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Abstract 
In this study, a detailed review of the article published by Qi et al. (2013) on 

fractional Cattaneo heat equation in a semi-infinite medium has been made. In 

reviewing this article, two fractional Cattaneo heat equations modeling the heat 

flux and temperature distributions have been established and their exact 

solutions proofed in detail forms. Firstly, the solution of the fractional Cattaneo 

heat flux equation is established using Laplace transform. secondly, the exact 

solution of the fractional Cattaneo heat equation modeling temperature 

distribution is established in a series form through Fox-function using Laplace 

transform (and the inverse Laplace transform). In addition to the review, an 

implicit finite difference scheme has been used to solve the three c lasses of 

generalized fractional Cattaneo heat equations (GCE’s) in a semi-infinite medium. 

Three numerical examples were provided using both the analytical solutions and 

finite difference solutions to demonstrate the effects of fractional derivatives of 

orders α and β on temperature distributions. Graphical representation of the 

solutions were presented using Matlab software. Finally, a comparison and 

discussion of the analytical and finite difference scheme solutions from the 

graphs of the various numerical examples have been made. 
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Chapter 1 

Introduction 
The Fourier heat diffusion equation is an equation which is not only relevant in 

modeling heat diffusion in Physics, but also has wide spread application in 

several field of studies such as engineering, economics etc. Although the equation 

is mathematically correct, it predicts an infinite speed of heat transmission in a 

medium due to its parabolic nature. To make the law applicable to most physical 

processes, a relaxation time was introduced by Cattaneo and Vernotte to modify 

the Fourier law thus producing the Non-Fourier heat equation. This equation is 

called the Cattaneo-Vernotte heat equation. By its hyperbolic nature, this 

equation predict a finite speed of heat propagation. According to Turut and Guzel 

(2013), the Non-Fourier effects of heat conduction are of both fundamental 

interest and great potential value in practical engineering. The replacement of 

the integer orders of the derivatives of the generalized Cattaneo equation with 

fractional orders produces the generalized fractional Cattaneo heat equation. 

Quiet often, numerical approximation techniques are employed in solving many 

partial differential equations including the fractional Cattaneo heat equation. 

1.1 Problem Statement 

In solving problems using partial differential equations, the exact solutions or 

approximate solutions are often required. The exact or approximate solution 

derived for a particular partial differential equation usually depends to a large 

extend on the medium in which it is solved. The type of medium used influences 

the initial and boundary conditions to the problem. In terms of efficiency and 

accuracy, exact solutions of partial differential equations are often preferred to 

approximate solutions. However, establishing exact solutions of partial fractional 

differential equations such as the fractional Cattaneo heat equation can be 
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stressful, time consuming and complex. Sometimes, special functions with 

complex properties are needed to establish the exact solution of a partial 

fractional differential equation. A typical example is the exact solution 

established by Qi et al. (2013) for fractional Cattaneo heat equation in a semi-

infinite medium. In their work, an H-function which is a special function was used 

to establish the exact solution. Although Qi et al. (2013) established an exact 

solution for fractional Cattaneo heat equation in a semi-infinite medium, 

establishing and computing exact analytical solutions of such partial fractional 

differential equations is often a complex and difficult task. In view of such 

difficulties in establishing exact solutions, Turut and Guzel (2013) stated that 

many partial fractional differential equations are solved using numerical 

approximation techniques. 

1.2 Objectives of Study 

The objectives of this study includes: 

(1) To establish in detail the exact solution of the generalized fractional Cattaneo 

heat equation in a semi-infinite provided by Qi et al. (2013) 

(2) To solve the fractional Cattaneo heat equation in a semi-infinite medium using a 

numerical scheme. 

(3) To compare the results of the analytical solution to the result of the numerical 

scheme method of solving the fractional Cattaneo heat equation in a semi infinite 

medium . 

(4) To discuss the effects of fractional derivatives of order α and β on the 

temperature distribution. 
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1.3 Justification of Study 

Considering the great potential of fractional models and their successful 

application in many fields, and the fact that the exact solutions are often difficult 

to be established or used for computations, a numerical scheme approximation 

of the partial differential equation often provides an easier way of approximating 

the solution. To the best of my knowledge, no researcher has solved the fractional 

Cattaneo heat equation in a semi-infinite medium with Neumann boundary 

conditions using a numerical scheme approximation technique. Hence, this study 

seeks to use one of the numerical schemes (implicit finite difference scheme) to 

solve the fractional Cattaneo heat equation in a semi-infinite medium with 

Neumann boundary conditions. 

1.4 Methodology 

In this work, a review of the article published by Qi et al. (2013) was made first. 

This was followed by using the implicit finite difference scheme to discretize the 

three classes of the generalized fractional Cattaneo heat equations(GCEs). Finally, 

graphical representations of the exact solutions and implicit finite difference 

solutions of the GCEs was made for the purpose of comparisons and discussions. 

1.5 Outline of Study 

Basically, this study is organized into five chapters. Chapter one contains the 

background to the problem, statement of problem and the justification of the 

study. In chapter two, related studies by other researchers which are relevant to 

this study will be cited. Furthermore, chapter three will provide a detailed review 

of the article published Qi et al. (2013). Firstly, the exact solution of the heat flux 

modeling equation will be established. Secondly, a detailed proof of the exact 

solutions of the fractional Cattaneo heat equation in a semi-infinite medium will 



 

4 

be made. The final part of chapter three will use the implicit finite difference 

scheme to discretize the three classes of generalized Cattaneo heat equations 

(GCE’s) to serve as numerical examples. Subsequently, chapter four will provide 

comparisons, analyses and discussion of the graphical representations of the 

analytical solutions and finite difference solutions of the fractional Cattaneo heat 

equation in a semi-infinite medium. Lastly, the conclusions and suggestions from 

this study will be made in chapter five.  
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Chapter 2 

RELATED STUDIES 

2.0.1 INTRODUCTION 

This chapter presents a summary of related research works on fractional calculus 

and differential equations from other researchers. It cites recent works of other 

researchers that are related to this study. Research works on key functions of this 

study such as Mittag-Leffler function and Fox-function will be cited 

2.0.2 Related Works from other Researchers 

The Fourier heat diffusion law is an equation which establishes a linear 

relationship between the heat flux and the temperature gradient within a 

medium, i.e 

 q(x,t) = −D∂xu(x,t) (2.1) 

where q(x,t) is the heat flux, u(x,t) is the temperature function and D is diffusion 

constant. Due to the parabolic nature of the law, it predicts infinite speed of heat 

transmission. This makes the law not practically applicable to most physical 

phenomena. To make the Fourier heat conduction equation applicable to most 

physical phenomena, a relaxation of the flux is introduced. (shooda, 2009) stated 

the relaxed Cattaneo equation as: 

 ∂tU(x,t) + τ∂t2U(x,t) = D∂xxU(x,t) (2.2) 

where τ is the relaxation time, D is thermal diffusivity constant and U(x,t) is 

temperature function. Such an equation is hyperbolic and it predicts a finite speed of 
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heat transmission. This equation possess both diffusion and wave-like properties of 

heat transmission. Qi et al. (2013) gave the exact solution of (2.2) 

as: 

  (2.3) 

where I0(.) is the modified Bessel function of order zero and u(.) denotes the unit 

step function. The replacement of the integer orders of (2.2) with fractional 

orders produces the generalized fractional Cattaneo heat equation: 

 ) (2.4) 

(shooda, 2009) studied three Generalized Cattaneo Equations(GCEs) and concluded 

that GCEI and GCEIII models subdiffusion while GCEII models superdif- 

fusion. 

The GCEs include: 

∂tγU(x,t) + τγ∂t2γU(x,t) = D∂xxU(x,t) (GCEI) (2.5) 

∂t2−γU(x,t) + τγ∂t2U(x,t) = D∂xxU(x,t) (GCEII) (2.6) 

 ) (2.7) 

Although the use of fractional calculus has been on the ascendancy in recent 

times, the concept of fractional calculus is not new. The concept has existed for 

several centuries. The study of fractional calculus began in 1695 when L’Hospital 

inquired in a letter to Leibniz what could happen if the order of a derivative is a 

fraction. Since 1695, fractional calculus has drawn the attention of famous 

mathematicians such as Euler, Laplace, Fourier, Abel, Liouville Rieman and 

Laurent. 

Rahimy (2010) stated three major definitions of fractional derivatives, namely: 

Caputo, Rieman-Liouville and Grundwald-Letnikov fractional derivatives. He 

further added that, for zero initial conditions all the three definitions coincide. 
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This allows a numerical solution of initial value problems for differential 

equations of non-integer order independent of the chosen definition of fractional 

derivative. Many researchers or engineers resort to the Caputo derivatives or use 

the Riemann-Liouville derivatives but avoid the problem of initial values of 

fractional derivative by treating only the cases with zero initial conditions. 

According to Ben and Cresson (2005), fractional differential equations associated 

with alphaderivatives appear in many problems such the classical Schrodinger 

equation. Kilbas et al. (2006) in their monograph provides an extensive work on 

the properties of different kinds of fractional derivatives and integrals. In 

addition, Podlubny (1999) also provided a detailed account of the properties of 

fractional derivatives and some analytic solution methods of fractional 

derivatives. 

To stress on the relevance and wide spread use of fractional differential 

equations in modeling, Turut and Guzel (2013), stated that fractional order 

partial differential equations are increasingly being used to model problems in 

fluid flow, finance, physical and biological processes and systems. They stated 

that fractional ordinary differential equations, fractional partial differential 

equations and fractional integral equations have received wide research and 

application. Gutierrez et al. (2010) further added that fractional order calculus 

and differential equations are tools used to better described many real systems 

as it is well suited in analyzing problems of fractal dimensions with long term 

memory and chaotic behavior. With these characteristics, engineers and almost 

all branches of science tend to apply it in solving problems. To demonstrate the 

practical uses of fractional calculus, Dizielinski et al. (2010) presented some 

practical application of fractional order system models namely: ultra capacitor 

fractional order modeling and fractional order beam heating modeling. In 

categorizing the media fractional partial differential equation may be best suited 

for, Dominik et al. 
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(2011) pointed out that heat transfer in a solid(beam) can be described by an integer 

order partial differential equation while in a heterogeneous media, it can be described 

by sub-or hyper diffusion which often result in a fractional partial differential 

equation. Ting-Hui and Xiao-Yun (2011) also studied fractional heat conduction 

equation in spherical coordinate system. Ghazizadeh and Maerafat (2010) formulated 

a heat conduction constitutive equation using the recently introduced fractional 

Taylor formula by expanding the single-phase lag model. The equation has been 

shown to be capable of modeling Diffusion-to-Thermal wave behavior of heat 

propagation when the order of differentiation is changed. With courage, Emillia 

(2001) extended the study of fractional calculus into abstract mathematics by studying 

fractional calculus in Banach spaces. 

According to Housbold et al. (2009), the Mittag-Leffler function, a 

fractional exponential function, arises naturally in the solution of fractional order 

differential equations or fractional order integral equations and especially in 

investigations of fractional generalizations of kinetic equation, random walks, 

super diffusive transport, Levy flights and complex systems. In recent decades, 

the interest in Mittag-Leffler function and Mittag-Leffler type functions is 

considerably on the rise among engineers and scientists due to its vast potential 

applications in several applied problems such as fluid flow, rheology, diffusive 

transport akin to diffusion, electric networks, probability, statistical distribution 

theory etc. (Mainardi and Pagnini, 2007) presented the fundamental solution of 

the fractional diffusion equation of distributed order based on its Mellin-Barnes 

representation. They also provided a series expansion to point out the 

distribution of time-scales related to the distribution of fractional orders. In a 

related study, Mainardi et al. (2005) presented the fundamental solution of the 

Cauchy problem for space-time fractional diffusion equation in terms of a special 

function(Fox H-function). The Fox-function, introduced by Charles Fox in 1961, 

is a special function of very general nature. It has been recognized to play a 

fundamental role in probability theory and fractional calculus as well as in their 
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applications, including non-Gaussian stochastic processes, anomalous relaxation 

and diffusion. 

Mostly, the solutions of fractional partial differential equations are 

achieved through numerical and approximations techniques since they do not 

often have an exact analytic solution. Over the years, different researchers have 

used different numerical methods to solve fractional differential equations. Ahmad 

et al. (2010) presented the Homotopy Analysis Method(HAM) to obtain symbolic 

approximate solution for linear and non-linear differential equations of fractional 

order. They stated that their results show that the Adomian Decomposition 

Method, Variational Iteration Method and Homotopy Perturbation Method are 

special cases of the Homotopy Analysis Method(HAM). Marek (2011) constructed 

a numerical scheme to solve two term sequential fractional differential equations 

with the orders of Caputo derivatives in the range(0,1). The proposed method is 

based on the existence and uniqueness theorem and the transformation of 

sequential fractional order differential equation into its equivalent fractional 

integral equations. Among the several methods of solving fractional differential 

equations, Beheshti et al. (2012) solved fractional differential equations using 

Jacobi polynomials. The method is based on expanding the derivative of the 

unknown solution in terms of Jacobi polynomials. Also, Saeedi (2012) presented 

an operational method known as the Haar wavelet method for approximating the 

solution of a non-linear fractional integro-differential equation of second kind. The 

technique of this method is based on reducing the main equation to system of 

algebraic equation by expanding the solution of the integro-differential equation 

as Haar wavelets with unknown coefficients. Furthermore, Diethelm and Neville 

(2002) discussed the existence, uniqueness and structural stability of solutions of 

nonlinear differential equations of fractional order. They investigated the 

dependency of the solution on the order of the differential equation and initial 

conditions. (Mariusz, 2009) presented numerical solution of Cattaneo-Vernotte 

equation using finite difference scheme. The theoretical models were verified 
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experimentally. Xiao-Jun (2012a) from the geometric point of view explored the 

interpretation of local fractional derivative and integral equations. He investigated 

the Fourier law of heat conduction and heat conduction equation in fractal 

orthogonal system based on Cantor sets. Xiao-Jun (2012b) investigated local 

fractional Volterra/Fredholm integral equations, local fractional non-linear 

integral equations and local fractional singular equations. Manuel and Coito (2004) 

established a relation showing that the Grundwald-Letnikov and generalized 

Cauchy derivatives are equal. They presented an integral representation for both 

direct and reversed fractional differences. Miller and Stephen (2009) showed that 

polynomials and exponential functions can be deformed into their derivatives 

using µ- fractional derivative for 

0 < µ < 1. 

2.0.3 Concluding Remark: 

In conclusion, this chapter has provided some useful relevant research related 

studies in fractional differential equations. The next chapter will make use of 

some of the functions mentioned in this chapter. Functions such as the H-

function(Foxfunction) and the generalized Mittag-Leffler function will be used 

extensively in establishing the exact solution of the generalized fractional 

Cattaneo heat equation in a semi-infinite medium with Neumann boundary 

conditions. The implicit finite difference scheme will also be used to solve the 

fractional Cattaneo heat equation in a semi-infinite medium with Neumann 

boundary conditions. 

Chapter 3 

Methodology 
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3.1 INTRODUCTION 

This chapter discusses the modeling of the heat flux and temperature distribution 

in a semi-infinite medium with Neumann boundary conditions. It also provides a 

vivid proof of the exact solution of the heat flux and the temperature distribution 

function established by Qi et al. (2013). The short time and long time temperature 

distribution functions was established. Relevant theorems and definitions were 

applied in establishing the exact solutions. Implicit finite difference scheme was 

also applied to solve the three generalized Cattaneo heat equations(GCEs). 

3.2 MODELING THE HEAT FLUX 

The heat flux which is the amount of heat energy flowing per unit area in a region 

of space is modeled classically by the Fourier law(equation 2.1). The infinite 

speed of heat transmission predicted by the Fourier law does not make it 

applicable to real situations. Hence, the constitutive heat flux model proposed by 

Cattaneo and Vernotte is one of the most widely used(Qi et al. (2013)): 

 q(x,t) + τ∂tq(x,t) = −λ∂xT(x,t) (3.1) 

where q(x,t), T(x,t), τ and λ are heat flux vector, the temperature, relaxation time 

and the thermal conductivity respectively. τ has the dimension dτe = sα−β let qv(t) 

= −∂xT(x,t), thus (3.1) becomes q(x,t) + τ∂tq(x,t) = λqv(t) 

where qv(t) is the temperature gradient with respect to space. 

Let q(x,t) = ∂t0q(x,t) in (3.1). Replacing the integer order derivatives with 

fractional order derivatives β − 1 and α − 1 respectively produces the fractional 

differential heat flux equation 

 ) (3.2) 
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3.2.1 Fractional Derivatives 

A fractional derivative is a derivative whose order is a fraction. There are three 

kinds of fractional derivatives, namely: Caputo derivatives, Grundwald Letnikov 

derivatives and Riemann Liouville derivatives. For easier treatment of the 

boundary and initial conditions in modeling of physical phenomenons, the 

Caputo derivatives are usually preferred to other types of fractional derivatives 

because their initial conditions are stated in integer order derivatives and they 

are easy to solve. Three major kinds of fractional derivatives are defined below. 

Caputo derivative(Qi et al. (2013)): 

  (3.3) 

Riemann Liouville derivative(Rahimy (2010)): 

 

Grundwald-Letnikov derivative(Rahimy (2010)): 

 

where n is an integer, γ and α are fractional orders of the derivatives above 

3.2.2 Solving Fractional Derivatives(Caputo Derivatives) 

All derivatives considered in this study are treated as Caputo derivatives. Laplace 

transform and the Laplace Convolution theorem shall be employed to solve the 

fractional derivatives in the semi-infinite medium considered in this work. 

Laplace Transform: The Laplace transform of a function h(t) is given by 

  (3.4) 
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Laplace transform of Caputo derivative 

For a derivative of integer order n , the Laplace transform is given by 

 

Given that n is a fraction denoted by γ, then the Laplace transform of a fractional 

derivative is given by: 

 (0+) (3.5) 

Convolution Theorem: The Laplace convolution theorem is used to express the 

inverse Laplace transform of a product of two transformed functions. For two 

functions in the Laplace domain F(s) and G(s), the inverse Laplace transform of 

their product is given by: 

L−1{F(s)G(s)} = (f ∗ g)(t) 

Theorem 3.2.1 : If f(t) and g(t) are causal functions, then 

 
3.2.3 The solution of the Fractional Heat flux equation 

To solve for the heat flux, the Laplace transform of a fractional derivative and 

theorem (3.2.1) are used. For easy representation q(x,t) and T(x,t) are 

represented by q and T respectively. L{c0∂tβ−1q} + τL{c0∂tα−1q} = −λL{∂xT} 

sβ−1q(s) − P1k=0 sβ−k−1qk(0+) + τsα−1q(s) − τ P1k=0 sα−k−1qk(0+) 

= −λ∂xT 

 (sβ−1 + τsα−1)q(s) = c − λgradT(s) (3.6) 

With zero initial conditions: 
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 )] (3.7) 

To solve equation (3.7), let 

 ) (3.8) 

Hence, the heat flux, q(t) = L−1{G(s)F(s)} 

 

 

where p = (α − 1) + (α − β)k 

using the Laplace inverse transform formula, 

 

  (3.9) 

  (3.10) 

  (3.11) 

let, v = (α − 1) and µ = (α − β) 

 ) (3.12) 

where,  is the Mittag-Leffler function 



 

15 

f(t0) = L−1[gradT(s)] = gradT(t0) 

Given that: 

 

The heat flux, 

 

(3.13) 

(3.14) 

Hence, equation(3.13) (Qi et al. (2013) equation(5)) is the solution of the 

fractional heat flux equation in a semi- infinite medium 

3.3 MODELING THE TEMPERATURE DIS- 

TRIBUTION IN THE SEMI-INFINITE MEDIUM 

In modeling the temperature distribution in a semi-infinite medium, the 

fractional heat flux equation(3.2), the energy conservation law and the 

divergence theorem are used. 

Energy conservation law: 

ρc∂tT(x,t) = -div q(x,t) 

Applying divergence theorem to (3.2) above produces 

∂x · (∂tβ−1q(x,t) + τ∂tα−1q(x,t) = −λ∂xT(x,t)), (0 < β ≤ α ≤ 2) 

From properties of fractional order derivative, i.e 

(3.15) 

 and ∂x∂ (∂y∂ ) = ∂x(∂y) = ∂y(∂x) 

 )) (3.16) 

substitute (3.15) into (3.16) 
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  (3.17) 

∂tβT(x,t) + τ∂tαT(x,t) = D∆T(x,t), ∆ = ∂xx (3.18) 

Hence, the partial differential equation modeling the temperature distribution in the 

semi-infinite medium is given by: 

 0 (3.19) 

3.3.1 Assumptions of the model 

In modeling the heat transmission in a semi-infinite medium in this study, the 

following assumptions are employed: 

• the temperature distributions occurs in a semi-infinite medium(0 ≤ x < ∞), which 

is initially at uniform temperature. 

• the boundary surface temperature gradient is given by a time-dependent 

function. 

• heat can only enter or leave the body through the surface at x=0 and that any 

thermal process begins at time t=0. Hence, (3.19) becomes a one dimensional 

fractional Cattaneo heat equation. 

 ∂tβT + τ∂tαT = D∂xxT, 0 ≤ x < ∞, t > 0 

• the temperature and the time derivative of the temperature are initially zero 

throughout the medium. 

• temperature far from the surface will be neglected. 

The above assumptions leads to the following initial and Neumann boundary 

conditions: 
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  (3.20) 

T(∞,t) = 0, t ≥ 0 (3.21) 

  (3.22) 

Let ) and (3.22) can be written as 

  (3.23) 

The initial-boundary value problem (3.22) can be solve by using the discretization 

method of solving the inverse Laplace transform(Qi et al. (2013)) 

3.3.2 Establishing the exact Solution of the fractional 

Cattaneo heat equation in terms of temperature 

Since the temperature distribution modeling equation occurs in a semi-infinite 

medium (0 ≤ x < ∞), the transform (3.4) is a good choice in solving it. The solution 

in the Laplace domain shall be converted to a Fox-function via Taylor series 

expansion. This makes it easier to solve using the inverse Laplace transform of 

the H-function(Fox-function). 

Solving for the exact solution 

Applying the transform (3.4 ) to (3.19) yields 

 

 

 0) (3.24) 
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From initial conditions:, (c0, Tx(x,0), T(x,0)) = 0 

 ) (3.25) 



 

 

Equation(3.25) is a homogeneous second order differential equation with a 

general solution of the form: 

 T¯(x,s) = c1em1x + c2em2x (3.26) 

(3.25) is of the form: 

 , (3.27) 

where, . 

The characteristic differential equation of (3.27) is 

√  
m2 − A = 0,=⇒ m = ± A 

 

¯(x,s) = c1e+x sβ+Dτsα + c2e−xqsβ+Dτsα (3.28) q  

T 

 q β α 
 +x s +τs 

 T(x,s) = c1e D (3.29) 

Considering the boundary conditions: 

) and T(∞,s) = 0 

 
equation (3.29) doesn’t satisfy the boundary condition, T(∞,s) = 0 Hence, 

the solution of the temperature distribution is: 

  (3.30) 

Determining the constant of the solution: c2 

Differentiating (3.30) with respect to x produces 
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Using the model assumptions, ) and T(x,0) = 0 

 

  (3.31) 

Thus, the solution of the fractional Cattaneo heat equation in the Laplace domain 

is: 

 (Qi et al. (2013)) (3.32) 

Using the convolution theorem, the inverse Laplace transform of the temperature 

distribution function is given by: 

  (3.33) 

3.4 EXAMINING THE INFLUENCE OF THE FRACTIONAL 

DERIVATIVES OF ORDERS α and β ON THE 

TEMPERATURE DIS- 

TRIBUTION 

This section examines the influence of the fractional Cattaneo derivatives of 

orders α and β on the temperature distribution. The values of α and β lies within 

the interval: 0 < β ≤ α ≤ 2. The α- order will be used to examine the temperature 

distribution at the boundary and within the medium for a short time. The long 
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time effect on the temperature distribution within the medium and the boundary 

will be examined using the fractional order parameter β. 

3.4.1 The Influence of fractional derivative of order α on 

temperature distribution 

For a large value of α, the inverse Laplace transform of sα or sβ−α in the Laplace 

domain will lead to a short time for temperature distribution within the medium 

or at the boundary. To examine the effects of the α-order derivative on temper- 

 
ature distribution, let the Laplace transform of G(x,t), be G(x,s) 

From (3.32), 

 

For τ 6= 0, 

  (3.34) 

Where 

  (3.35) 

let 

 √ √ 
 −r z 
 g(z) = e / z (3.36) 

3.4.2 Representing the Solution in terms of Taylor series 

Establishing the solution in Taylor series makes it easier to convert it into a 

Foxfunction. When the solution is written in Taylor series, the derivative 

component of the Taylor series formula can be transformed into a Fox-
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function(H-function). In the Fox-function domain, it is easier to take the inverse 

Laplace transform of the solution of a fractional partial differential equation. 

Taylor series representation 

Taylor series expansion of g(z) about a point z=1 is given by 

  (3.37) 

3.4.3 Fox-Function(H-function) 

The H-function is a generalized function. In its special cases, it can be used to 

represent almost every named mathematical function and continuous statistical 

distribution. The Laplace and Fourier Transforms (and their inverses) and the 

derivatives of H-function are also expressed in terms of the H-function. The 

Hfunction is firmly rooted in gamma functions, integral transform theory, 

complex analysis and statistical distribution theory. The H-function is often 

represented in terms of Mellin-Barnes inversion integral. The H-function can be 

solved using the residue theorem. Examples of statistical distributions that can 

be represented in terms of the H-function include: exponential, Rayleigh, Chi-

Square, Weibull and beta functions. More information about the H-function(Fox-

function) can be obtained from the monographs of Kilbas et al. (2006), Podlubny 

(1999), Mathai et al. (2009) and Carl (1992). The H-function is usually 

represented by the notation below. 

Notation of H-Function(Fox-function): 

 ] (3.38) 

Mellin transform inversion integral(Carl (1992)) 

  (3.39) 

General Mellin-Barnes integral: 
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  (3.40) 

where, = 0 and z−s = exp(−s{In|z| + iarg(z)}, zs = exp(s{In|z| + 

iarg(z)}). In|z| is the natural logarithm of, |z| and arg(z) is not the principal 

value. m,n,p,q ∈ N0 with 0 ≤ n ≤ p, 1 ≤ m ≤ q, Ai,Bj ∈ R+, z,ai,bj ∈ R or C, i = 1···p, j = 

1···q, L1, is a suitable contour separating the 

poles ], of the gamma func- 

tion, Γ(bj +BjS), to the left of L1 from the pole  of the gamma 

function, Γ(1 − aλ − Aλs), which lie to the right of L1. When the parameters Aj,Bj in 

notation (3.38) above reduces to one, Meijer G-function is produced below: 

 

Expressing the solution in terms of Fox H-function 

The inverse Laplace transform of exponential solutions of fractional nature are 

not usually achieved by simply looking into a standard inverse Laplace transform 

table. However, if the solution can be expressed in terms of a derivative, the 

opportunity exist to get the inverse Laplace transform. Hence, the Fox-function 

provides this opportunity to obtain the inverse Laplace transform of a fractional 

derivative or solution. 

using the identity (1.125)(Mathai et al. (2009)), the solution (i.e 3.34) can be 

transformed into an H-function(Fox-function) 

−r√z/√z  

From the solution: g(z) = e 

√  
Let u = r z 
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 (3.41) Using the derivative 

definition of the H-function (Equation(1.69)) of (Mathai et al. (2009)) 

 

  (3.43) 

 

  (3.44) 

substitute(3.44) into(3.37) 

  (Qi et al. (2013)) (3.45) 

 

 

Modification of the solution 

The Fox-function has a some properties which makes it possible to modify the 

solution. 

Using property 1.4(of Mathai et al. (2009)), the last part of (3.45) is modified as 

follows: 

  (3.46) 
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Using property 1.6,(Mathai et al. (2009)) 

Hpm,n+1,q+1+1 hz|(0(b1,γ,B),1(a).....1,A(1b)q.....,Bq()a,p(r,γ,Ap))i = (−1)rHpm+1+1,q,n+1 

hz|((ar,γ1,A),(1b)1.....,B1(a).....p,A(pb)q,,B(0,γq))i (3.47) 

2rH11,,21 hr2|(−1(0,2),1),(k,1)i = (−1)k2rH12,,20 hr2|(k,1)(0,,(1)−1,2)i (3.48) 

Using property 1.5,(Mathai et al. (2009)) 

  (3.49) 

 

  (3.50) 

using the Mellin inversion integral 

 

Using gamma duplication rule, 

  (3.51) 

 

! 

  (3.52) 

Substituting (3.52) into (3.45) 
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  (3.53) 

But ) , hence 

  (3.54) 

Substituting, z − 1 = τ−1sβ−α and , into (3.54) yields 

  (3.55) 

Inverse Laplace transform of(3.55) 

Using the inverse Laplace transform of the H-function((2.21) in (Mathai et al. 

(2009) p.51) 

  (3.56) 

let ρ = k(α − β) + α/2 in (3.55) 

The new solution of the temperature Modeling equation: 

 
Let the inverse Laplace transform of G(x,s) be G(x,t). Thus, 

 

  (3.57) 

(Qi et al. (2013)) established (3.57) as the new exact solution of the generalized 

fractional Cattaneo heat equation in a semi-infinite medium. 

Reducing G(x,t) to Lower order H-function 

Representing G(x,t) in Mellin-Barnes inverse integral provides a means of 

eliminating some pairs of Γ(.) functions. This is achieved using Stirling’s 

approximation formula. 
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Using Stirling’s approximation: 

 

  (3.58) 

 

  (3.59) 

3.4.4 Evaluating Fox-Function through Series Expansion 

The H-function can be evaluated as a series expansion using the residue theorem. 

If a complex function f has singularity at the point z0, then f has a Laurent series 

representation. That is 

 

Which converges for all z near z0 and valid within the open disk of radius R, 

0 < |z − z0| < R 

Residue: 

The co-efficient a−1, of  in the Laurent series above is called the residue of 

the function f at the isolated singularity z0. The notation a−1 = Res(f(z),z0) denotes 

the residue at z0 

Residue theorems 

Theorem 3.4.1 : If f has a simple pole at z = z0, then 
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Theorem 3.4.2 : If the function f has a pole of order, n at z = z0, then 

 

Applying theorem(3.4.1), equation(3.59) can be evaluated as a series expansion 

at the pole of the gamma function Γ(s). 

Residue at the poles of Γ(s) is given by 

 

  (3.61) 

If α = 2 

 , (3.62) 

where  

  (3.63) 

(3.63) is a Fox-Wright function. 

Using convolution theorem (3.2.1), and using integration by parts, the 

temperature function is obtained. i.e 

 , 

Hence, the equation for temperature distribution within a short period of 

time inside the medium is given by: 

  (3.64) 
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3.4.5 The influence of the fractional derivative of order β on 

temperature distribution 

Since β is less than or equal to α (i.e β ≤ α), the inverse Laplace transform of sβ or 

sα−β in the solution will result in large time for the temperature distribution. To 

 
solve the solution in terms of sβ let the Laplace transform of G(x,t), be G1(x,s) 

From (3.32), 

 

For τ 6= 0, 

  (3.65) 

Where 

  (3.66) 

Expressing the solution in terms of Taylor series and Fox-function From 

(3.65), let 

  (3.67) 

The Taylor series representation of (3.67) about the point z1 = 1 can be written 

as: 

  (3.68) 

The exponential part of (3.67) can be expressed as a Fox-function using the 

identity (1.125)( Mathai et al. (2009)), (equation 3.67) as follows: 

 
−r1√z1/√z1 

From the solution: g1(z1) = e 



 

30 

√ 

Let u1 = r1 z1 

 

  (3.69) 

Using the derivative definition of the H-function (Equation(1.69)) of (Mathai et 

al. (2009)) 

 

 (3.70) 

For z1 = 1, 

  (3.71) 

substituting (3.71) into (3.68) yields 

  (3.72) 

 

Modifying the solution 

Similarly, using property 1.4 (of Mathai et al. (2009)), the last part of (3.72) is 

modified as follows: 

  (3.73) 
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Using property 1.6, (Mathai et al. (2009)) 

Hpm,n+1,q+1+1 hz|(0(b1,γ,B),1(a).....1,A(1b)q.....,Bq()a,p(r,γ,Ap))i = (−1)rHpm+1+1,q,n+1 

hz|((ar,γ1,A),(1b)1.....,B1(a).....p,A(pb)q,,B(0,γq))i (3.74) 

2r1H11,,21 hr12|(−1(0,2),1),(k,1)i = (−1)k2r1H12,,20 hr12|(k,1)(0,,(1)−1,2)i (3.75) 

using property 1.5, (Mathai et al. (2009)) 

 

 

  (3.76) 

using the Mellin inversion integral 

 

Using gamma duplication rule, 

 
equation(3.77) is can be reduced to: 

 

! 

  (3.78) 

Substituting (3.78) into (3.72) 
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  (3.79) 

But ) , hence 

  (3.80) 

Substituting, z1 − 1 = τsα−β and , into (3.80) yields 

  (3.81) 

Inverse Laplace transform of(3.81) 

Using the inverse Laplace transform of the H-function((2.21) in Mathai et al. 

(2009), p.51) 

  (3.82) 

let ρ1 = k(β − α) + β/2 in (3.81) 

 
Representing the inverse Laplace transform of G1(x,s) as G1(x,t) implies 

 

  (3.83) 

Reducing G1(x,t) to a lower order Fox-function 

Expressing (3.83) in Mellin-Barnes integral will provide a means of reducing the 

equation to a lower order Fox-function, 

 

Using Stirling’s approximation: 
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  (3.85) 

substituting (3.85) into (3.84) produces 

 

  (3.86) 

solving (3.86) as a series expansion at the pole of Γ(s). 

  (3.87) 

  (3.88) 

  (3.89) 

Where  

Solving the convolution, 

  (3.90) 

produces the long time temperature distribution function. 

The temperature distribution for long time inside the medium is given by: 

  (3.91) 
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3.4.6 Examining Temperature Distribution at the Boundary 

While equation(3.64) and (3.91) can be used to study the temperature 

distributions inside the medium, it is important to also study the temperature 

distribution at the boundary. This section examines the boundary surface 

temperature for short time and long time based on the fractional derivatives of 

orders α and β. Asymptotic expressions of the boundary surface temperatures are 

established below: 

From (3.32), the boundary temperature is given by 

  (3.92) 

(Qi et al. (2013)) established the boundary temperature as: 

  (3.93) 

Let the Laplace transform of G(0,t), be G(x,s) 

Effects of fractional derivative of order α on boundary temperature For 

short time boundary temperature, the α -parameter is considered since it is larger 

than β. In the Laplace domain 

 

Let 

 

  (3.94) 

= 1, where (a)k is the Pochammar symbol 
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 ) (3.95) 

 

For a short time, the boundary surface temperature is given by: T(0,t) = 

G1(0,t)qw 

  (3.96) 

Effects of fractional derivative of order β on boundary temperature 

distribution 

To examine the temperature distribution for a long period of time at the 

boundary, the the β-parameter is considered since it has small value compared to 

α. In the Laplace domain, 

 

 

 
The inverse Laplace transform of G2(0,s) is given by: 

 

(3.97) 

 )

 (3.98) 

To examine a long period of temperature distribution at the boundary, the 

equation below is considered: 

  (3.99) 
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G2(x,s) can also be express as an infinite series in the Laplace domain as: 

 

 

  (3.101) 

3.4.7 The generalized fractional Cattaneo heat equation and its 

special cases 

This section looks at how the generalized fractional Cattaneo heat equation can 

be transformed into other forms of diffusion equations under special conditions. 

The classical solution of (3.1) of integer orders α = 2 ,β = 1 is given by (2.3),i.e 

 

The new solution established for the fractional Cattaneo The new 

solution (Qi et al. (2013)) ,i.e(3.57) is given below: 

 

Special cases of the fractional Cattaneo model(3.19) 

(i) when τ = 0, 

(3.19) becomes the fractional wave- diffusion (Qi et al. (2013)), i.e 

  (3.102) 

The above equation has its solution as: 

 

Proof: The Laplace transform of equation(3.102) is given below. 
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  (3.103) 

Considering zero initial conditions 

  (3.104) 

solving (3.104) in the Laplace domain produces the solution 

 ) (3.105) 

(3.106) 

Using the inverse Laplace transform for the Fox H-function (3.106) is obtained 

as: 

  (3.107) 

where: 

 is the Wright function(Qi et al. (2013)) 

(ii) if τ = 0 and β = 1, 

(3.19) becomes the classical heat equation, i.e 

 

which has the solution 

  (3.108) 
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3.5 USING A NUMERICAL SCHEME TO STUDY THE 

FRACTIONAL CATTANEO HEAT EQUATION IN A 

SEMI-INFINITE MEDIUM 

The implicit finite difference scheme is used in solving the numerical examples in 

this study. The implicit finite difference scheme is a scheme that evaluates a 

derivative at future time step. In all numerical examples in this chapter : Surface 

temperature gradient, qw,= 1.0, relaxation time, τ = 0.1, Diffusivity constant, D = 

1.0 

3.5.1 Discretizing a fractional derivative 

The Grundwald- Letnikov definition of a fractional derivative is the bases of finite 

difference schemes for fractional derivatives. (Mariusz (2009)) stated that a 

Caputo derivative can be converted to a Grundwald- Letnikov derivative using 

the relation 

  (3.109) 

where C stands for Caputo derivative and GL means Grundwald-Letnikov deriva- 

tive 

 (3.110) 

  (3.111) 

The Grundwald-Letnikov weight:, 

  (3.112) 
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 w0β = 1, wkβ = (1 − (β + 1)/k)wkβ−1 (3.113) 

In order to discretize a fractional differential equation, two homogeneous grids 

are defined below. spatial: 0 = x0 < x1 < x2 ··· ,xn = a, and temporal: 0 = t0 < t1 < t2 ···tm 

= T. 

To discretize space and time, let 

 0 < j < m, 0 < i < n + 1. 

The temperature at any time at any point in the medium is represented by 

 

3.5.2 Discretization for Example 1a 

The generalized Cattaneo heat equation (4.2) is used, i.e. 

  GCEII, 

 

comparing the fractional orders of GCEII with the generalized factional Cattaneo 

heat equation 

β = 2 − γ, α = 2 

The exact solution of the above equation is: 

 

The initial and boundary conditions include: 

U(x,0) = 0, U(x,∞)=0, Ux(0,t) = −qwf(t), Ut(x,0) = 0. 

The differential equation is discretize below using implicit finite difference 

scheme 
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where, m0 = c0
w

0β + 1 + 2r0, p0 = 0, p1 = 0 

Writing out the above implicit finite scheme line by line produces the following: 

For j = 0: 

 

For j = 1: 

 

For j = 2: 

 

: 

: 

: 

For j = n-1: 

 
From the above, a tridiagonal matrix equation is established below. 

A.Uj+1 = b(i)        

 

−m0 

2r0 

−m0 

r0 

: 

0 

0 

0 

r0 

−m0 

... 

r0 

0 

0······0 

0······0 r0 

······0 

... : 

−m0 

r0 

r0 

 

 

 

 

 

 

 

, 

 

 

 

 

 

 

 

   
j+1 U1 

   

 j+1  j+1  

U2  

U =  
  

 :  

   

   

j+1 Un+1 

(3.115) 

 

 

 

 

 

 A = 

 

 

 

 

 

 

r0 

0 

: 

0 

0 
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where 

 

−m0 

    j+1   

b(i) = −2Uij + Uij−1 + c0 XwkβUij+1−k − 2δtqwf(t) 

k=1 

 

The ’ghost points’: Ui−1 and can be replaced in the implicit finite scheme by 

applying the central difference scheme to the Neumann boundary conditions: 

 

From the above, Ui−1 = Ui1 and  

The short time heat flux(surface temperature gradient) for example 1a is defined 

below 

 ) (3.116) 

Uj+1 is a vector of unknown values of U. In computation at each time step, the value 

of U always depend on the previous values of U. This produces the memory effect 

that is usually associated with fractional derivatives. 

3.5.3 Example 1c: Discretization of Boundary surface 

Temperature,T(0,t) 

Using (4.2), the finite difference scheme for the boundary surface temperature is 

presented below. From example 1a, the GCEII (4.2) was discretized as: 

 

At the boundary, x0 
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For i = 0 

 

Using the Neumann boundary condition,  

 

and initial conditions (p0 = 0 p1 = 0), the boundary temperature at the 

future time step,  is given by: 

 

where,  

A few lines of the scheme for matlab implementation are written below: 

For j = 0: 

 

For j = 1: 

 
For j = 2: 

 

: 

: 

: 

: 

For j = n-1 
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3.5.4 Discretization for Example 2.1a: Temperature distribution 

within the medium 

The exact solution of GCEI established from this study is: 

 

The initial and boundary conditions for this example will include: 

U(x,0) = 0, U(x,∞)=0, Ux(0,t) = −qwf(t), Ut(x,0) = 0, qwf(t) = u(t) − u(t − 

ts). 

Applying the operator , GCEI (4.1) is discretized below. 

 

  (3.118) 

where, 

 

Re-writing the above equation yields 

 

 

Below are few lines of the scheme for this example 

For j = 0 

 

For j = 1 
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For j = 2 

 

 

: 

: 

: 

: 

: 

For j = n-1 

 

From the above a tridiagonal matrix is established below 

A0.Uj+1 = B(i) 

Where, 
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... : 

 r10 −m10 

r10 

3.5.5 Discretization for Example 3 

The GCEIII (4.3) is used to examine the temperature distribution. 

∂tγU(x,t) + τ∂t1+γU(x,t) = D∂xxU(x,t) (GCEIII) α = 1 + γ, where β = γ,β ∈ 

[0,1] 

The initial and boundary conditions include: U(x,0) = 0, 

U(x,∞)=0, Ux(0,t) = −qwf(t), Ut(x,0) = 0, qwf(t) = exp(−µt) − 

exp(−υt) 

3.5.6 Example 3.1: Discretization of boundary temperature 

gradient,f(t) 

Apply the differential operator,  to GCEIII(4.3) produces: 
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  (3.120) 

  (3.121) 

 

Where, 

 

At the boundary, x0 

 

Using the Neumann boundary condition,  

 
Example 3.2: Discretization of boundary surface Temperature,T(0,t) 

With the boundary surface temperature, (3.122) above is used. The boundary 

temperature for this example is given by 

 

(3.123) 
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where,  

A few lines of the finite difference scheme for this example are written below. 

For j =0 

 

For j =1 

 

 

For j =2 

 

 

: 

: 

: 

For j = n-1 

 

 

Example 3.3: Discretization scheme for temperature distribution inside the 

medium,T(x,t) 

Applying the differential operator  to GCEIII produces 

  (3.124) 

Discretizing the differential equation above produces: 
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Re-arranging the above equation produces 

 

 

where,  , 

For the matlab implementation of this example, here are few lines of the scheme. 

For j = 0 

 

For j = 1 

 

 

: 

: 

For j = n-1 

 

 

 

A tridiagonal matrix system is established below: 

A20.Uj+1 = d(i) where, 
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 −m20 r20 

r20 

... ... : r20 

−m20 

r20 

3.5.7 Conclusion 

In this chapter, the exact solutions of the fractional Cattaneo heat equation in a 

semi-infinite medium have been established properly . It has also Provided the 

discretization schemes for the three generalized fractional Cattaneo heat 

equations(GCEs). The next chapter will make use of the various discretized 

examples in this chapter to provide graphical solutions of the three GCEs as 

examples.  
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Chapter 4 

ANALYSIS AND DISCUSSION OF RESULTS 

4.0.8 INTRODUCTION 

In this chapter, graphical results of the analytical solutions and numerical scheme 

solutions are presented, compared and discussed. The implicit finite difference 

schemes for all the numerical examples in chapter 3 are implemented using 

Matlab software. The three Generalized Cattaneo heat equations (GCE’s) 

discretized in chapter 3 are used to plot the finite difference graphs in this 

chapter. The steps used in solving the generalized Cattaneo heat equation(3.19) 

are followed in establishing the analytical solutions of each of these three 

generalized Cattaneo heat equations. 

) (4.1) 

) (4.2) 

∂tγU(x,t) + τ∂t1+γU(x,t) = D∂xxU(x,t) (GCEIII) (4.3) 

4.0.9 Comparison of results of the analytical solution and 

finite difference solution of Example 1(GCEII) 

The effects of the α-order derivative on temperature distribution for a short 

period of time is shown in this example. Figure 4.1(a) and (b) respectively show 

the analytical and finite difference graphs for temperature distribution profile 

inside the semi-infinite medium for different values of fractional orders β at a 

fixed time. 
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 (a) analytical graph (b) finite difference graph 

Figure 4.1: Example 1a :Graphs of T(x,t) versus x. The arrows in the graphs (a) 

and (b) indicate increasing order of, β=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0] 

Though the temperature values decreases in both the finite difference and 

analytical graphs as β increase, the temperature values in the finite difference 

graph( i.e 4.1(b)) are slightly lower than the temperature values in the analytical 

graph (4.1(a)). According to Qi et al. (2013) the temperature values of GCEII falls 

between those of the wave equation, (β = 2),and the Cattaneo equation (β = 1). 

The propagation speeds of thermal disturbances corresponding to the Cattaneo 

equation and the wave equation are, ct = pD/τ and, cw = pD/(1 + τ), respectively(Qi 

et al. (2013)). When the GCEII (4.2) is used, the speed for heat 

 

Figure 4.2: Example 1b: Analytical graph showing T(x,t) versus x at different 

times, t for β = 1.2 (dashed lines) and β = 1.8 (continuous line) propagation is 
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between , ct and cw. The thermal speed attains lower values as the values of β 

increases. This is consistent with the intermediate processes between Cattaneo 

equation and the wave equation (Qi et al. (2013)). Figure 4.2 shows the analytical 

graph for temperature profile for a range of time t as a function of variable x for β 

= 1.2 and β = 1.8 inside the medium. The temperature values inside the medium 

decreases with increasing β, for small time t, whereas increasing β, raises the 

temperature for large t. Figure 4.3(a) and (b) respectively show the temperature 

profile at the boundary using the analytical solution and finite difference method. 

From both the analytic graph and finite difference graph 

 

 (a) analytical graph (b) finite difference graph 

Figure 4.3: Example 1c: Graph of T(0,t) versus t. The arrows in the graphs (a) and 

(b) indicate increasing order of, β=[1.0 ,1.2 ,1.4, 1.6 ,1.8 ,2.0] 

(figure 4.3), the boundary temperature at the early heating period increase with 

decreasing β while the boundary surface temperature decreases with increasing 

β at the later stage of the heating process at the boundary. Comparing the results 

from this example, the temperature values from the finite difference graphs tend 

to approach the temperature values corresponding to that of the exact solution 

as depicted in the analytical graphs. 

4.0.10 Comparison of finite difference and analytic solutions of 

example 2(GCEI) 

Figure 4.4(a) and (b) respectively show the analytic and finite difference graphs 

of the temporal variation of the temperature distribution at different locations 

inside the medium for, β = 0.9. From the graphs (4.4(a) and (b)), it can be seen 



 

53 

 

(a) analytical graph (b) finite difference graph Figure 4.4: Example 2a: 

Graph of T(x,t) versus t. 

that the temperature rises sharply in the early heating period because of internal 

energy gains from the source. As the heating continues, the temperature rise 

become gradual due to the enhancement of heat transfer from the surface region 

to the medium. The the heating process starts at time t = 0 and ends at t = 3. When 

t > 3, the temperature reduces rapidly and then decays gradually with time as 

shown in both the analytic graph and finite difference graph ( i.e 4.4(a) and (b) ) 

for different locations inside the medium. Comparing figure 4.4(a) and 

(b) during the cooling process, the temperature decay in the 

analytical graph( i.e fig.4.4(a)) is sharper than that in the finite 

difference graph (fig. 4.4(b)). By comparison, both the analytical 

solution and finite difference ( i.e fig.4.4(a) and (b)) graphs 

produced similar trends of temperature distribution during the 

heating and the cooling periods. 

Figure 4.5 shows the heating and cooling process at the boundary of the medium 
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Figure 4.5: Example 2b(analytical graph): T(0,t) versus x at different times, t. The 

arrow in the graph shows increasing order of β = 0.5,0.6,0.7,0.8,0.9 

using GCEI. The heating process at the boundary for different values of β in figure 

4.5 (example 2b) is similar to the heating process of figure 4.3 (example 1c). Both 

figure 4.5 and figure 4.3 showed similar temperature rise at the boundary from 

time t = 0 to time t = 3s. For a long time period of temperature distribution at 

different locations inside the medium, the β-order derivative is demonstrated in 

this example. 

4.0.11 Comparison of finite difference solution to the analytic 

solution for example 3(GCEIII) 

Figure 4.6 (a) and (b) respectively show the analytic and finite difference graphs 

for the temporal variation of exponential function f(t) and their corresponding 

temperature rise at the boundary surface. The finite difference graph(4.6(b)) 

temperature values are almost the same as that of the analytic graph(4.6(a)). 

Figure 4.7 (a) and (b) also show analytic and finite difference graphs of the 

boundary surface temperature for the classical Cattaneo model (β = 1) and the 

fractional Cattaneo model (β = 0.8). In the early heating period the rise of 

boundary temperature for classical Cattaneo model (β = 1) and the fractional 
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(a) analytical graph (b) finite difference graph Figure 4.6: Example 3a: 

Graph of f(t) versus t. 

 

 (a) analytical graph (b) finite difference graph 

Figure 4.7: Example 3b: Graph of T(0,t) versus t for µ = 1/2, υ = 1 (continuous 

line), µ = 2/3, υ = 2 (dashed line) and µ = 5/6, υ = 5 (dotted line). 

Cattaneo model (β = 0.8), is almost the same. However, the boundary 

temperature reaches higher values for the classical Cattaneo model than the 

fractional Cattaneo model in both the analytic and finite difference graphs. It is 

also noted that the temporal variation of temperature (4.7 (a) and (b)) does not 

follow exactly the temporal variation of f(t) (i.e fig. 4.6 (a) and fig. 4.6(b) ) because 

of the energy transfer from the surface region to the medium. Figure 4.8(a) and 
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(a) analytical graph (b) finite difference graph 

Figure 4.8: Example 3c: Graph of T(x,t) versus x for three exponential pulses at 

time t = 1 when α = 1.8 and β = 0.8 

(b) respectively show the analytic and finite difference graphs 

of the temperaturedistribution inside the medium at a constant 

time t = 1. The boundary gradient distribution with time has a 

significant influence on the temperature distribution inside the 

medium(4.8(a) and (b)). By comparison from all the graphs in this 

example, the finite difference approach and the analytical solution 

produced almost similar results. 

Chapter 5 

Conclusions 
1. A detailed proof of the exact solutions (in Qi et al. (2013)) of the 

fractionalCattaneo heat equation in a semi-infinite medium have been 

established. 

2. A comparison between the analytic and Implicit finite difference solutionof 

the fractional Cattaneo heat equation in a semi-infinite medium using 

graphical representations have been made in this work. 
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3. The implicit finite difference method of solving the fractional Cattaneo 

heatequation in the semi-infinite medium produced results which are very 

close to the temperature values obtained using the exact solutions 

established by (Qi et al. (2013)). 

4. The numerical examples of the fractional cattaneo heat equation using 

thefinite difference scheme showed similar trend of influence of the 

fractional derivatives of orders, α and β, on the temperature distribution 

just as in the case of the analytical graphs. 

5.1 RECOMMENDATIONS 

1. Since this study did not examine the stability of the exact solutions 

ornumerical scheme used for the fractional Cattaneo heat equations in this 

study, further research work on stability analysis of the exact solutions of 

the fractional Cattaneo heat equation in a semi-infinite medium is needed. 

2. For easier but reliable results, engineers and scientists can use the 

implicitfinite difference scheme since it gives very good approximations to 

the temperature values of the exact solutions of the fractional Cattaneo heat 

equation and saves the user the complexity and time consuming nature of 

using special functions such as the H-function to establish exact solutions.  
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