying intensities have occurred each 

year especially during rainy season. Like other districts in the country, Chiradzulu has been 

experiencing cholera outbreaks notably since 2001/2002 rainy season with high case fatality 

rates of 4.5%. Despite the e orts to control cholera it has caused unnecessary panicking 

among the communities and health workers whenever it strikes which has led to loss of lives. 

This was a cross sectional study using both qualitative and quantitative methodologies. A 

total of 150 households were sampled in four 

villages from two traditional authorities. The traditional authorities (TAs) were selected 

randomly depending on their distances from the main hospital. The study suggests that about 

70% of the respondents had knowledge on cholera. In villages where cholera occurred 

frequently people were more knowledgeable than where it seldom occurred. Inadequate and 

mistimed messages due to lack of commitment of health workers to guide communities and 

cultural beliefs were the factors which contributed to poor detection of the disease. 

According to Said (2006), Cholera made an unforeseen appearance on the eastern coast of 

South Africa in the province of KwaZulu-Natal (KZN) in August 2000. Having started from the 

more urban centres of the coastal region of the province, cholera proceeded unabated to the 

interior of the province where no community was spared from the scourge. Despite prompt 

medical intervention, health education and media awareness campaigns, cholera continued 

to spread throughout KZN. Thus GIS was used as a 

research tool to facilitate the comparison of the disease trends and risk factors on a spatial 

level in order to determine the possible role(s) played by the di erent environmental and 

socio-economic drivers. At the spatial level, the characteristics of the epidemic as revealed 

by the GIS maps and spatial modeling highlighted possible relationships between the 

incidence of cholera and the various socio-economic and climatic variables. The results give 

an altogether holistic portrayal of the cholera epidemic from all perspectives and also 

supported the hypothesis that cholera is a function of social and environmental factors. 

Spatial modeling o ered more insight that the statistically supported climatic and socio-
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economic aspects were indeed important factors in guiding cholera outbreak predictions in 

the future. 

In Zimbabwe, gradual economic collapse over the last 10 years culminated in the creation of 

a complex humanitarian emergency state in 2008, with massive loss of health and water 

infrastructure. This situation put the country at risk for one of the largest and most severe 

cholera outbreaks in the past 10 years. Missing data was an issue in the analysis, and 

imputation methods were compared and contrasted in the development of nal logistic and 

multiple linear regression models. Despite the limited availability of timely point-of-use water 

treatment in the Zimbabwean cholera outbreak, a characteristic inherent to many response 

e orts, there was suggestive but inconclusive evidence that water quality at the source may 

reduce cholera morbidity by itself.Here, David (2009) paper has important implications not 

only for eld outbreak data methodology, but for water and sanitation promotion as well. 

While simple imputation methods seem to be the norm in outbreaks in the eld, there was 

value in multiple imputation methods for improving the validity and precision of the model 

estimates. 

The cholera epidemic has been a huge burden in the world in recent times, with the disease 

still thriving with much energy in Asia, Africa and South America. The occurrence and severity 

of cholera outbreaks in endemic areas is greatly enhanced by human behaviour with regards 

to the practice of healthy hygiene, sanitation and health education. However, information ow 

in the delivery of health education on the practice of healthy hygiene and sanitation in cholera 

endemic regions, during or prior to cholera outbreaks has been a great handicap in the 

prevention and control of cholera. In this regard, a study protocol has been designed to 

determine the barriers to the practice of healthy hygiene and sanitation by residents in 

Douala, a cholera-endemic region in Cameroon. The proposed study was done in two phases. 

The rst phase was knowledge, attitude and practice (KAP) study to measure the knowledge, 

attitudes and practices of the residents in response to health education on cholera prevention 

and control. The second phase was qualitative study to explore unclear concepts or 

phenomenon to understand particular aspects of actions and behaviour, while paying 

attention to the social mechanisms in the population that lead to risk behaviour. The KAP 
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study will provide rst-hand information about possible disease determinants, leading to the 

formulation of a hypothesis that can be tested using an analytical study design. The results of 

this study will be useful for planning health care interventions on cholera prevention and 

control according to Njol (2010). 

A recent study on cholera reveals that local environmental parameters are intensely 

associated with cholera dynamics. In particular, increase in ocean chlorophyll concentration; 

sea surface temperature and river height play a signi cant role on the occurrence of cholera 

and the magnitude of the epidemic. Cholera, a man-environment disease is transmitted 

through drinking water which is contaminated from improper treatment of sewage. Further, 

it may be noted that if the degree of infectivity increases, sociological or other mechanisms 

which tend to saturate the e ect that a large number of infectives may have often come into 

play. Therefore they are interested in exploring the e ects of environmental uctuations by 

considering the saturation incidence term. The study focuses on randomly uctuating 

phenomena of cholera deterministic model by incorporating white noise stochastic 

perturbation. For the deterministic model, stability of the equilibria and persistent aspects of 

population are discussed. Variances of population are evaluated for the model system at the 

endemic equilibrium. They concluded from the study that the inclusion of environmental 

uctuation does not change substantially the dynamical behaviour of the system although it 

induces some initial random oscillations according to Gazi et al, (2010). 

Global cholera incidence is increasing, particularly in sub-Saharan Africa. Reyburn et al, (2011) 

examined the impact of climate and ocean environmental variability on cholera outbreaks, 

and developed a forecasting model for outbreaks in Zanzibar. Routine cholera surveillance 

reports between 1997 and 2006 were correlated with remotely and locally sensed 

environmental data. A seasonal autoregressive integrated moving average (SARIMA) model 

determined the impact of climate and environmental variability on cholera. The SARIMA 

model shows temporal clustering of cholera. A 10C increase in temperature at 4 months lag 

resulted in a 2-fold increase of cholera cases, and an increase of 200 mm of rainfall at 2 

months lag resulted in a 1.6-fold increase of cholera cases. Temperature and rainfall 
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interaction yielded a signi cantly positive association (P < 0.04) with cholera at a 1-month 

lag. These results may be applied to forecast 

cholera outbreaks, and guide public health resources in controlling cholera in Zanzibar. 

Started in late October 2010, cholera epidemic peaked during January 2011, with more than 

344,000 reported cases and about 5,400 deaths within the period of three months. Mari et 

al, (2011) investigated the role of human mobility as a driver for longrange spreading of 

cholera infections, which primarily propagate through hydrologically controlled ecological 

corridors. They build a spatially explicit model of a disease epidemic, which is relevant to both 

social and scienti c issues. They presented a twolayer network model that accounts for the 

interplay between epidemiological dynamics, hydrological transport and long-distance 

dissemination of the pathogen Vibrio cholerae owing to host movement, described here by 

means of a gravity-model approach. The researchers also tested their model against 

epidemiological data recorded during the extensive cholera outbreak occurred in the 

KwaZulu-Natal province of South Africa during 2000/2001. They showed that long-range 

human movement is fundamental in 

quantifying otherwise unexplained inter-catchment transport of V. cholerae, thus playing a 

key role in the formation of regional patterns of cholera epidemics. They also showed 

quantitatively how heterogeneously distributed drinking water supplies and sanitation 

conditions may a ect large-scale cholera transmission. 

Heidi,(2012) researched that many communities in the Dominican Republic have little or no 

access to safe drinking water or sanitation. The recent introduction of cholera from Haiti 

further highlights these limitations and their impact on human health. This research focused 

on two communities; a rural mountainous village and a periurban batey, which is a settlement 

community constructed by sugar cane companies to house primarily Haitian immigrant 

laborers. Research methods included community observations, household interviews, and 

interviews with local leaders. The results showed two dramatically di erent types of water 

access and sanitation. The mountainous village had regular access to local springs, consistent 

piped water, functioning latrines, and low population density. Community members voiced 
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no dissatisfaction with their water system or waste disposal and reported no diarrheal 

disease. In contrast, the batey 

reported chronic diarrhea disease, high population density, and inconsistent access to safe 

water or latrines. Residents in the batey voiced frustration with the water infrastructure, with 

their inability to mobilize as a community, and with government run water services. In 2005, 

there were 31,719 cholera cases, with 458 deaths in the Republic of Senegal. Guillaume et 

al,(2012) retrospectively investigated the climate origin of the devastating oods in mid-August 

2005, in the Dakar Region of Senegal and the subsequent outbreak of cholera along with the 

pattern of cholera outbreaks in three other regions of that country. They compared rainfall 

patterns between 2002 and 2005 and the relationship between the sea surface temperature 

(SST) gradient in the tropical Atlantic Ocean and precipitation over Senegal for 2005. Results 

showed a speci c pattern of rainfall throughout the Dakar region during August, 2005, and 

the associated rainfall anomaly coincided with an exacerbation of the cholera epidemic. 

Comparison of rainfall and epidemiological patterns revealed that the temporal dynamics of 

precipitation, which was abrupt and heavy, was presumably the determining factor. Analysis 

of the SST gradient showed that the Atlantic Ocean SST variability in 2005 di ered from that 

of 2002 to 2004, a result of a prominent Atlantic meridional mode. Thus, high resolution 

rainfall forecasts at sub seasonal time scales should provide a way forward for an early 

warning system in Africa for cholera and, thereby, trigger epidemic preparedness. 

The growing number and increased frequency of major cholera outbreaks, especially in 

African countries, have heightened concerns about the disease in particular about its spatial 

and temporal characteristics and their underlying risk factors.According to Osei (2010), 

Cholera is transmitted mainly through contaminated water and food; however, demographic 

and geographic factors can predispose inhabitants to infection. Socioeconomic and 

environmental factors like environmental sanitation can in uence the vulnerability of a 

population to cholera infection. Here, a steepest downhill path analysis using a 3D elevation 

model and refuse dumps location to delineate potential cholera reservoirs. Using proximity 

to the potential cholera reservoir as explanatory variables, statistical models are developed 

and implemented to assess the e ects of surface water pollution on cholera. Finally the results 
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show that the distribution exhibits a distinct spatial and temporal variation. Such variation is 

in uenced by demographic risk factors like urbanization, overcrowding, migration, sanitation 

and use of drinking water. Open space refuse dumps and surface water pollution on cholera 

are important environmental risk factors for cholera transmission. Cholera outbreaks can 

start from multiple geographical locations that actually have no spatial connection. 

Sara et al, (2010) reported an increase in temperatures and changes in patterns of rainfall as 

a result of climate change are widely recognized to entail serious consequences for human 

health, including the risk of diarrheal diseases. Indeed, there is strong evidence that 

temperature and rainfall patterns a ect the disease pattern. This paper presents the rst study 

that links the incidence of cholera to environmental and socioeconomic factors and uses that 

relationship to predict how climate change will a ect the incidence of cholera. Speci cally, the 

paper integrates historical data on temperature and rainfall with the burden of disease from 

cholera in Tanzania, and uses socioeconomic data to control the impacts of general 

development on the risk of cholera. Based on these results they estimated the number and 

costs of additional cholera cases and deaths that can be attributed to climate change by year 

2030 in Tanzania. The result shows a signi cant relationship between cholera cases and 

temperature and predicts an increase in the initial risk ratio for cholera in Tanzania in the 

range of 23 to 51 percent for a 1 degree Celsius increase in annual mean temperature. 

Since the initial transmission mechanism of Cholera was revealed by John Snow in 1854, the 

cause and spread of this disease has been under continuous research. Snow’s study showed 

how disease incidences can be linked to a source based on the spatial distribution of the 

patients. However, Snow’s work did not address the question of di usion mechanisms. The 

predominant transmission mechanism of Cholera is via the fecal-oral route but in recent years 

several scientists have pointed toward a number of other transmission mechanisms that 

might contribute to the prevalence of the disease. The model presented in this research is a 

geographically explicit agent-based Cholera simulation. It is a micro scale, hydrology-driven 

model that di ers from already existing ones in that it consists of four di erent sub-models: (i) 

a hydrological model for the transport of the V. cholerae pathogen (ii) an epidemic model (iii) 

a house y model for modeling ies as disease carriers (iv) a human interaction model. In the 
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study, EllenWien et al, (2011) presented the conceptual design and the initial ndings of the 

model. 

Findings here include the comparison of di erent transmission mechanisms. 

2.5 Literature on Biological models 

During spring and late summer in Bangladesh, phytoplankton blooms occur, followed by 

zooplankton, with heaviest blooms occurring in September and October. Each year, the 

seasonal zooplankton blooms, in turn, are followed by cholera outbreaks. It has been 

determined that a During spring and late summer in Bangladesh, phytoplankton blooms 

occur, followed by zooplankton, with heaviest blooms occurring in September and October. 

Each year, the seasonal zooplankton blooms, in turn, are followed by cholera outbreaks. It 

has been determined that a single copepod, depending on species and size, can carry up to 

104 cells of V. cholerae. Thus, a copepod bloom can result in the number of V. cholerae per 

ml of water comprising an infective Thus, a copepod bloom can result in the number of V. 

cholerae per ml of water comprising an infective dose, showing that ≈ 104 to 106 V. cholerae 

O1 can produce clinical cholera. Patchiness in copepod distribution, often species speci c in 

the aquatic environment, can result in signi cant variability in the number of copepods in 

water taken directly from a pond or river for drinking. Based on results of ecological studies 

demonstrating that Vibrio cholerae, the etiological agent of epidemic cholera, is commensal 

to zooplankton, notably copepods, a simple ltration procedure was developed whereby 

zooplankton, most phytoplankton, and particulates > 20µm were removed from water before 

use. E ective deployment of this ltration procedure, from September 1999 through July 2002 

in 65 villages of rural Bangladesh, of which the total population for the entire study comprised 

≈ 133,000 individuals, yielded a 48% reduction in cholera (P < 0.005) compared with the 

control according to Colwell et al,(2003). 

Roseman et al, (2003) wrote that Chitin, an insoluble polymer of GlcNAc, is an abundant 

source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression 

pro ling and mutational studies of Vibrio cholerae growing on a natural chitin surface, 
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or with the soluble chitin oligosaccharides (GlcNAc)2−6, GlcNAc, or the glucosamine dimer 

(GlcN)2 identi ed three sets of di erentially regulated genes. They showed that (i) ChiS, a 

sensor histidine kinase, regulates expression of the (GlcNAc)2−6 gene set, including a 

(GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PilA-containing 

type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a signi cant growth 

advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of 

genes involved with chitin chemotaxis and adherence and with the transport and assimilation 

of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of 

nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates 

adhesion to the chitin surface independent of surface chemistry. Collectively, these results 

provide a global portrait of a complex, multistage V. cholerae program for the e cient 

utilization of chitin. V. cholerae Expression Pro ling Studies Identify Three Classes of Chitin-

Regulated Genes. 

Bacteriophage VP4 is a lytic phage of the Vibro cholerae serogroup O1, and it is used in phage 

subtyping of V. cholerae biotype El Tor. Studies of phage infection mechanisms promoted the 

understanding of the basis of phage subtyping as well as the genetic di erences between 

sensitive and resistant strains. In this study, they investigated the receptor that phage VP4 

uses to bind to El Tor strains of V. cholerae and found that it infects strains through adsorbing 

the O antigen of V. cholerae O1. In some natural isolates that are resistant to VP4 infection, 

mutations were identi ed in the wb∗ cluster (O-antigen gene cluster), which is responsible for 

the biosynthesis of O antigen. Mutations in the manB, wbeE, and wbeU genes caused failure 

of adsorption of VP4 to these strains, whereas the observed amino acid residue mutations 

within wbeW and manC have no e ect on VP4 infection. Although mutations in two resistant 

strains were found only in manB and wbeW, complementing both genes did not restore 

sensitivity to VP4 infection, suggesting that other resistance mechanisms may exist. 

Therefore, the mechanism of VP4 infection may provide a basis for subtyping the phage. 

Elaborate mutations of the O antigen may imbue V. cholerae strains with resistance to phage 

infection according to Jialiang et al, (2013). 
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The ever increasing challenge of pathogenic bacteria becoming resistant to multiple 

antibiotics has spawned the search for new antibacterial drugs and new targets for 

antibacterial drugs.Henrik (2009) reported that Virulence factors could be such new drug 

targets. Here he presented an in vivo model of the infectious disease cholera using the 

bacteria grazing nematode Caenorhabditis elegans. He showed that the non-pathogenic 

(CTX-) Vibrio choleraeO1 El Tor strain 2740-80 is ingested by C. elegans and establishes a lethal 

infection in the intestinal tract of the worm. The study found out that the virulence of V. 

cholerae, determined as its ability to kill C. elegans, was induced by growth of the bacteria 

under anaerobic conditions. A library of an estimated 14,000 clones was constructed, each 

clone expressing a di erent peptide. In order to test the individual clones a killing/rescue assay 

in liquid medium was set up in 96-well microtiter plates. This simple system was used to 

screen 350 clones/peptides. None of the clones promoted survival of the worms, but he 

atributed this to the low number of clones tested. Despite the lack of a positive outcome, the 

experiments indicate that this assay could be used to screen for peptides that target bacterial 

virulence  
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Chapter 3 

Methodology 

3.1 Introduction 

In this chapter, we recall some de nitions and a model for cholera transmission is formulated 

in respect of the dynamics of the disease and an e cient numerical method 

used to solve the fractional-order nonlinear system. 

3.2 Basic Concepts and De nitions 

Fractional-order di erentiation is regarded as the generalization of classical integer-order 

di erentiation to real or complex orders. There has been much interest in developing the 

theoretical analysis and numerical methods for fractional di erential equations as fractional 

calculus is found to be a valuable tool in various elds of science and engineering. Indeed, we 

can nd numerous applications in polymer rheology, regular variation in thermodynamics, 

biophysics, blood ow phenomena, aerodynamics, electrodynamics of complex medium, 

viscoelasticity, Bode analysis of feedback ampli ers, 

capacitor theory, electrical circuits, electro-analytical chemistry, biology, control theory, 

tting of experimental data, etc. It has been mainly due to the reason that fractionalorder 

equations are naturally related to systems with memory which exists in most biological 

systems. Also they are closely related to fractals which are abundant in 

biological systems. 

3.2.1 The Gamma Function 

This function is basically tied to fractional calculus by de nition. Its explanation is simply the 

generality of the factorial for all real numbers. The de nition of the gamma function is given 

by 
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This function is the only one of its kind in that the value for any quantity is, by consequence 

of the form of the integral, equivalent to that quantity z minus one times 

the gamma of the quantity minus one. 

Γ(z + 1) = zΓ(z), also when z ∈ N+, then γ(z) = (z − 1)! 

. This can be shown through a simple integration by parts. 

3.2.2 Riemann-Liouville De nition 

 

3.2.3 Fractional integral according to Riemann-Liouville 

According to Riemann-Liouville the notion of fractional integral of order α(α > 0) for a 

function f (t), is a natural consequence of the well-known formula (Cauchy-Dirichlet ), that 

reduces the calculation of the n-fold primitive of a function f (t) to a single integral of 

convolution type 

 

Vanishing at t = a with its derivatives of order 1,2,...,n − 1. Require f(t) and Jtαf(t) to be causal 

functions, that is, vanishing for t < 0 

Extend to any positive real value by using the Gamma function,(n − 1)! = Γn 

Fractional integral of order α > 0 (right sided) 

 

De ne  

Alternatively 
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(a = 0,b = +∞) Riemann 

(a = −∞,b = +∞) Liouville 

3.2.4 Caputo fractional derivative 

There is another option for computing fractional derivatives; the Caputo fractional 

derivative. It was introduced by M. Caputo in his 1967 paper. In contrast to 

the Riemann Liouville fractional derivative, when solving di erential equations using Caputo’s 

de nition, it is not necessary to de ne the fractional order initial conditions. 

Caputo’s de nition is illustrated as follows. 

 

3.3 Components of mathematical models 

Mathematical model: is a set of formulas and or equations based on a quantitative 

description of real phenomena and created in the hope that the behavior it predicts will 

resemble the real behavior on which it is based. 

Mathematical quantities in models can be classi ed as variables, constants, parameters and 

input functions. An independent variable is a quantity that takes on a range of values. Usually, 

independent variables are measures of time or position. The set of all possible values of the 

independent variable is the domain of the problem. A dependent variable is a quantity that 

changes during a given problem, depending on the value(s) of the independent variable(s). 

A constant is a quantity that has a single xed value. And a parameter is a quantity whose value 

is xed throughout the domain of the model but can be varied to a family of related problems. 

3.3.1 Purposes of Epidemiological Modeling 

The following are some purposes of epidemiological modeling 

1. The model formulation process clari es assumptions, variables and parameters. 
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2. The behavior of precise mathematical models can be analyzed using mathematical 

methods and computer simulations. 

3. Modeling provides concepts such as a threshold, reproduction number, etc. 

4. Modeling is an experimental tool for testing theories and assessing quantitative 

conjectures. 

5. Modeling can be used to estimate key parameters by tting data. 

6. Models can be used in comparing diseases of di erent types or at di erent times or in di 

erent populations. 

7. Models can be used to theoretically evaluate, compare or optimize various 

detection, prevention, therapy and control programs. 

8. Model can suggest crucial data which needs to be collected. 

3.3.2 Limitations of Epidemiological Modeling 

The following are some of the limitations of epidemiological modeling. 

1. An epidemiological modeling is not reality; it is an extreme simpli cation of reality. 

2. Deterministic models do not re ect the role of chance in disease spread and do not 

provide con dence interval on results. 

Before we start with our Codeco cholera model, let us analyze some of the shortcomings of 

SIR model as we are aware that a model should simulate the spread of the disease as accurate 

as possible, which means that the resulting graph of the model should t the empirical data. 

Above all, an accurate prediction of the disease dynamics will allow us to evaluate the e 

ectiveness of the control measures. 
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3.4 SIR Model 

Almost all epidemiological models start from this same basic model. The SIR model is used 

for modeling general epidemics and to know how the spread of a disease is in a 

particular population and some possible ways of controlling such a disease.  
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3.4.1 Some SIR Model Assumptions 

Here the population is divided into three compartments, namely Susceptible, Infectious 

and Recovered population as represented below . 

 

Figure 3.1: A diagram showing Susceptible, Infectious and Recovered group 

The above model has a few assumptions: 

1. It is assumed that if the infected person did not die from the disease, then he/she 

becomes immune upon recovery. 

2. In addition, the model assumes that the population is mixing homogenously. ie 

there is an interaction within the population. 

3. The total population at any time is assumed to be constant. 

4. It is also assumed that, at any given day a xed fraction of the infected group 

will recover. For example, if the average duration of infection (infectious period) is four 

days, then, on average, one-fourth of the currently infected population recovers each 

day. 
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3.4.2 Equations for SIR Model 

In this model the total population is divided into three distinct groups. We rst have the 

Susceptible(S), Infected (I) and the Recovered (R). The total population is assumed to be 

constant. That is, S + I + R = N 

Assuming the disease spreads into a population that is totally susceptible, the susceptible 

individuals have never come into contact with the disease and are able to catch the 

disease, after which they move into the infectious class. Infectious individuals spread the 

disease to the susceptible, and remain in the infectious class for a given period of time (the 

infectious period) before moving into the recovered/removed class. 

This description of the SIR model was made more mathematical by a formulated 

di erential equation for the proportion of individuals in each class. 

Table 3.1: Variables and de nitions of sub-populations of Sir Model 

Variables De nitions 

S(t) The number of susceptible individuals at time, t 

I(t) The number of infected individuals at time, t 

R(t) The number of recovered individuals at time, t 

Table 3.2: Parameters and their de nitions of Sir Model 

Parameters De nitions 

Λ Rate of infection per unit time 

A The rate at which an infectious individual recovered per unit time 

3.4.3 Di erential Equations 

The di erential equations for the SIR model are given by the following 

 

Where, S stands for Susceptible (those who can contract the disease), I stands for Infectious 

(those who have the disease and can infect others) and R represents Recovered or Removed. 

The parameters λ and α characterize the propagation of the disease and can also be used as 

control parameters in order to stop the epidemic. 
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3.4.4 Limitations of the SIR Model 

Even though the SIR model provides a general framework to understand the spread of a 

disease, it may be too simple to accurately model a real epidemic like the outbreak of cholera 

worldwide. There are various limitations or shortcomings in this model, which 

are explained as follows: 

 There should be an environmental component, i.e. the vibrio cholerae 

concentration in the water supply. In fact, this is the case for cholera outbreak. A 

cholera patient becomes infectious or develops the symptoms only after being in 

contact with contaminated water supply. 

Therefore, the limitations and aws in the SIR model can be modi ed and extended to 

the Codeco model. 

3.5 Codeco model 

This model explicitly incorporated the environmental component, i.e. the V.cholerae 

concentration in the water supply (denoted by B), into a regular SIR system to form a 

combined human-environment (SI-B) epidemiological model. 

Figure 3.2: the deterministic Codeco cholera model diagram 

3.5.1 Assumptions of the Codeco Cholera Model 

The only route for infection is the injection of contaminated water from non-treated 

sources. 

individuals in the population H are born susceptible 
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Susceptible people(S) become infected as they are exposed to contaminated water 

Infected individuals recover at the rate r 

Recovered individuals are not explicitly included but its size can be estimated as H-I-S. 

Infected individuals contribute to the enhancement of bacteria population through 

excretion. 

Bacteria population in the aquatic reservoir (B) may also grow in the water at a rate 

determined by environmental factors 

3.5.2 Model Formulation 

The assumptions of the model lead to the following system of di erential equations 

 

By fractionalizing the system above, where DαS, DαI and DαB are the derivatives of S (t), I (t) 

and B (t) respectively, of arbitrary order α in the sense of caputo and 0 < α < 1, 

then the system leads to fractional di erential equations given by, 
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(3.1) 

(3.2) 

(3.3) 

S(0) = S0,I(0) = I0 > 0,B(0) = B0 > 0 

The reason for considering a fractional order system instead of its integer order matching part 

is that fractional order di erential equations are generalization of integer order di erential 

equations. Also, using fractional order di erential equations can help us to decrease the errors 

arising from the neglected parameters in modeling real life 

phenomena. 

Table 3.3: Variables and de nitions of Codeco model 

SYMBOL DESCRIPTION 

State variables  

S number of susceptible individuals 

I number of infected individuals 

B Concentration of toxigenic V. cholerae in water (cells/ml) 



 

 

Table 3.4: Parameters and de nitions of Codeco model 

SYMBOL DESCRIPTION 
Parameters  

H total human population 
n human birth and death rates (day−1) 
a rate of exposure to contaminated water (day−1) 
K concentration of V.cholerae in water that yields 50% of catching cholera (cells/ml) 
r rate at which people recover from cholera (day−1) 
nb−mb di erence between the growth and loss rates of V.cholerae in the aquatic environment 
e contribution of each infected people to the population of V.cholerae in the aquatic 

3.5.3 Basic Reproductive Number (R0) of the Model 

A fundamental concept in epidemiology is the basic reproduction number, which measures 

the average number of secondary infections that occur when one infective is introduced into 

a completely susceptible host population. The basic reproduction number R0 is de ned as the 

average number of Secondary cases generated by a typical infective (patience) within a 

population with no immunity to the disease, in the absence of interventions produced by a 

single infected individual introduced into a population of N susceptible. It is denoted by R0 

(Kermack and McKendrick, 1927). 

If R0 < 1, then there is no epidemics, that is the disease dies out. If R0 > 1, 

then it implies that the disease spreads in the susceptible population. Following the standard next-

generation matrix (NGM) theory, the disease-free equilibrium is given by 

E0 = (S0,I0,B0) = (H,0,0). From the next generation matrix theory; 

 

And 

  r o 

 V =   

   
 −e nb − mb 

NGM = FV −1 

But 
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 Hence FV −1 =  rK(nb−mb) K(nb−mb)  

   

 0 0 

Hence the Next Generational Matrix (NGM) is  

And since Ro is the most dominant eigenvalue of the NGM, then this implies that 

 

3.5.4 Equilibrium point and Stability 

To determine the stability analysis of the model, we rst evaluate the equilibrium point(s) or 

steady states of the system of fractional di erential equations (1), (2), and (3). The equilibrium 

points involved determine the disease-free (where I = 0) and endemic (where I 6= 0) 

Consider the initial value problem (1)-(3) with 0 ≤ α ≤ 1.To evaluate the 

equilibrium points of (1)-(3), 

DαS = 0,DαI = 0,DαB = 0 
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3.5.5 Existence of the Disease Free Equilibrium State 

Here, we discuss the existence and stability of the equilibrium state of the model. At the 

equilibrium state DαS,DαIandDαB, all vanish. Therefore, equating the right hand sides of the 

model equations (1), (2) and (3) to zero, we have 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

At the disease Free State (DFE), there are no infections, that is I = 0. Substituting this 

into (3.6), we have 

B(nb − mb) = 0 

Therefore B = 0 provided (nb − mb) 6= 0. Putting B = 0 into (3.4) 

n(H − S) = 0 

⇒ n = 0 and S = H 

Hence, there exists a disease free equilibrium state given by Eo(H,0,0). 

3.5.6 Stability of the Disease Free Equilibrium State 

To investigate the local behavior of the system about each of the equilibrium points, the 

Jacobian matrix J of the equilibrium point E = (S,I,B) is computed using RouthHurwitz criteria 

as illustrated below. 
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Now we consider the asymptotically stability of the system at the equilibrium point E0. 

The equilibrium point E0 is asymptotically stable if R0 < 1. 

At the disease Free State (DFE), 

When S = H,I = 0 and B = 0 

 

The equilibrium point is asymptotically stable if one of the following conditions holds for 

polynomial P and it’s determinant. 

1. determinant P(x) > 0,b1 ≥ 0,b2 ≥ 0,b3 ≥ 0 and b1b2 > b3, (Routh-Hurwitz 

conditions ) 

2. determinant P(x) > 0,b1 ≥ 0,b2 ≥ 0,b3 ≥ 0 and  

But P|J(Eo) − λI| = 0 

 

 

 

 
By factorization, 
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With the characteristic equation as; p(λ) = λ3+b1λ2+b2λ+b3 = 0, using Routh-Hurwitz 

criteria 

Where 

, 

b1b2 − b3 = n(mb − nb + n + r)(mb − nb + r) + (mb − nb + r)r(mb − nb)(1 − R0) 

Therefore the eigenvalues corresponding to the equilibrium E0 are 

 

Thus if R0 < 1 then all the roots are negative and given that R0 < 1, the disease free 

equilibrium state (DFE) of the model is asymptotically stable. 

3.5.7 Existence of the Endemic Equilibrium State 

For this stage, thus an endemic equilibrium solution, we consider the case where there 

is infection. 

From equation (3.6) 
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Substitute I into equation (3.5) to nd S, then we have 

 

Hence 

 

Substituting  into equation (3.4) gives 

 

Let  be the basic reproduction number. 

Hence, substituting R0 into the above equations gives 

 

Hence at endemic equilibrium we have the point, 

 

3.5.8 Stability Analysis of Endemic Equilibrium Point 

The system has an endemic infection because of the introduction of those with secondary infections. 

To determine this, we linearized the Jacobian matrix J evaluated at the endemic equilibrium point. The 

Jacobian matrix of the system is, 
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The equilibrium point is asymptotically stable if one of the following conditions holds for 

polynomial P and its determinant. 

1. determinant P(x) > 0,b1 ≥ 0,b2 ≥ 0,b3 ≥ 0 and b1b2 > b3, (Routh-Hurwitz 

conditions ) 

2. determinant P(x) > 0,b1 ≥ 0,b2 ≥ 0,b3 ≥ 0 and  

But P|J(E1) − λI| = 0 

 

 

 

By factorization, 

 

 

With the characteristic equation, P(λ) = λ3 +b1λ2 +b2λ+b3 = 0, using Routh-Hurwitz 

criteria, Where 
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From observation, it is obvious that b1 > 0. Therefore b2,b3 > 0. Hence the equilibrium point E1 is 

asymptotically stable. 

3.6 Method of solution 

The Riemann-Liouville fractional integral operator of order α > 0, of function f ∈ L1(R+) is de ned as 

 

where Γ(.) is the Euler gamma function. 

Also, the Riemann-Liouville and Caputo fractional derivative of order α > 0,n − 1 < α < n,n ∈ N 

for a given continuous function f are de ned by 

  (3.8) 

  (3.9) 

Where f(1) denote the rst derivative of f(s) 

Now from (3.7), by using integration by parts, we obtain 

  (3.10) 

From (3.8), by using binomial formula, we have 
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Substituting into (3.9), we obtain 

  (3.11) 

Rewrite (3.10) as follows 

  (3.12) 

Using integration by part, we get 

Z t Z t Z t 

 spf(2)(s)ds = tpf(1)(t)−p sp−1f(1)(s)ds = tpf(1)(t)−ptp−1f(t)+p(p−1) sp−2f(s)ds,p ≥ 2 
0 0 0 

(3.13) 

By substituting (3.12) into (3.11), we obtain 

 

Where 

(3.15) 

(3.16) 

We can approximate Dαf(t) by using M terms in sums appearing in (3.13) as follows 

 

We can rewrite (3.16) as 

 

Where 
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We set 

Θ1(t) = S(t),Θp(t) = Vp(S)(t), For p = 2,3,...,M 

ΘM+1(t) = I(t),ΘM+p(t) = Vp(I)(t), For p = 2,3,...,M 

Θ2M+1(t) = B(t),Θ2M+p(t) = Vp(B)(t), For p = 2,3,...,M 

We can rewrite system (3.1), (3.2) and (3.3) in the following form 

 

 
Where 

  (3.19) 

Finally (3.17) and (3.18) can be written as 
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With the following initial conditions 

 

  (3.21) 

We solve the system (3.19) with the initial conditions (3.20) by using the well-known Runge-Kutta of 

order fourth. 

3.6.1 Runge Kutta method 

Runge-Kutta methods are one of the fundamental techniques in scienti c computing. They are 

used to compute numerical solutions in a step-by-step fashion for ordinary di erential 

equations (ODEs). Runge-Kutta methods are a class of numerical solutions 

to the initial value problem (IVP) consisting of the ordinary di erential equation (ODE) 

U0 = F(t,U(t)) 

And the initial conditions 
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U(t0) = U0 

The formula for the fourth order Runge-Kutta method (RK4) is given below. De ne h to be the 

time step size and ti = to + ih. then the following formula 

wo = α 

 

Chapter 4 

Data Collection and Analysis 

This chapter deals with the analysis and numerical simulation of the model. Here, simulation analysis 

as well as graphical representation of the system of fractional order 

at di erent values of α are illustrated. 

 

 Table 4.1: Cholera Cases in Ghana by Region by Week, 2014 

 We attempt to nd numerical solution for a general class of fractional order SI-B 

deterministic model of the disease below: 
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(4.1) 

(4.2) 

(4.3) 

Let S(0) = 6500,I(0) = 5 > 0,B(0) = 60 > 0 be initial conditions as per the data. Also 

we have 0 < α ≤ 1 

At Disease free equilibrium state, 

H = 6500,a = 0.1,r = 0.4,nb − mb = 0.4,K = 6500,e = 1,n = 0 

Where 

 

⇒ R0 =0.625 

HenceR0 =0.625 < 1 

But at the disease Free State (DFE), there are no infections, that is I = 0, 

B(nb − mb) = 0 

Therefore B=0 provided (nb − mb) 6= 0, ⇒ n = 0 and S = H = 6500. Hence, there 

exists a disease free equilibrium state given by E0(6500,0,0). 

At the Endemic Equilibrium State, 

H = 6500,a = 0.6,r = 0.4,nb − mb = 0.02,K = 6500,e = 1,n = 0.2 

But  
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HenceR0 =75 > 1 

But  

 

Also,B  

 

 

I =27.49 

Hence at endemic equilibrium we have the point, 

(S∗,I∗,B∗) = (6393.44,27.49,1374.29) 

4.0.2 Numerical Results and Discussion 

To facilitate the interpretation of our mathematical results developed from the model, we solve 

the system numerically by using Atanackovic and Stankovic numerical method. 

In all numerical runs, the solution has been approximated at; 

δ = ∆t = 0.01 

M = 5 

P = 2,3...,M. 
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In this section, we studied the behavior of cholera at the disease free equilibrium state and 

at the endemic state described by the fractional order Code o SI-B model using Runge-Kutta 

of fourth order. 

From the results in the presented gures, it is obvious that cholera behave di erently at di erent 

values of R0 , where R0 is the basic reproduction number which is estimated as 

 

If R0 < 1, what this mean is that, the disease free equilibrium state is asymptotically stable. To 

further explain this, it implies that the disease could be eradicated under this condition in 

nite time. 

Let’s consider the rst scenario where; 

H = 6500,K = 6500,a = 0.1,r = 0.4,nb − mb = 0.4 and e = 1, 

R0 = 0.625 < 1 

That is, R0 = 0.625 < 1, implies that the disease free equilibrium state is locally asymptotically 

stable. Hence the disease will die out in the population whereas the size of the susceptible 

population decreases (See g 4.3) and that of the infectious also decreases (See g 4.4). 

Also the concentration of toxigenic vibrio cholerae in water (state variable B) will remain 

constant. That is, its concentration will not increase for the time period since the rate of 

exposure to contaminated water (parameter a) is small. (See g 4.5) 

In the second scenario, where 

H = 6500,K = 6500,a = 0.6,r = 0.4,nb − mb = 0.02 and e = 1, 

R0 = 75 > 1, 

That is, R0 = 75 > 1 implies that the disease at the endemic state is locally 

asymptotically stable. Hence, the disease will persist in the population (See g 4.6) and (See g 4.7). 
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Additionally, the concentration of toxigenic vibrio cholerae in water (state variable B) 

increases and this is because the rate of exposure to contaminated water is relatively high 

(See g 4.8). 

Also, some plots of the numerical solution are used to investigate which of the environmental 

factors parameters contribute largely to the fast spread of cholera in Ghana; rate of exposure 

to contaminated water (a) and the rate of contribution of each infected person (e) to the 

aquatic environment. 

Here, the research ndings reveal that the concentration of vibrio cholerae in water depends 

hugely on the contribution of each infected person (e) to the aquatic environment. This has 

been illustrated in g4.9, g 4.10, g4.11, g4.12 and g4.13. 

In g 4.9, high rate of exposure to contaminated water and high rate of contribution of each 

infected person to the aquatic environment produces large amount of concentration of 

toxigenic vibrio cholerae in water. The same result is obtained even when the exposure rate 

to contaminated water is average (0.5) and the rate of contribution is high (See g4.10) 

This further explains the fact that the rate of contribution of each e ected person to the aquatic 

environment contribute largely to the persistent of cholera in the population. 

This paper also reveals that even when the rate of exposure to contaminated water is high or 

average but the rate of contribution of each infected person to the aquatic environment is 

low, then the concentration of pathogen in water will be relatively low 

(See g4.11 and g 4.12) 

Finally, the concentration of pathogen in water will be relatively average if the rate of 

exposure to contaminated water is high and the rate of contribution of each e ected person 

to the aquatic reservoir is average (See g.4.13) 

Hence the ndings illustrated that, the concentration of toxigenic vibrio cholerae in water 

(State Variable B) as in the system of equation (1), (2), (3) largely depend on the rate of 

contribution of each e ected person (parameter e) to the aquatic reservoir or environment. 

This paper goes to con rm several reports on Environmental Assessment conducted by NGO’s 

and Research Institutions which reveal that there were generally poor environmental 

sanitation and inadequate water supply at all the communities where cholera cases reside 

especially in Greater Accra Region. This explicitly explains why 
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Greater Accra recorded the highest cases of cholera in the country (See gure 4.2).  
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4.1 Simulations 

The plots below illustrate the graphical representations of the numerical solutions and the 

behavior of cholera at di erent values of α. 

 

Figure 4.1: Phase diagram at the endemic state showing the size of the infectious population against 

the susceptible at di erent values of α 
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Figure 4.2: Size of the susceptible class over time for the system with di erent values of alpha at the 

disease free state where R0 < 1 
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Figure 4.3: Size of the infectious class over time for the system with di erent values of alpha at the 

disease free state where R0 < 1 

 

Figure 4.4: Concentration of toxigenic vibrio-cholerae in water over time for the system with di 

erent values of alpha at the disease free state where R0 < 1 
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Figure 4.5: Size of the susceptible class over time for the system with di erent values of alpha at the 

endemic state where R0 > 1 

 

Figure 4.6: Size of the infectious class over time for the system with di erent values of alpha at the 

endemic state where R0 > 1 
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Figure 4.7: Concentration of toxigenic vibrio-cholerae in water over time for the system with di 

erent values of alpha at the endemic state where R0 > 1 

 

Figure 4.8: Graph of Concentration of toxigenic vibrio-cholerae in water against time with a 

case of high exposure (α = 0.80) to contaminated water and high contribution of each 

infected person (e = 0.90) to the aquatic environment at di erent values of α. 
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Figure 4.9: Graph of Concentration of toxigenic vibrio-cholerae in water against time with a 

case of average exposure (α = 0.5)to contaminated water and high contribution of each 

infected person (e = 0.90) to the aquatic environment at di erent values of α. 
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Figure 4.10: Graph of Concentration of toxigenic vibrio-cholerae in water against time with a 

case of high exposure (α = 0.8) to contaminated water and low contribution of each infected 

person (e = 0.10) to the aquatic environment at di erent values of α. 

 

Figure 4.11: Graph of Concentration of toxigenic vibrio-cholerae in water against time with a 

case of average exposure (α = 0.5) to contaminated water and low contribution of each 

infected person (e = 0.10) to the aquatic environment at di erent values of α. 
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Figure 4.12: Graph of Concentration of toxigenic vibrio-cholerae in water against time with a 

case of average exposure (α = 0.8) to contaminated water and average contribution of each 

infected person (e = 0.50) to the aquatic environment at di erent values of α. 

Chapter 5 

Conclusion, and Recommendation 

5.1 Conclusion 

In this work, we have studied several features of a fractional order Code o cholera model. We started 

this work by formulating the SIR-B Code o model. Here, we 

present criteria for the existence of disease free equilibrium state and that of the endemic 

state. Furthermore, the stability of the equilibrium for the system of fractional order Code o 

cholera model has been discussed in terms of the basic reproduction number 

 

Precisely, we have established the following facts: 
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If R0 < 1, then the diseases free equilibrium state (E0) is locally asymptotically stable for all 0 < 

α < 1. Hence, the disease could be eradicated in nite time. 

If R0 > 1, the equilibrium at the endemic state (E1) is locally asymptotically stable for all 0 < α 

< 1. Hence, the disease will persist. Also, the stability analysis for the system is carried out by 

applying the fractional Routh-Hurwitz criterion. 

Going forward, the fractional order Code o cholera model is converted to a system of ordinary 

di erential equations of integer order by using Atanackovic and Stankovic numerical method 

and is then solved numerically by using the fourth order well-known Runge-Kutta method. 

Also, the graphical numerical solutions are presented to analyze the behavior of the system 

of equations at each R0 value. That is, at the diseases free equilibrium state where R0 < 1, the 

susceptible population and the infectious population decreases while the concentration of 

toxigenic vibrio cholerae in water remain low since the contribution of the infected person to 

the aquatic environment or reservoir (parameter e) is small. 

At R0 > 1, the disease persist in the susceptible and infectious population whiles the concentration of 

toxigenic vibrio cholerae in water increases in the population because the contribution of the each 

infected person to the aquatic environment or reservoir (parameter e) is large. 

Finally, the research ndings reveal that the concentration of vibrio cholerae in water depends 

largely on the rate of exposure to contaminated water (parameter a) and on the contribution 

of each infected person (parameter e) to the aquatic reservoir or environment. 

5.2 Recommendations 

Based on our ndings, we recommend that proper education and sensitization be given to the 

public by relevant authorities and NGO’s of the dangers of open defecation and urinating in 

sources of drinking water. This will reduce the contribution of each infected person to the 

aquatic reservoir or environment (parameter e). 

Also, we recommend that the Government should provide portable water to the populace in 

order to discourage drinking of untreated water. This will reduce the rate of exposure to 

contaminated water (parameter a). 



 

69 

Finally, until Government and other stakeholders are able to stop street vending of water and 

food, poor liquid and solid waste disposal, clean choked drains regularly, complete stoppage 

of urban slums, then can Ghana and other developing countries 

virtually eradicate cholera. 
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Appendix 

APPENDIX A 

Code Title: Numerical solutions to the Fractional Order Differential Equations 

function result = diff3(t,Y) 

% Parameters par.H = 

6500; par.n = 0.001; 

par.a = 0.5; par.K = 

6500; par.r = 0.06; 

par.nb_mb = 0.02; 

par.e = 1; p = 2; M = 

5; 

alpha=0.95; sums=0; 

t = 1; 
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for pp = p:M 

sums = sums + A(alpha,p)*(thetaP(p,t)/t^(p-1+alpha)); end 

result = zeros(3,1); 

result(1) = (1/Omega(alpha,t,M)*(par.n*(par.H-Y(1))) - par.a... 

* (Y(1)*theta2MP(p,t)))- Phi(alpha,t,M)*Y(1) - sums; 

sumc = 0; for 

pp = p:M 

sumc = sumc + A(alpha,p)*(thetaMP(p,t)/t^(p-1+alpha)); end result(2) = 

(1/Omega(alpha,t,M))* par.a * (Y(1)*Y(2)/(par.K + Y(2))... 

- par.r* Y(2) - Phi(alpha,t,M)*Y(1) - sumc); 

sumss = 0; for pp 

= p:M 

sumss = sumss + A(alpha,p)*(theta2MP(p,t)/t^(p-1+alpha)); end result(3) = 

(1/Omega(alpha,t,M)) * (par.nb_mb * Y(3) + par.e * Y(2)... 

- Phi(alpha,t,M)*Y(3) - sumss); end 

APPENDIX B 

Code for fig 4.2-fig4.4 

Title: Plots for the Disease Free Equilibrium States 

S_o = 6500; %65000 

I_o = 5; %5 B_o = 15; %60 h 

= 0.25; % 0.1 < h < 1 

%the smaller the value of h, the more accurate the result 

time = [0 300]; 
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[a, b]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.60); 

[~, c]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.70); 

[~, d]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.80); [~, 

e]=abmpc3fast1(@eqns_Ro_less1,0,time(2),[S_o; I_o; B_o],h,0.90); 

S95 = b(:,1); 

I95 = b(:,2); 

B95 = b(:,3); 

S96 = c(:,1); 

I96 = c(:,2); 

B96 = c(:,3); 

S97 = d(:,1); 

I97 = d(:,2); 

B97 = d(:,3); 

S98 = e(:,1); 

I98 = e(:,2); 

B98 = e(:,3); 

%PLOTS figure plot(a,S95,’k’,’linewidth’,2),hold on plot(a,S96,’b’,’linewidth’,2) 

plot(a,S97,’r’,’linewidth’,2) plot(a,S98,’g’,’linewidth’,2) 

xlabel(’Time(days)’),ylabel(’Susceptible’) title(’R_{o} < 1’) legend(’\alpha = 0.60’,’\alpha = 

0.70’,’\alpha = 0.80’,’\alpha = 0.90’) 

figure 

plot(a,I95,’k’,’linewidth’,2),hold on plot(a,I96,’b’,’linewidth’,2) plot(a,I97,’r’,’linewidth’,2) 

plot(a,I98,’g’,’linewidth’,2) xlabel(’Time(days)’),ylabel(’Infectious Population’) title(’R_{o} < 

1’) legend(’\alpha = 0.60’,’\alpha = 0.70’,’\alpha = 0.80’,’\alpha = 0.90’) 

figure plot(a,B95,’k’,’linewidth’,2),hold on plot(a,B96,’b’,’linewidth’,2) 

plot(a,B97,’r’,’linewidth’,2) plot(a,B98,’g’,’linewidth’,2) 
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xlabel(’Time(days)’),ylabel(’Concentration of Pathogen’) title(’R_{o} < 1’) legend(’\alpha = 

0.60’,’\alpha = 0.70’,’\alpha = 0.80’,’\alpha = 0.90’) save less 

APPENDIX C 

Code for fig 4.5-fig4.7 

Title: Plots for the Endemic Equilibrium States 

S_o = 6500; %000 

I_o = 5; %10 B_o = 60; %60 h 

= 0.25; % 0.1 < h < 1 

%the smaller the value of h, the more accurate the result time = [0 300]; 

[a, b]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.30); 

[~, c]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.40); 

[~, d]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.50); [~, 

e]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.60); 

S50 = b(:,1); 

I50 = b(:,2); 

B50 = b(:,3); 

S55 = c(:,1); 

I55 = c(:,2); 

B55 = c(:,3); 

S60 = d(:,1); 

I60 = d(:,2); 

B60 = d(:,3); 

S65 = e(:,1); 

I65 = e(:,2); 

B65 = e(:,3); %PLOTS figure plot(a,S50,’k’,’linewidth’,2),hold on plot(a,S55,’b’,’linewidth’,2) 

plot(a,S60,’r’,’linewidth’,2) plot(a,S65,’g’,’linewidth’,2) 
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xlabel(’Time(days)’),ylabel(’Susceptible’) title(’R_{o} > 1’) legend(’\alpha = 0.60’,’\alpha = 

0.70’,’\alpha = 0.80’,’\alpha = 0.90’) 

% figure 

% plot(a,I50,’k’,’linewidth’,2),hold on 

% plot(a,I55,’b’,’linewidth’,2) 

% plot(a,I60,’r’,’linewidth’,2) 

% plot(a,I65,’g’,’linewidth’,2) 

% xlabel(’Time(days)’),ylabel(’Infectious Population’) 

% title(’R_{o} > 1’) 

%legend(’\alpha = 0.60’,’\alpha = 0.70’,’\alpha = 0.80’,’\alpha = 0.90’) figure 

plot(a,B50,’k’,’linewidth’,2),hold on plot(a,B55,’b’,’linewidth’,2) plot(a,B60,’r’,’linewidth’,2) 

plot(a,B65,’g’,’linewidth’,2) xlabel(’Time(days)’),ylabel(’Concentration of Pathogens’) 

title(’R_{o} > 1’) legend(’\alpha =0.60’,’\alpha = 0.70’,’\alpha = 0.80’,’\alpha = 0.90’) 

save concentration30 

APPENDIX D 

Code for fig 4.8-fig4.9.4 

Title: Plots for the Concentration of toxigenic Vibrio Cholerae in Water 

S_o = 6500; %45000 

I_o = 5; %10 B_o = 15; %60 h 

= 0.25; % 0.1 < h < 1 

% the smaller the value of h, the more accurate the result time = [0 300]; 

[a, b]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.60); [~, 

c]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.70); 
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[~, d]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.80); [~, 

e]=abmpc3fast1(@eqns_Ro_greater1,0,time(2),[S_o; I_o; B_o],h,0.90); 

S50 = b(:,1); 

I50 = b(:,2); 

B50 = b(:,3); 

S55 = c(:,1); 

I55 = c(:,2); 

B55 = c(:,3); 

S60 = d(:,1); 

I60 = d(:,2); 

B60 = d(:,3); 

S65 = e(:,1); 

I65 = e(:,2); 

B65 = e(:,3); 

%PLOTS 

% figure 

% plot(a,S50,’k’,’linewidth’,2),hold on 

% plot(a,S55,’b’,’linewidth’,2) 

% plot(a,S60,’r’,’linewidth’,2) 

% plot(a,S65,’g’,’linewidth’,2) 

% xlabel(’Time(days)’),ylabel(’Susceptible’) 

% title(’R_{o} > 1’) 

%legend(’\alpha = 0.50’,’\alpha = 0.55’,’\alpha = 0.60’,’\alpha = 0.65’) 

% figure plot(S50,I50,’k’,’linewidth’,2),hold on 

plot(S55,I55,’b’,’linewidth’,2) 

plot(S60,I60,’r’,’linewidth’,2) 

plot(S65,I65,’g’,’linewidth’,2) 

xlabel(’Susceptible’),ylabel(’Infectious 

Population’) title(’R_{o} > 1’) legend(’\alpha = 
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0.60’,’\alpha = 0.70’,’\alpha = 0.80’,’\alpha = 

0.90’) 

% 

% figure 

% plot(a,B50,’k’,’linewidth’,2),hold on 

% plot(a,B55,’b’,’linewidth’,2) 

% plot(a,B60,’r’,’linewidth’,2) 

% plot(a,B65,’g’,’linewidth’,2) 

% xlabel(’Time(days)’),ylabel(’Concentration of Pathogens’) 

% title(’R_{o} > 1 Initial conc. @ 30’) 

%legend(’\alpha = 0.50’,’\alpha = 0.55’,’\alpha = 0.60’,’\alpha = 0.65’) 

save concentration3007 


