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Abstract 
This study proceeded on two paths; to select significant crop yield physical 

support variables among many potential ones to be included in a model via 

penalized methods (LASSO, SCAD, H-Likelihood) and to also propose and 

demonstrate the excellent performance of higher levels and very recent 

extensions of the Generalized Linear Models (GLM); Joint Generalized Linear 

Models (JGLM) and Hierarchical Generalized Linear Models (HGLM) in the global 

quest to developing Statistical Models with highest model accuracy. The analyses 

is be based on raw data available at the regional Monitoring and Evaluation office 

of the Linking Farmers to Markets (FtM) project in Tamale - Ghana. Physical 

support 

(Fixed effect) variables measured include; crop type, Financial Credit, Training, 

Study tour, Demonstrative Practicals, Networking Events, Post harvest 

Equipment, Number of farmers in the FBO and Plot size cultivated. Dependent 

variable measured is Total Crop Yield whereas the regions and the particular 

communities were treated as Random variables. After the highly rigorous 

processes of data analysis the study concluded that, the H-Likelihood method of 

penalized variable selection performs both selection of significant variables and 

estimation of their coefficients simultaneously with the least penalize cross-

validated errors compared to the SCAD and the LASSO. In modelling the effects of 

fixed physical support services given to farmer based organizations on crop yield, 

the GLM with assumed fixed dispersion will not be recommended by this study. 

The study concludes that the proposed modelling of both mean and dispersion 

(Joint-GLM) improves the quality of the models significantly. In the case of both 

fixed and random effects, the, HGLM 2 is highly recommended. This study 

concludes that the HGLM 2 performs far better, gives a more fitting model and 

improves the quality of the crop yield models significantly. The study 
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recommends that deliberate effort be put into strengthening the Agricultural 

support systems as a form of strategy for increasing crop production in Northern 

Ghana. 
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Chapter 1 

Introduction 

1.1 Background of the Study 

The rate of food production in many parts of sub-Saharan Africa has not kept pace 

with the rate of population growth. Whereas the estimates of population growth 

rate increase at about 3 per cent annually, that of food production increases by 

only 2 per cent (Rosegrant et al., 2001). The sub-region’s per capita deficit in 

grains and cereals according to Rosegrant et al., (2001) is one of the highest in the 

world. Way back in 1967, the sub-region’s cereal imports was 1.5 million tons. 

However, just within thirty years down the way, this figure increased to 12 

million tons in 1997, and projections have it that the sub-region will require about 

27 million tons of cereal imports to satisfy demand by 2020 (Rosegrant et al., 

2001). In the long run, importation may not be economically feasible to 

ameliorate food shortages. Thus, there is a need to increase domestic production 

to guarantee food security. 

Attempts to increase food production in sub-Saharan Africa has been 

accomplished mostly by expanding the area of land under cultivation. However, 

because of increasing pressure on farm lands for other domestic and industrial 

purposes, the scope of agricultural intensification has drastically reduced. Yield 

increase, rather than farm area expansion is becoming more and more important 

for increasing food production. This in turn implies that as efficient soil 

management practices are strictly adhered to, such studies into crop yield 

physical variables becomes highly imperative to guarantee food security. 

In recent years, as a consequence of the general apprehension of international 

donors and national governments about investments in agricultural research, 
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policy makers and researchers have devoted increasing attention to research 

efficiency in order to rejuvenate donors’ and governments’ support and to 

convince them of the importance of agricultural research. One of the outcomes of 

this renewed attention to agricultural research efficiency issues has been a series 

of research activities undertaken by economists to measure the impacts of 

agricultural research in Africa. A useful product of these research activities is the 

growing number of studies documenting impacts and rates of return to major 

food crops’ research in Africa (Oehmke and Crawford, 1996; Sanders, 1996). 

Strengthening of national agricultural support system has been advocated as a 

strategy for increasing agricultural production in sub-Saharan Africa by 

governments in the region and by international development agencies (see, eg., 

World Bank, 1990; Bindlish and Evenson, 1997). The training and visit system of 

agricultural extension has been central to this strategy. The world bank 

supported agricultural extension programmes based on training and visits have 

been implemented in some 30 sub-Saharan African countries including Ghana. 

Substantial amount of money and resources have been committed to this system, 

both by national governments and international development agencies (Bindlish 

and Evenson, 1997). There is however an emerging controversy as to cost-

effectiveness and productivity of a national system of agricultural extension, 

particularly in sub-Saharan Africa where government’s ability to the large 

recurrent cost that the system entails is limited (see Purcell and Anderson, 1997; 

Gautam, 1998). 

Ghana is still an agriculture-based economy. Agriculture has been the backbone 

of Ghana’s economy in the entire post-independence history (McKay and 

Aryeetey, 2004). While policy and political failure had caused per capita GDP 

growth declining until 1980s, the agricultural sector had been less affected than 

the nonagricultural sector because it was less intervened by the government than 
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the non-agricultural sector and its growth is primarily led by smallholders for 

subsistence purpose of production. Agricultural growth in Ghana has been more 

rapid than growth in the non-agricultural sectors in recent years, expanding by 

an average annual rate of 5.5 percent, compared to 5.2 percent for the economy 

as a whole (Bogetic et al., 2007). 

Agriculture was about 40 per cent of Ghana’s GDP in the late 1990’s and was still 

above 35 per cent until 2007. Only in the recent two years of 2007 and 2008, 

share of agriculture fell down to 34 per cent and 32 per cent, respectively. Recent 

decline in the agricultural GDP share in Ghana is the result of faster growth in the 

services sector, which increased its share in GDP to more than 40 per cent in 2007 

and 2008 (World Bank Global Forum on Agriculture, 2010). Thus, it was first time 

in Ghana’s history that agriculture is no more the largest sector in the economy 

and the service sector has taken this position. 

Agricultural growth is at the centre of the Comprehensive African Agriculture 

Development Programme (CAADP, 2009) agenda because increasing agricultural 

productivity is necessary to achieve poverty reduction and food output targets, 

while at the same time reduce production costs and food prices for the poor. 

Ghana’s Medium Term Agriculture Sector Investment Plan (METASIP, 2010) 

seeks to modernize agriculture which will culminate in a structurally transformed 

economy evident in food security, employment opportunities and poverty 

reduction. To this end, as per (CAADP, 2009) directives, the country is to allocate 

10 percent of government expenditure to achieve an agricultural gross domestic 

product (GDP) growth of at least 6 percent annually to achieve the millennium 

development goal 1 (MDG1) of halving poverty and hunger before the target year 

of 2015. 

Agriculture in Ghana accounts for more than 30 percent of GDP (MoFA, 2011) and 

three-quarters of export earnings. Yields of most crops in Ghana however are 



 

4 

generally low (20-60 percent below their achievable level). For example, the yield 

of cassava is at 12.4 Mt/ha against a potential yield of 28.0 Mt/ha (MoFA, 2011). 

The yield of 1.7 Mt/ha for maize is less than a third of the achievable yield of 6.0 

Mt/ha. 

The agriculture sector makes up over 50 percent of Ghana’s total employment and 

approximately 25 percent of the nation’s Gross Domestic Product (GDP). The 

cocoa industry, in particular, is extremely important for Ghana, contributing 

around 30 percent of export revenue (MOFA, 2011). The service sector is the 

fastest growing sector of the economy. As of 2011, this sector accounted for 

nearly 50 percent of Ghana’s GDP, and employed approximately 30 percent of the 

Ghanaian work force. 

Although employment in the industrial sector is less than 20 percent of Ghana’s 

total employment, this sector makes up approximately 25 percent of Ghana’s GDP 

(World Data Bank, 2013). Furthermore, the industrial sector provides the 

greatest contributions to the country’s foreign exchange earnings through 

exports of oil, gold, bauxite, aluminium, manganese ore, diamonds, natural gas 

and electricity (World Data Bank, 2013). Such growth patterns in the non-

agricultural sector are not consistent with the transformation theory as well as 

experience of other developing countries in which the role of industry, especially 

of manufacturing has increased in the development process (Breisinger and Diao, 

2008). 

Agricultural structure and the regional distribution of agricultural GDP 

significantly differ across Ghana’s agro-ecological zones. These regional 

differences have important implications for sub-sector-level agricultural growth 

strategies. The Forest Zone remains the major agricultural producer, accounting 

for 43 per cent of agricultural GDP, compared to about 10 per cent in the Coastal 
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Zone, and 26.5 per cent and 20.5 per cent in the Southern and Northern Savannah 

Zones, respectively (Breisinger et al., 2008). The Northern Savannah zone is the 

main producer of cereals and livestock. More than 70 per cent of the country’s 

sorghum, maize, millet, cowpeas, groundnuts, beef and soybeans come from the 

Northern Zone, while the Forest Zone supplies a large share of higher-value 

products, such as cocoa and livestock (mainly commercial poultry). 

The heterogeneous agricultural production structure also indicates differences in 

the agricultural income structure across regions. The Forest Zone generates 

about half its agricultural income from two of Ghana’s major export goods (cocoa 

and forestry). Including non-traditional exports and fishery, export agriculture 

also plays an important role in total agricultural income for the Coast and 

Southern 

Savannah Zones. In contrast, 90 per cent of agricultural income in the Northern 

Zone comes from staple crops and livestock (World Bank Global Forum on Agri- 

culture, 2010). 

The analysis presented in this dissertation suggests that a system of support 

services; Access to credit facility, Training, Study tour, Demonstrative practical, 

Networking event and Post harvest Equipment, plays an important role in 

determining crop yield even though their individual and interaction effects on 

yield is not uniform across farmer based organizations. This research is focused 

mainly on the production of Maize and Soy beans in the northern parts of Ghana 

where there is substantial farming activity. Maize and Soy beans are the very 

much cultivated in these parts of the country due to their vegetation which 

supports the growth of grains and cereals. Beyond the numbers and descriptive 

statistics on yield of such crops, this study tries to bring out variables that 

significantly contribute to yield. We seek to select among access to credit, 

training, study tour, demonstrative practicals, networking events, post-harvest 
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equipments, size of plot cultivated and number of farmers; covariates or variables 

that significantly influence crop yield in the Northern regions of Ghana. 

Variable selection is intended to select the ”best” subset of predictors. If the model 

is to be used for prediction, we can save time and/or money by not measuring 

redundant predictors. Unnecessary predictors will add noise to the estimation of 

other quantities that we are interested in and also degrees of freedom will be 

wasted. A major challenge in regression analysis is to decide which predictors 

among many potential ones are to be included in the model. It is customary to use 

stepwise selection and subset selection. But these procedures are unstable and 

ignore the stochastic errors introduced by the selection process. 

Several methods, including bridge regression (Frank and Friedman, 1993), least 

absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), smoothly 

clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic net (EN) (Zou and 

Hastie, 2005), and adaptive lasso (A-LASSO) (Zou, 2006), have been proposed to 

select variables and estimate their regression coefficients simultaneously. All 

these methods have common advantages over subset selection procedures; they 

are computationally simpler, the derived sparse estimators are stable, and they 

facilitate higher prediction accuracies. 

These methods can be cast in the framework of penalized least squares and 

likelihood. The main advantage of those methods is that they select important 

variables and estimate the regression coefficients of the covariates, 

simultaneously. This thesis propose the use of random effect models (H-

likelihood) to generate penalty functions for variable selection. It show how the 

h-likelihood methods overcome such difficulties to allow an oracle variable 

selection and simultaneously enhance estimation power. 
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Under the modelling of crop yield, the study propose the JGLM and HGLM 

approach of Lee and Nelder (2006). With hierarchical generalized linear models 

(HGLMs) of Lee and Nelder (2006), various scale mixtures can be considered as 

distributions for β. To be specific, this study suggest the use of a gamma mixture 

for β and apply it to a very critical area in Ghana’s quest for economic growth, 

food security and expansion in the agricultural sector. 

1.2 Problem Statement 

Contribution of Agriculture to GDP keeps going down marginally and this give a 

course to worry. The sector, in 2010, contributed 29.9 per cent to GDP; declined 

to 25.6 per cent in 2010 and further dipped to 22.7 per cent in 2012 (World Bank 

Global Forum on Agriculture, 2010). Until date, there has been no concrete study 

to inform empirically on the influence of some support services continually been 

provided by the Ministry of Agriculture and other agencies to help boost crop 

yield and ensure food security. This study seeks to redirect stakeholder’s 

attention to the part played by some of the support variables intended to increase 

crop yield. Preview to this would help resources to be channelled to the relevant 

variables which significantly contributes to yield. 

Variable selection techniques have been developed to enhance prediction, but 

their use in decision making has not been well tested. Mostly in literature, these 

techniques often miss or downplay the importance of certain interaction 

variables that are key to making decisions. The variable selection techniques 

being proposed by this study, focuses on finding these important interactions. 

There are multiple reasons why variable selection might be necessary in a 

decision making application. One reason is that finding the optimal policy 

becomes more difficult as the number of spurious variables included in the model 

increases. Thus, careful variable selection could lead to better policies. Also, due 
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to limited resources, it may only be possible to collect a small number of variables 

when enacting a policy in a real world setting. 

Researchers are often unsure as to which variables would be most important to 

collect. Variable selection techniques could help identify these variables. In 

addition, policies with fewer variables are often easier to understand, so variable 

selection can improve interpretability. Currently, variable selection for decision 

making in many fields is predominantly guided by expert opinion. Expert opinion 

can be a good starting place when there is sufficient domain knowledge and 

expertise. 

In Agricultural and especially crop yield analysis, a combination of predictive 

variable selection techniques and statistical testing of a small number of 

interaction variables suggested by expert opinion are most commonly used. Little 

research has been carried out to evaluate these techniques in decision making, or 

to suggest how they might be improved. Variable selection is particularly 

important in the interpretation of Statistical models, especially when the true 

underlying model has a sparse representation. Identifying null predictors 

enhances the prediction performances of the fitted model. However, traditional 

variable selection procedures have two fundamental limitations. First, when the 

number of predictors p is large, it is computationally infeasible to perform subset 

selection. Second, subset selection is extremely unreliable because of its inherent 

discreteness (Breiman, 1996; Fan and Li, 2001). 

To overcome these difficulties, several other penalties have been proposed. The 

L2-penalty yields ridge regression estimation, but it does not perform variable 

selection. With the L1-penalty, specifically, the penalized least squares (PLS) 

estimator becomes the least absolute shrinkage and selection operator (LASSO), 

which thresholds predictors with small estimated coefficients (Tibshirani, 1996). 
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LASSO is a popular technique for simultaneous estimation and variable selection, 

ensuring high prediction accuracy, and enabling the discovery of relevant 

predictive variables. Donoho and Johnstone (1994) selected significant wavelet 

bases by thresholding based on an L1-penalty. Prediction accuracy can sometimes 

be improved by shrinking (Efron and Morris, 1975) or setting some coefficients 

to zero by thresholding (Donoho and Johnston, 1994). 

Tibshirani (1996) gave a comprehensive overview of LASSO as a PLS estimation. 

LASSO has been criticized on the grounds that a single parameter λ is used for 

both variable selection and shrinkage. It typically ends up selecting a model with 

too many variables to prevent over shrinkage of the regression coefficients 

(Radchenko and James, 2008); otherwise, regression coefficients of selected 

variables are often over shrunken. To overcome this problem, various other 

penalties have been proposed. Fan and Li (2001) proposed a family of new 

variable selection methods based on a non-concave penalized likelihood 

approach called the smoothly clipped absolute deviation (SCAD) penalty for 

oracle variable selection. 

These methods are different from traditional procedures of variable selection in 

that they delete insignificant variables by estimating their coefficients as 0. As a 

result, their approaches simultaneously select significant variables and estimate 

regression coefficients. Recent related studies include (Fan and Li, 2006, Leng 

et.al, 2006, Potscher and Leeb, 2009, Zou and Li, 2008). More recently, Zou (2006) 

showed that LASSO does not satisfy Fan and Li’s (2001) oracle property, and 

proposed the adaptive LASSO. This study demonstrates how the h-likelihood 

method overcome such difficulties to allow an oracle variable selection and 

simultaneously enhance estimation power. 
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Modelling of crop yield is another important and integral aspect of this study. By 

theory, the Generalized Linear Models (GLMs) can be derived from classical 

normal models by two extensions, one to the random part and another to the 

systematic part. Random elements may now come from a one-parameter 

exponential family, of which the normal distribution is a special case. 

Distributions in this class include Poisson, binomial, gamma and inverse Gaussian 

as well as normal. But in practice, even though the GLM is widely noted for its 

good performance in modelling, some natural discrepancies arise between the 

data and the fitted values produced. Outliers are observations which have large 

discrepancies on the y-axis. Discrepancies between the data and the fitted values 

produced by the model fall into two main classes, isolated or systematic. 

Isolated discrepancies appear when a few observations only have large residuals. 

Such residuals can occur if the observations are simply wrong, for instance where 

129 has been recorded as 192. Such errors are understandable if data are hand 

recorded, but even automatically recorded data are not immune. Robust methods 

were introduced partly to cope with the possibility of such errors; for a 

description of robust regression in a likelihood context see, e.g. Pawitan, 2001 

(Chapters 6 and 14). Observations with large residuals are systematically down 

weighted so that the more extreme the value, the smaller the weight it gets. Total 

rejection of extreme observations (outliers) can be regarded as a special case of 

robust methods. Robust methods are data driven, and to that extent they may not 

indicate any causes of the discrepancies. 

A useful alternative is to seek to model isolated discrepancies as being caused by 

variation in the dispersion, and to seek covariates that may account for them. The 

techniques of joint modelling of mean and dispersion developed and 

demonstrated in this thesis make such exploration straightforward. Furthermore 

if a covariate can be found which accounts for the discrepancies this gives a 
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modelbased solution which can be checked in the future by policy makers in the 

field it is applied. Under the modelling of crop yield therefore, this study propose 

the 

JGLM and HGLM approach of Lee and Nelder (2006). With hierarchical 

generalized linear models (HGLMs) of Lee and Nelder (2006), it becomes to 

consider various scale mixtures of distributions for β and by so doing greatly 

improving the model. To be specific, this study suggest the use of a gamma 

mixture for β and apply it to a very critical area in Ghana’s quest for economic 

growth, food security and expansion in the agricultural sector. 

1.3 Objectives 

The general objective of this study is to select the best physical support covariates 

that influence crop yield in the three Northern regions of Ghana using recent 

methods for penalized variable selection and modelling techniques. 

1.3.1 Specific objectives 

The specific objectives are; 

1. To compare the sparsity and number of significant crop yield variable 

selected by the three penalized methods; LASSO, SCAD, and H-likelihood. 

2. To propose the H-likelihood approach to crop yield variable selection 

compared to other forms of penalized methods ie. LASSO and SCAD based 

on their estimated penalized cross validated errors. 

3. To propose and demonstrate the extended versions of the famous GLM to 

JGLM and prove its ability to statistically improve fixed effects model quality 

using crop yield data. 
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4. To propose and demonstrate the HGLM with gamma mixture as best model 

approach with the highest model accuracy and prove its ability to 

statistically improve mixed effects model for crop yield. 

1.4 Methodology 

Maize and Soybeans are the very much cultivated in the Northern parts of Ghana 

due to their vegetation which supports the growth of grains and cereals. Beyond 

the numbers and descriptive statistics on yield of such crops, this study tries to 

bring out variables that significantly contribute to yield. There are broadly two 

class of methods; first has to do with the methods of regularized variable selection 

and second is the Hierarchical Generalized Linear Models. 

1.4.1 Profile of study area 

The northern region of Ghana is considered the major bread basket of the country, 

and is also the most susceptible to the vagaries of the weather, especially the lack 

of rainfall. Unfortunately past agricultural growth and development has been 

accompanied by increased income inequality, and poverty abatement is lagging 

in Northern Ghana (Al Hassan and Diao, 2007). 
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Figure 1.1: Profile map of study area 

Over the past three decades, Ghana has experienced significant development and 

growth, becoming one of Africa’s great success stories (IFAD, 2012). In 2011, 

Ghana’s economy experienced the world’s greatest economic growth at 13.4 

percent (USAID, 2012). According to a 2012 report from the Center for Global 

Development, Ghana moved from a low-income country to a middle-income 

country in late 2010- a decade earlier than planned. This dramatic economic 

growth was fostered by a stable government and relatively conducive investment 

climate 

(Moss and Majerowicz, 2012). 
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Along with impressive economic growth, Ghana has experienced a steady decline 

in poverty and hunger over the past decade (IFAD, 2012), and is on a fast track to 

achieving the first Millennium Development Goal of halving 1990 levels of 

poverty and hunger by 2015 (Wiggins and Leturque, 2011). Unfortunately, this 

development is not equally distributed throughout the country. In the northern 

regions, poverty, hunger, poor nutrition and health, and high mortality rates 

among women and children are persistent, and must be addressed (FAO, 2010). 

Today, there is a dramatic north-south divide where poverty, as well as food and 

nutrition insecurity remains widespread in the northern savannah (IFAD 2012, 

2010 Ghana Millennium Development Goals Report). 

The northern region of Ghana lying between latitude 80oS and 110oN and 

stretching between longitude 30oW to 10oE is the largest administrative region in 

Ghana. About 80 per cent of the estimated 1.8 million population depend on 

agriculture for their livelihood. The estimated incidence of poverty at 69 per cent 

(International Fund for Agricultural Development, 2003) makes it one of the 

poorest regions in Ghana. 

The mean annual rainfall is about 1100 mm but rainfall is characterized by high 

intensity and seasonal and annual variability (Andreini et al., 2000). The 

monomodal rainfall pattern, typical of the moist savannah agroecological zone of 

West Africa, results in a growing season lasting for 5-6 months. The soils are 

classified as Typic Plinthaqualf, Rhodic Paleustalf and Typic Plinthaquept (Soil 

Survey Staff, 1994), with Alfisols accounting for up to 80 per cent of the land area. 

The farming system is characterized by very small external inputs as inorganic 

fertilizers in spite of the inherently low soil nutrient content. 

Maize is the most important food crop cultivated by the smallholder farmers, 

contributing about 20 per cent of calories to the diet. The commonest maize 
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variety is the white, dent-grained, late-maturing (120-day), streak-resistant, 

openpollinated variety released by the Crop Research Institute of Ghana in 1989 

(Sallah et al., 1993). 

The increase in population has amplified pressure on land in northern Ghana. 

Land tenure and ownership are rooted in the traditional common property 

system, in which land administration is vested in the village chief who allocates 

parcels of land according to household needs. However, the gradual 

commercialization of agriculture has profoundly influenced land tenure and 

ownership, leading to a general tendency to preferentially allocate land to large-

scale commercial farmers. The pressure on available land also manifests in 

intense competition between farmers and herdsmen on the use of the alluvial 

plains. 

This northern part of Ghana is made up of three main regions; Upper West Region, 

the Upper East Region and the Northern Region. The largest of these is the 

Northern Region which incidentally is the largest region in Ghana, covering a land 

area of about 70,383 square kilometers. However, it has the lowest population 

density of all ten regions in the country (PPMED, Ghana, 1991) with 80 per cent 

of its people dependent on farming. The major food crops grown here are yam, 

millet, rice, maize, sorghum, soybeans, groundnut and cassava. 

Tamale is the administrative capital of the Northern Region and the biggest town 

in Northern Ghana. Although Ghana’s have weather cycles consisting of two 

seasons; rainy seasons and a dry season, the northern region experiences a very 

short rainy season and an extended dry season (traditionally November-April). 

During the dry season, there are also Harmattan winds (dry desert winds) which 

blow from the northeast from December to March, lowering the humidity with 

hot days and cool nights. However, like most climates, there is some variability, 
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more so in recent years. Annual rainfall is about 1,100 mm (about 43 in) with a 

range from about 800 mm to about 1,500 mm. In the Northern region, the Ghana 

Meteorological Agency (GMA) reported a 10.2 per cent change in the cumulative 

rainfall between the 30-year average and that for 2009. Those changes for the 

Upper East and Upper West regions were -3.5 per cent and - 34.5 per cent 

respectively. All together, the percentage change in rainfall for the northern 

sector of Ghana was -8.6 per cent. 

Average monthly rainfalls over the past 4 decades in the three northern regions 

has changed. The Upper East Region has a fairly steady rainy season but the 

Northern and Upper West Regions trended toward a more variable ”rainy season” 

by about one month on average. The regions have a vegetation classified as 

savannah woodland, with vast areas of grassland, characterized by 

droughtresistant trees such as the acacia, baobab, shea nut, dawadawa, mango, 

neem and mahogany. 

The soil in this area is mostly silt or loam, thus having the tendency to get 

waterlogged during the rainy season but drying up in the dry season. This, 

however, works well for the farmers since they grow various types of crops: each 

with its own soil preference. For example, during the rainy season, rice is a 

preferred crop since it fares very well on marshy land. Yam, on the other hand, is 

better cultivated when the land is dried out. Although the type of vegetation 

supports agricultural production quite well, a major hurdle for farmers is 

maintaining the soil fertility of the land throughout the various farming cycles. 

1.4.2 Data Source and Type 

The analyses were based on raw data available at the regional Monitoring and 

Evaluation office of the Linking Farmers to Markets (FtM) project in Tamale 

Ghana. The project is organized by the Alliance for a Green Revolution in Africa 
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(AGRA) with the primary goal of easing the flow of produce from the farm-gate to 

the market by linking smallholder farmers to commercial buyers and processors. 

(FtM Grant Narrative Report, 2011) 

Specifically, the project aims at forming alliances with partners to build 

organizational management, productivity and entrepreneurial skills of 

smallholder farmers engaged in the production and processing of rice, maize, 

sorghum, soy beans and cowpeas in the Northern, Upper West and Upper East 

regions of Ghana. The project is also to link approximately 50,000 smallholder 

farmers of maize, rice, sorghum, and soy bean in the Northern, Upper West and 

Upper East regions of Ghana to develop commercial relationships with structural 

markets such as industrial processors, the Ghana School Feeding Program, the 

World Food Program’s P4P, local entrepreneurs and processors as well as urban 

consumers in Southern Ghana. (FtM Grant Narrative Report, 2011). 

A two (Multi) stage probability sampling technique was used in selecting specific 

districts and Communities as first and second stages respectively. Three different 

strata was created for districts in the three regions considered and 7, 3, 3 districts 

selected proportionately for the Northern, Upper east and upper west regions 

respectively. At the community selection stage, only communities with 

recognized Farmer Based Organizations were included for selection. Also at this 

stage, 7, 3, 3 communities were proportionately selected for Northern, Upper east 

and Upper west respectively. 

In all, data from 800 Maize and Soy bean farmer based organizations (FBOs) were 

gathered by means of a structured questionnaire. This was later cleaned to 790 

distinct observations. The FBOs were randomly selected through a multistage 

random procedure. First, proportional randomizations resulted in selecting three 
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(3) farming communities each from the Upper East and West regions while seven 

(7) were selected from the Northern Region. 

Fixed effect variables measured include; crop type (Maize or Soybean), Financial 

Credit (Acquired or Not), Training (Acquired or Not), Study tour (Acquired or 

Not), Demonstrative Practicals (Acquired or Not), Networking Events (Acquired 

or Not), Post harvest Equipment (Acquired or Not), Number of farmers in the FBO 

and Plot size cultivated. Beside these 9 fixed effects, 36 two-way interaction terms 

are also generated as fixed interaction terms. This brings the total number of fixed 

covariates to 45. 

Dependent variable measured is Total Crop Yield. The regions and the particular 

communities are treated as Random variables. 

The main source of knowledge for the successful completion of this study has 

been the Data Science for Knowledge Creation Research Centre, at the 

Department of Statistics, Seoul National University - Korea Republic. The Seoul 

National University Main Library resource centre as well as the E-resource centre 

of the Kwame Nkrumah University of Science and Technology - Kumasi, Ghana 

have been extremely helpful sources of knowledge all through this dissertation. 

However, the internet and other individual Crop yield experts and Statisticians 

that formed my Team of Supervisors, have and continued to help enrich the 

progress and outcome of the study. 

1.4.3 Methods of analysis and modelling 

This study sought to select significant variables among many potential ones to be 

included in a model via penalized methods and to also propose and demonstrate 

the excellent performance of higher levels and very recent extensions of the 

Generalized Linear Models (GLM); Joint Generalized Linear Models (JGLM) and 



 

19 

Hierarchical Generalized Linear Models (HGLM) in the development of Statistical 

Models with highest model accuracy. The researcher proposed the H-Likelihood 

method of penalized variable selection as well as the unified JGLM and HGLM with 

gamma random effects as best methods useful for variable selection and 

modelling crop yield in the three Northern regions of Ghana respectively. 

1.4.4 Variable selection 

When we have p variables in a model, the total number of models we can generate 

is 2p. As number of variables increase, identifying the optimal model within the 

large model space can be computationally burdensome. Stepwise regression 

methods (Miller, 2002) are among the most known subset selection methods, 

although currently quite out of fashion. Stepwise regression is based on two 

different strategies, namely Forward Selection (FS) and Backward Elimination 

(BE). Details of the theory behind the selection procedure of this classical variable 

selection method is discussed in chapter three. 

However, these selection procedures are discrete in the sense that one variable is 

either added or deleted at a time, and hence provide unstable result (Breiman, 

1995). For continuous selection process, penalized likelihood methods have been 

developed recently, including Negative Garrote (Breiman, 1995), LASSO 

(Tibshirani, 1996, Fan and Li, 2001, Zou and Hastie, 2005), etc. 

Consider the model 

 Yi = βTXi + εi, i = 1,2,...,n (1.1) 

where Yi is the response variable, xi is a p-vector of predictors for the ith subject, 

β is a p-vector of regression coefficients, and (εi,...,εn) are independent and 

identically distributed errors. For simplicity, assume that the εi s have means 0. 

Define l(β) = ky − Xβk2 where y = (Y1,...,Yn)T and X = (X1,...,Xn)T. 
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Then the penalized least squares estimator of β is the minimizer of the objective 

function 

 ) (1.2) 

where pλ(.) is a penalty function. Appropriate choices of pλ (detailed in chapter 

3) yield the aforementioned variable selection procedures. For likelihood-based 

models, the penalized maximum likelihood estimator is obtained by setting l(β) 

to the minus log-likelihood. This study demonstrates how the h-likelihood 

methods overcome such difficulties to allow an oracle variable selection and 

simultaneously enhance estimation power. 

1.4.5 Modelling crop yield 

The Joint GLM is an extension of the famous GLM. The technique seeks to model 

isolated discrepancies as being caused by variation in the dispersion, and to seek 

covariates that may account for them. The techniques of joint modelling of mean 

and dispersion developed and demonstrated in this thesis gives a model-based 

solution to finding covariates which account for the discrepancies in our crop 

yield model. 

The thesis also employ the Hierarchical Generalized Linear Models (Lee and 

Nelder, 1996, 2006). HGLMs is a synthesis of two widely used existing model 

classes; Generalized Linear Models (GLMs) and Normal Linear Mixed Models. 

Generalized Linear Mixed models (GLMMs: Breslow and Clayton, 1993), which 

assumes Gaussian random effects, form a subclass of HGLMs. These models have 

received increasing attention because of their wide applicability and ease of 

interpretation. However, likelihood estimation in random effect models is often 

complicated because of the marginal likelihoods involves an analytically 

intractable 

integrals. 
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To avoid this, various approximations and Bayesian inferential procedures have 

been proposed. An alternative is to use the hierarchical likelihood (detailed in 

chapter 3), which avoids such burdensome numerical integrations. By definition, 

HGLMs is defined by Lee and Nelder (1996) as; 

Conditional on random effects u, the response y follows a GLM family, satisfying 

E(y/u) = µ and var(y/u) = φV (µ), 

For which the kernel of the likelihood is given by 

 (1.3) Where θ = θ(µ) is the 

canonical parameter. The linear predictor takes the form 

 η = g(µ) = Xβ + Zv (1.4) 

Where v = v(u), for some monotone functions v(.), are the random effects and β 

are the fixed effects. The random component u follows a distribution conjugate to 

a GLM family of distributions with parameters λ (detailed in chapter 3). 

1.4.6 Statistical Software Used 

The R package, a statistical analysis software (R version 3.0.3 (2014-03-06)) was 

used throughout the analysis. 

1.5 Justification of the Study 

Over the years, variable selection methods have received much attention and 

have been applied to various fields. This is because, using uninformative variables 

will not only waste money and time, but also reduce estimation efficiency or 

prediction accuracy. Selecting an appropriate set of important variables helps to 
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reduce the variances of parameter estimates. By eliminating some noise 

variables, precision of the estimates are greatly improved. 

Ghana is still an agriculture-based economy. The country’s recent development is 

characterized by balanced growth at the aggregate economic level, with 

agriculture continuing to form the backbone of the economy (McKay and 

Aryeetey, 2004). This study is therefore highly justified as it seeks to rigorously 

select variables for crop yield with the help of very recent methods of variable 

selection and parameter estimation. Findings of this thesis would form an 

empirical basis for Agricultural related Government and Non-governmental 

stakeholders to focus on the significant aid and supports that would actually 

maximize yield. 

To statisticians and the academia, this thesis seeks to contribute to the ever 

growing knowledge in the area of Penalized variable selection as a result of the 

limitations of the classical stepwise variable selection. The study proposes the 

hierarchical likelihood, the Joint GLM technique and the Hierarchical Generalized 

Linear Models which are recent extensions of the Fisher likelihood (Fisher, 1935) 

and the Generalized Linear (Mixed) models (GLMMs: Breslow and Clayton, 1993) 

respectively. This would among other things stimulate further studies in this area 

of statistics and its application in other areas of the economy of Ghana as well as 

elsewhere in the world. 

1.6 Limitations and Scope of the Study 

The study is an application of statistical variable selection and modelling 

techniques. The scope of this study is restricted to Maize and Soy bean yield from 

some randomly selected Farmer based organizations in the Northern, Upper East 

and Upper West Regions of Ghana. Even though the target crops do very well in 
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the specified areas, many other parts of the country are also noted for their 

production. Focusing on the three Northern regions only may be a limitation to 

the study especially if one wants to rely on the findings of this study for country 

generalization. 

The issue of post harvest losses is likely to be a great limitation to the accuracy of 

measured crop yield. Also, measurements for plot sizes and number of farmers 

were based solely on the verbal records of the farmers since the researcher was 

limited by means of validating the authenticity of all such records for the 800 

selected FBOs. This in the researchers view, can introduce some measurement 

errors and this may be a limitation to the study findings. 

The researcher admits that but for the unavailability of data, as frequently the 

case in many parts of our world, extensive input data on farm management 

practices, soil condition, climate and other non-physical contributors to yield 

would have enriched our models. That not withstanding, the study is carefully 

structured within the confines of the thesis study matter. 

1.7 Organization of the Study 

This report is organized in five chapters. Chapter 1 is the introductory chapter to 

the entire study. It takes a critical look at the general background of agricultural 

contribution to Ghana’s economic growth and also looks at the general 

socioeconomic profile of the study areas. The problem statement, research 

questions and objectives, research methodology, justification of the study as well 

as scope and limitations of the study are discussed in this chapter. Chapter 2 

reviews related literature based on the thesis objectives and preferred models to 

be used in achieving these objectives. Expected outcome of the study and other 

comparative results of similar studies are also discussed in this chapter. Chapter 
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3 describes the theory of model to be used, formulations and methods of solution. 

Chapter 

4 is dedicated to data analysis, results and discussion of study findings. Chapter 5 

concludes the entire study by stating specific recommendations to stakeholders 

based on the major findings made in the study. 

Chapter 2 

Literature Review 

2.1 Introduction 

This chapter takes a review into the concept of variable and penalized variable 

selection methods as well as statistical modelling using the extended versions of 

the Generalized Linear models (GLM); Joint GLMs and Hierarchical Generalized 

models (HGLMs). It also discusses Agricultural and crop yield models as found in 

literature. It presents summary of abstracts and critiquing of various literature 

with regard to the model being used and the general working title. 

2.2 Variable Selection 

Variable selection is an important topic in linear regression analysis. In practice, 

a large number of predictors usually are introduced at the initial stage of 

modelling to attenuate possible modelling biases. On the other hand, to enhance 

predictability and to select significant variables, statisticians usually use stepwise 

deletion and subset selection. Although they are practically useful, these selection 

procedures ignore stochastic errors inherited in the stages of variable selections. 

Hence, their theoretical properties are somewhat hard to understand. 
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2.2.1 Classical variable selection methods 

Given a linear model; 

 y = Xβ + ε (2.1) 

Where y is an N × 1 vector of responses, X is an N × p designed matrix, β is a p×1 

vector of unknown regression coefficients, and ε is an N×1 vector of random 

errors with ε ∼ N(0,σ2IN). If we have p variables, there exist 2p candidate models. 

As the number of variables increases, the number of computations needed rapidly 

increases. For efficient and effective computation, many algorithms have been 

proposed. In this section, the researcher will go over traditional procedures that 

are in common use. 

All possible regressions are in fact to compare 2p candidate models. However, it 

requires considerably complex computations. Furnival and Wilson (1974) 

proposed the leaps and bounds algorithm to perform all possible regression 

efficiently. They employed the lexicographic algorithm and also performed an 

exhaustive search. The algorithm is quite useful in linear models with p < 40. The 

idea of the algorithm is to use information obtained from previous steps. As a 

result, we can reduce the computational burden. Their algorithm offers the best 

m models of each size, where m is set by the user. They provided the Fortran 

subroutine which is available in many statistical software. When we find the best 

subset by the leaps and bound algorithm, Cp, R2, and R2adj, are available as a 

criteria for comparing candidate models. The best subset selection is to choose 

the best one among all possible subsets. It tends to result in a model with too 

many variables, and the final model would be very unstable. 

For forward selection, the procedure starts with no variables in the model. First, 

for all variables not included in the model we check which variable has the largest 

partial F-statistic. If the partial F-statistic is greater than a pre-determined F 
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value, the variable is added to the model. The pre-determined F value is often 

called ’F-to-enter’. The above procedure is continued until no new variable can be 

added to the model any more. Roecker (1991) showed that forward selection can 

provide slightly smaller prediction error and less bias compared to all possible 

regressions. 

Backward elimination is the simplest procedure for variable selection and works 

in the opposite direction of forward selection. At first, the procedure begins with 

all variables in the model. The partial F-statistic are then computed for each 

variable out of the model. If the smallest partial F-statistic is less than a pre-

determined F value, the variable is excluded from the model. This pre-determined 

F value is sometimes called ’F-to-remove’. The backward elimination also stops 

when the partial F-statistic for variables not belonging to the model are all greater 

than F-to-remove. Forward selection and backward elimination are more 

economical than the all possible regressions. Since we start with all variables in 

the model, backward elimination can be performed only when p < N. 

The stepwise regression can be thought of as a combination of forward selection 

and backward elimination. At each step, one variable may be either entered or 

removed. Therefore, the same variable can be again added to the model after 

exclusion. Note that this procedure allows the move of only one variable at one 

step. These methods described above are easy to understand and perform, but 

the selection results are unstable. Because the selection procedure is discrete; 

that is, variables are either remained or dropped from the model, even small 

changes in the data might lead to quite different results for variable selection. This 

can also result in worse prediction accuracy. In next section, the researcher shall 

review penalized approaches which are continuous selection procedures. 

In general, the method of least squares is used to estimate the regression 

coefficients from the data. However, in practice, various model selection criteria 



 

27 

have been proposed to compare candidate models and to select the best model. 

Different criteria have different motivations and perform better for some 

problems in practice. A brief review on those widely used criteria are as follows; 

2.2.2 Coefficient of Determination: R2 

The coefficient of determination has been widely used as a measure of the 

capability of the model to fit the data. It is defined as 

  (2.2) 

Where ¯y is the overall mean of  is the regression sum of 

squares and  is the total sum of squares. This can be viewed 

as the ratio of the explained variance to the total variance. As the number of 

parameters used in the model increases, R2 increases. Therefore, R2 achieves the 

maximum when all variables enter in the model. Based on R2, we select the 

candidate model having the largest R2. As a result, the chosen model might be 

over fitted. 

2.2.3 Adjusted R2 

The drawback of R2 leads to the modification of R2. The adjusted R2 is defined 

as 

 

The Rad2 penalizes bigger models. As seen in (1.2), the minimum MSE and the 

maximum Rad2 yield the same model selection. That is, comparing models in 

terms of MSE is identical to that in terms of Rad2. 

2.2.4 Residual Mean Square: MSE 

The residual mean square is defined as 
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  (2.4) 

Where p is the number of variables in the fitted model, RSS is the residual sum of 

squares and ˆyi is the fitted value of yi. This is widely used to evaluate how well 

the model is fitted to the data. We prefer the candidate model with the minimum 

MSE. For small data sets, the MSE might not work effectively. 

2.2.5 Mallows’ CP 

The statistic Cp, proposed by Mallows (1973), is defined as 

  (2.5) 

where ˆσ2 is the residual mean squares in the full model. The Cp was motivated as 

an unbiased estimate of prediction accuracy of the candidate model. If the model 

with p variables is proper, E(Cp) is approximately equal to p. Therefore, we find 

points close to the Cp = P line on the plot of Cp versus p. Also, it might be good to 

select points below the Cp = P line due to random variation. As a result, we prefer 

choosing the candidate model with small Cp value about equal to p. Generally, 

many statistical software packages select the model having the smallest Cp. 

Mallows (1995) studied the property of a Cp plot when p is large and there exist 

many weak effects. Some modified versions of Mallows’ Cp are described with 

some examples in Miller (2002). 

2.2.6 Information Criteria 

Akaike Information Criterion (AIC) is originally proposed by Akaike (1973) to 

consider the number of parameters as a standard comparing the candidate 

models. 

His idea is to impose a penalty for model complexity to the log likelihood. 



 

29 

In general, the AIC is defined as 

 AIC = −2log(likelihood) + 2p (2.6) 

Hurvich and Tsai (1989) showed that AIC brings about over fitting in the small 

sample, and suggested using AICc, a corrected version of AIC, 

  (2.7) 

For several variants of AIC, see McQuarrie and Tsai (1998). 

Another information criterion is the Bayesian Information Criterion (BIC), 

proposed by Schwarz (1978), 

 BIC = −2log(likelihood) + plogN (2.8) 

BIC is motivated in the Bayesian approach to model selection. Schwarz (1978) 

made an appropriate modification of maximum likelihood using the asymptotic 

behaviour of Bayes estimators. We desire the model with smaller AIC or BIC. 

Miller (2002) stated that using AIC tends to choose a little larger models than 

using Mallows’ Cp. 

Information criteria and Cp statistic consider the trade-off between σ2 and p. One 

cannot say which criterion is better than the others. However, we can consider 

the behavior of these criteria as follows. When N > e2, BIC penalizes larger models 

more heavily, and hence it prefers simpler models. Moreover, BIC is 

asymptotically consistent for model selection. That is, the probability that BIC 

yields the correct model approaches 1 as N → ∞. Contrary to BIC, AIC tends to 

select more complex models as N → ∞. BIC also has disadvantages; BIC often 

chooses too simple models for finite samples. 



 

30 

Hurvich and Tsai (1989) showed that BIC may poorly perform in small samples. 

They also showed that BIC is consistent when the true model is fixed. If the 

dimensionality of the true model increases with N, AIC is also consistent (Shibata, 

1981). 

2.2.7 Prediction Sum of Squares: (PRESS) 

Allen (1981) proposed the prediction sum of squares (PRESS) which is defined 

as 
 N N 

 PRESS = X(yi − yˆ(i))2 = Xe2(i) (2.9) 

 i=1 i=1 

where ˆy(i) denotes the predicted value of the ith response when the model is fitted 

without using the ith observation. PRESS provides detailed information about the 

stability of the candidate models. However, PRESS requires an excessively 

complex computation. Breiman and Spector (1992) showed that non-resampling 

estimates including PRESS statistic lead to inaccurate estimates of the mean 

squared error of prediction. To overcome this problem, they used cross-

validation and bootstrap methods. 

2.3 Cross Validation 

To assess the predictive value of selected significant variables, cross-validation is 

often recommended (Houwelingen and Cessie, 1990). Before the different CV 

methods are discussed, two theoretically important definitions for a correct 

model and the ’true’ model are given. I define and consider a correct model as one 

that contains all important (truly significant) variables. It is assumed that these 

variables are among the p given variables. If an important variable is missing, the 

model is termed incorrect (under-fitting). A correct model may contain additional 

noise variables (over-fitting). The smallest correct model (i.e. the model that 
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contains only the important variables and no more) is termed the true model. It 

is the one with minimal prediction error. Hence, the general objective of variable 

selection is to find the true model. If the true model is not among the candidate 

models, the model closest to the true one is sought. 

In most statistical models, frequently employed objective functions to assess the 

predictive ability in variable selection are n-fold cross-validation (Shao, 1993; 

Brieman et.al, 1984; Burman, 1989) and leave-one-out cross-validation (LOOCV) 

(Allen, 1974; Stone and Roy, 1974; Picard and Cook, 1984). 

In an n-fold CV the available training data are split into n disjoint groups of 

approximately the same size. Then the algorithm is run n times using (n−1) 

groups as the construction set and one group as validation set. This is done in turn 

until each group was left out once. Clearly, if n = m (m is sample size) then n-fold 

CV is LOO-CV, since exactly one object is left out at a time. Unfortunately, n-fold 

CV and LOO-CV without further constraints are unsuitable objective functions to 

find the true model. Shao showed that minimizing the LOO-CV estimate for the 

prediction error does not lead to a statistically consistent choice of the true model 

in case of multiple linear regression (MLR) (Shao, 1993). 

A consistent objective function selects the true model from the candidate models 

with certainty (probability equal to one) when the sample size is increased to 

infinity (m → ∞). In this sense, LOO-CV is inconsistent. However, with large 

sample sizes, LOO-CV identifies the variable subset belonging to the true model 

(i.e. incorrect models will not be selected), but it also selects additional variables. 

That means that minimizing the LOO-CV estimate results in over-fitting and thus 

in a larger prediction error. 

The deficiencies of LOO-CV can be overcome by using a leave-multiple-out 

crossvalidation (LMO-CV) for model selection (Shao, 1993). In LMO-CV, the 
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available training data set is split into a validation data set with d objects and a 

construction data set with the remaining m−d objects. Put differently, d objects 

are left out for validation. For LMO-CV to be consistent, two requirements need 

to be fulfilled. First, in LMO-CV the size of the validation data set (d) needs to be 

much larger than the size of the construction data set (m − d) (Shao, 1993). 

Second, the LMO-CV estimate of the prediction error needs to be averaged over a 

large number of different splits into construction and validation sets. This renders 

LMO-CV computationally extremely expensive. 

In practical applications, the most important parameter of LMO-CV is the choice 

of the validation data set size (d). For theoretical reasons, Shao recommends the 

use of 

 d = m − m/(ln(m) − 1) (2.10) 

A reasonable range for several real data sets was found to be d ≈ 0.4 − 0.6.m. 

However, d is generally problem-dependent. 

Despite these theoretical findings, LMO-CV could not prevail against LOO-CV and 

n-fold CV. The latter two CV types were used in many studies applying variable 

selection (see references cited in (Baumann et.al, 2002) and (Izrailev and 

Agrafiotis 2002; Jouan-Rimbaud et.al, 1996; Gao et.al, 2002). Yet, in several of 

these papers, it was recognised that over-fitted models resulted. For example, 

when augmenting the real data matrix with random variables, it was found that a 

genetic algorithm (GA) selected some of these augmented random variables 

(Jouan-Rimbaud et.al, 1996). 

In another case, various variable selection procedures were applied to permuted 

response vectors (randomisation test) and yielded improvements, despite the 

fact that the response vectors were scrambled (Norinder, 1996). Randomisation 
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tests were used in a different study to reveal and to avoid chance correlation and 

over-fitting (Leardi and Gonzalez, 1998). A common finding is that selection 

procedures based on LOO-CV as the objective function improve the internal 

consistency of the training data sets (decreased internal prediction error), but 

often do not improve test-set prediction (Norinder, 1996; Golbraikh and Tropsha, 

2002). Sometimes, test-set prediction even deteriorates (Norinder, 1996). 

In an eye-opening paper, Golbraikh and Tropsha showed that there is little 

correlation between the internal estimate of the prediction error obtained by 

LOO-CV and the external estimate of the prediction error obtained by test-set 

prediction 

(Golbraikh and Tropsha, 2002). An external estimate of the prediction error (PE) 

provides an independent assessment of the predictive power of a finally chosen 

model, since the model to be validated did not see these data before. This 

independence stems from the fact that these test-set data did not influence the 

choice of the model at all. An internal estimate of the PE is used to influence the 

choice of the final model (e.g. cross-validation as objective function in variable 

selection, or cross-validation as objective function in the selection of the optimal 

number of latent variables). 

Although the validation data are independent of the model building process in a 

single split of the CV procedure (recall, training data are split into construction 

data and validation data), the resulting internal estimate of the PE is nonetheless 

overoptimistic since the same data are repeatedly used to build and to assess the 

model. As a consequence, the variable selection procedure may learn the training 

data and their respective splits into construction and validation data by heart. It 

is intuitively clear that the more similar the construction data to the validation 

data, the easier it is for a selection procedure to learn the idiosyncrasies of the 
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data. In LOO-CV, only one object is deleted from the training set. Hence, the 

similarity between the construction data and the validation data is generally 

largest. 

Validation can be made more stringent by leaving out multiple objects in 

crossvalidation (LMO-CV). This has two effects: first, there are less data for 

constructing the model; and, second, more data are available to assess the model’s 

quality. Put another way, in LMO-CV, there is less information to build the model 

but more information to validate the model. Both points force the selection 

procedure to concentrate on the general patterns in the data and that, in 

turn, reduces over-fitting. 

Clementi and co-workers were the first to recommend the use of LMO-CV for 

variable selection (Cruciani et.al, 1992). Put precisely, they suggested using a 

repeated n-fold CV. A repeated n-fold CV consists of B runs of the n-fold CV 

procedure with different random splits into n disjunct groups. It is a balanced 

version of LMO-CV, since every object is used exactly B times for assessing the 

candidate model. 

In the aforementioned sequel of papers, Clementi and co-workers introduced the 

SDEP parameter (standard deviation of prediction error), which is based on a 

repeated n-fold CV. It is used for the comparison of different models and was 

found to perform better than LOO-CV. Thus, SDEP became the objective function 

of the GOLPE (Generating Optimal Linear PLS Estimations) variable selection 

procedure (Cruciani et.al, 1994). The parameter n of the repeated n-fold CV is 

usually set to 4 or 5 in GOLPE (Cruciani et.al, 1994). This corresponds to leaving 

out 25 percent or 20 per cent of the data during cross-validation. The number of 

repetitions (B) is often set to 100. 
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Using LMO-CV instead of LOO-CV is one possible way to reduce the amount of 

over-fitting. Other sensible constraints to avoid over-fitting are restrictions on the 

maximum number of variables or the maximum number of latent variables 

(McShane et.al, 1999; Kubinyi, 1996). When using LOO-CV or n-fold CV, 

restricting the maximum number of latent variables often results in the same 

model performance with respect to test-set prediction as for LMO-CV (Baumann 

et.al, 2002). 

However, this type of constraint requires a priori knowledge of the problem. A 

different, innovative approach to avoid over-fitting was followed by Todeschini 

and co-workers, who computed several indices for a candidate model to detect 

multicollinearity and chance correlations (Baumann et.al, 2002). If these indices 

indicate problems with the data, the respective Candidate model is rejected. 

Summing up, the susceptibility of LOO-CV to over-fitting was shown theoretically 

and was recognised by several groups studying practical applications. In this 

study we also strongly recommend and apply the LMO-CV as justified by Clementi 

and co-workers for variable selection (Cruciani et.al, 1992). 

Precisely in this dissertation, the researcher suggests the use of a repeated 10-

fold CV. A repeated 10-fold CV consisting of 100 runs of the 10-fold CV procedure 

with different random splits into 10 disjoint groups. It is a balanced version of 

LMO-CV, since every object is used exactly 100 times for assessing the candidate 

model. The researcher introduces the PCVE (Penalized Cross Validated Errors) 

which is based on a repeated 10-fold CV. This PCVE is used for the comparison of 

different penalized methods of variable selection and was found to perform 

better than LOO-CV. The parameter n of the repeated n-fold CV was set to n=10 in 

this study. This corresponds to leaving out 10 per cent of the data during cross-

validation. The number of repetitions was set to 100. 
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2.4 Tuning Parameter 

Among other variable selection methods, penalized regression models have been 

popularly used, which penalize the model fitting with various regularization 

terms to encourage model sparsity, such as the lasso regression (Tibshirani, 

1996), the smoothly clipped absolute deviation (SCAD; Fan and Li, 2001), the 

adaptive lasso (Zou, 2006), and the truncated l1-norm regression (Shen et al., 

2012). In the penalized regression models, tuning parameters are often employed 

to balance the trade-off between model fitting and model sparsity, which largely 

affects the numerical performance and the asymptotic behaviour of the penalized 

regression models. 

For example, Zhao and Yu (2006) showed that, under the irrepresentable 

condition, the lasso regression is selection consistent when the tuning parameter 

converges to 0 at a rate slower than O(n−1/2). Analogous results on the choice of 

tuning parameters have also been established for the SCAD, the adaptive lasso, 

and the truncated l1-norm regression. Therefore, it is of crucial importance to 

select the appropriate tuning parameters so that the performance of the 

penalized regression models can be optimized. 

In literature, many classical selection criteria have been applied to the penalized 

regression models, including cross validation (Stone, 1974), generalized cross 

validation (Craven and Wahba, 1979), Mallows’ Cp (Mallows, 1973), AIC (Akaike, 

1974), BIC (Schwarz, 1978). 

For instances, under certain regularity conditions, Wang et al. (2007) and Wang 

et al. (2009) established the selection consistency of BIC for the SCAD, and Zhang 

et al. (2010) also showed the selection consistency of generalized information 

criterion (GIC) for the SCAD. Most of these criteria follow the route of minimizing 

the estimated prediction error or maximizing the posterior model probability. To 
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the best of our knowledge, few criteria has been developed directly focusing on 

the selection of the informative variables. 

This thesis proposes a general tuning parameter selection criterion based on a 

novel concept of variable selection stability. Similar stability measures have been 

studied in the context of clustering (Ben-Hur et al., 2002; Wang, 2010) and 

variable selection (Meinshausen and Buhlmann, 2010). The key idea is that if 

multiple samples are available from the same distribution, a good variable 

selection method should yield similar sets of informative variables that do not 

vary much from one sample to another. 

The effectiveness of the proposed selection criterion is demonstrated in a variety 

of simulated examples and real applications. More importantly, its asymptotic 

selection consistency is established, showing that the variable selection method 

with the selected tuning parameter would recover the truly informative variable 

set with probability tending to 1. 

2.5 Penalized Methods for Variable Selection 

Consider a linear regression model 

 Y = X0β + ε (2.11) 

where β is a p × 1 vector of regression coefficients associated with X. We are 

interested in estimating β when p → ∞ as the sample size n → ∞ and when β is 

sparse, in the sense that many of its elements are zero. However, the traditional 

variable selection can introduce severe problems such as biases in estimates of 

regression parameters and corresponding standard errors, instability of selected 

variables or an overoptimistic estimate of the predictive value (Chen and George, 
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1985; Houwelingen and Cassella, 1990; Harrell et.al, 1996; Sauerbrei, 1999). To 

overcome some of these difficulties several proposals were made during the last 

few decades. 

The best classical subset variable selection suffers from several drawbacks, the 

most severe of which is its lack of stability as analysed, for instance, by Breiman 

(1996). In an attempt to automatically and simultaneously select variables, a 

unified approach via penalized least squares, retaining good features of both 

subset selection and ridge regression is proposed. The penalty functions have to 

be singular at the origin to produce sparse solutions (many estimated coefficients 

are zero), to satisfy certain conditions to produce continuous models (for stability 

of model selection), and to be bounded by a constant to produce nearly unbiased 

estimates for large coefficients. 

The bridge regression proposed in Frank and Friedman (1993) and the least 

absolute shrinkage and selection operator (LASSO) proposed by Tibshirani 

(1996, 1997) are members of the penalized least squares, although their 

associated Lq penalty functions do not satisfy all of the preceding three required 

properties. The penalized least squares idea can be extended naturally to 

likelihood-based models in various statistical contexts. 

In many cases, it is reasonable to assume a sparse model, because the number of 

important covariates is usually relatively small, although the total number of 

covariates can be large. We use the SCAD method to achieve variable selection 

and estimation of β simultaneously. The SCAD method is proposed by Fan and Li 

(2006) in a general parametric framework for variable selection and efficient 

estimation. This method uses a specially designed penalty function, the smoothly 

clipped absolute deviation (hence the name SCAD). 
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Compared to the classical variable selection methods such as subset selection, the 

SCAD has two advantages. First, the variable selection with SCAD is continuous 

and hence more stable than the subset selection, which is a discrete and non-

continuous process. Second, the SCAD is computationally feasible for 

highdimensional data. In contrast, computation in subset selection is 

combinatorial and not feasible when p is large. 

In addition to the SCAD method, several other penalized methods have also been 

proposed to achieve variable selection and estimation simultaneously. Examples 

include the bridge penalty (Frank and Friedman, 1993), LASSO (Tibshirani, 

1996), and the Elastic-Net (Enet) penalty (Zou and Hastie, 2005), among 

others. 

Fan and Li (2006) and Fan and Peng (2004) studied asymptotic properties of 

SCAD penalized likelihood methods. Their results are concerned with local 

maximizers of the penalized likelihood, but not the maximum penalized 

estimators. These results do not imply existence of an estimator with the 

properties of the local maximize without auxiliary information about the true 

parameter value. Therefore, they are not applicable to the SCAD-penalized 

maximum likelihood estimators, nor the SCAD-penalized estimator. 

Knight and Fu (2000) studied the asymptotic distributions of bridge estimators 

when the number of covariates is fixed. Huang, Horowitz and Ma (2006) studied 

the bridge estimators with a divergent number of covariates in a linear regression 

model. They showed that the bridge estimators have an oracle property under 

appropriate conditions if the bridge index is strictly between 0 and 1. 

Several earlier studies have investigated the properties of regression estimators 

with a divergent number of covariates. See, for example, (Huber, 1981) and 
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(Portnoy, 1984, 1985). Portnoy proved consistency and asymptotic normality of 

a class of M-estimators of regression parameters under appropriate conditions. 

However, he did not consider penalized regression or selection of variables in 

sparse models. 

In this thesis, the researcher studied the asymptotic properties of the 

SCADpenalized least squares estimator, abbreviated as LS-SCAD estimator 

henceforth. It was found that the LS-SCAD estimator can correctly select the non-

zero coefficients with probability converging to one and that the estimators of the 

non-zero coefficients are asymptotically normal with the same means and 

covariances as they would have if the zero coefficients were known in advance. 

Thus, the LS- 

SCAD estimators have an oracle property in the sense of Fan and Li (2001) and 

Fan and Peng (2004). In other words, this estimator is asymptotically as efficient 

as the ideal estimator assisted by an oracle who knows which coefficients are 

nonzero and which are zero. 

Definitions to the LS-SCAD estimator, the consistency and oracle properties as 

well as the algorithm for computing the LS-SCAD estimator and the criterion for 

choosing the penalty parameter are detailed in chapter 3 of this thesis. 

Fan and Li in 2011 performed Variable Selection via Non-concave Penalized 

Likelihood and its Oracle Properties. Their proposed methods select variables 

and estimate coefficients simultaneously. Hence they enable us to construct 

confidence intervals for estimated parameters. The proposed approaches are 

distinguished from others in that the penalty functions are symmetric, non-

concave on (0,∞), and have singularities at the origin to produce sparse solutions. 

Furthermore, the penalty functions should be bounded by a constant to reduce 
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bias and satisfy certain conditions to yield continuous solutions. A new algorithm 

was proposed for optimizing penalized likelihood functions. 

The proposed ideas was widely applicable. They are readily applicable to a variety 

of parametric models such as generalized linear models and robust regression 

models. They could also be applied easily to non-parametric modelling by using 

wavelets and splines. Rates of convergence of their proposed penalized likelihood 

estimators were established. Furthermore, with proper choice of regularization 

parameters, they showed that the proposed estimators perform as well as the 

oracle procedure in variable selection; namely, they work as well as if the correct 

sub model were known. Their simulation shows that the newly proposed 

methods compare favourably with other variable selection techniques. 

Furthermore, standard error formulas were tested to be accurate enough for 

practical applications. 

The Fan and Li (2011) approach is distinguished from traditional methods 

(usually quadratic penalty) in that the penalty functions are symmetric, convex 

on (0,∞), (rather than concave for the negative quadratic penalty in the penalized 

likelihood situation), and possess singularities at the origin. A few penalty 

functions are discussed. They allow statisticians to select a penalty function to 

enhance the predictive power of a model and engineers to sharpen noisy images. 

Optimizing a penalized likelihood is challenging, because the target function is a 

high-dimensional non-concave function with singularities. Their new and generic 

algorithm yields a unified variable selection procedure. A standard error formula 

for estimated coefficients is obtained by using a sandwich formula. The formula 

is tested accurately enough for practical purposes, even when the sample size is 

very moderate. The proposed procedures are compared with various other 

variable selection approaches and the results indicated favourable performance 

of their newly proposed procedures. 
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For models with main interest in a good predictor, the LASSO by Tibshirani, 

(1996) has gained some popularity. By minimizing residuals under a constraint, 

it combines variable selection with shrinkage. It can be regarded, in a wider sense, 

as a generalization of an approach by Houwelingen and Cessie (1990), who 

proposed to improve predictors with respect to the average prediction error by 

multiplying the estimated effect of each covariate with a constant, an estimated 

shrinkage factor. As the bias caused by variable selection is usually different for 

individual covariates, Sauerbrei, (1999) extends their idea by proposing 

parameter-wise shrinkage factors. The latter approach is intended as a post-

estimation shrinkage procedure after selection of variables. To estimate 

shrinkage factors the latter two approaches used cross-validation calibration and 

also applied them in GLMs and regression models for survival data. 

In their article titled ”Cross-Validation, Shrinkage and Variable Selection in Linear 

Regression Revisited”, Houwelingen and Sauerbrei, (2013) proposed the data re-

sampling approaches to handle data-dependent model building. In order to assess 

and compare several strategies, they conducted a simulation study with 15 

predictors and a complex correlation structure in the linear regression model. 

Using sample sizes of 100 and 400 and estimates of the residual variance 

corresponding to R2 of 0.50 and 0.71, they considered 4 scenarios with varying 

amount of information. They also consider two examples with 24 and 13 

predictors, respectively. They discussed the value of cross-validation, shrinkage 

and back-ward elimination (BE) with varying significance level. 

They assessed whether 2-step approaches using global or parameter wise 

shrinkage (PWSF) can improve selected models and compare results to models 

derived with the LASSO procedure. Besides MSE, they used model sparsity and 

further criteria for model assessment. The amount of information in the data had 

an influence on the selected models and the comparison of the procedures. None 
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of the approaches was best in all scenarios. The performance of backward 

elimination with a suitably chosen significance level was not worse compared to 

the LASSO and BE models selected were much sparser, an important advantage 

for interpretation and transportability. Compared to global shrinkage, PWSF had 

better performance. Provided that the amount of information is not too small, 

they concluded that BE followed by PWSF is a suitable approach when variable 

selection is a key part of data analysis. 

Two penalization methods, and a hybrid of these, are most commonly used. Ridge 

regression (Hoerl and Kennard, 1970) uses a penalty on the L2 norm of the 

coefficients, which introduces bias in the prediction error in exchange for reduced 

variance. However, ridge regression keeps all variables in the model and thus 

cannot produce a parsimonious model from many variables. LASSO regression 

(Tibshirani, 1996; 1997) penalizes the L1 norm, which tends to reduce many 

coefficients to exactly zero and thus performs variable selection in addition to 

prediction. However, the LASSO has been noted to be inferior to Ridge regression 

for prediction in lower dimensional situations, and tends to select only one of a 

group of collinear variables, which may not always be desirable (Zou and Hastie, 

2005). 

Zou and Hastie (2005) thus proposed the Elastic Net, penalizing both the L1 and 

L2 norms with individual tuning parameters, as a way to achieve the best of both 

LASSO and Ridge. These three variants of penalized regression-LASSO, Ridge and 

Elastic Net have since been applied to a variety of phenotype prediction tasks 

using genomic data (for example, Sharma, 2008; Shedden, 2008). The elastic net 

performs simultaneous regularization and variable selection. It is able to perform 

grouped selection and is appropriate for the p > n problem. It gives a more reliable 

analytical results on the degree of freedom of the elastic net over LASSO and has 
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Interesting applications in other areas such as sparse PCA and new support 

kernel machines (Zou and Hastie, 2005) 

Several previous simulation studies have investigated properties of the Elastic 

Net (Zou and Hastie, 2005), the LASSO and Ridge regression (Bovelstad, 2007; 

Gui and Li, 2005; Yuan and Lin, 2006). 

Recently, variable selection methods using a penalized likelihood with penalty 

functions have been widely studied in various statistical models such as linear 

models, generalized linear models and Cox’s (1972) proportional hazards (PH) 

models. The main advantage of those methods is that they select important 

variables and estimate the regression coefficients of the covariates, 

simultaneously. 

Such methods, for example, include the least absolute shrinkage and selection 

operator (LASSO) by Tibshirani, (1996), smoothly clipped absolute deviation 

(SCAD) by Fan and Li, (2001, 2002), and adaptive-LASSO (Zou, 2006), etc. but 

have not compared all these methods with alternative strategies for their appli- 

cation. 

In this thesis, the researcher propose a simple but unified penalized h-likelihood 

method for variable selection of fixed effects in a general class of semi parametric 

models. Here, the study consider three penalty functions, LASSO, SCAD and h-

likelihood (HL; Lee and Oh, 2009). In contrast, the SCAD penalty provides good 

properties such as oracle property, while the HL penalty is un-bounded at the 

origin (Lee and Oh, 2009) and gives a very good performance in various low and 

high dimensional problems (Lee et al., 2010; Lee et al., 2011a,b). Note that the 

SCAD penalty method leads to an oracle maximum likelihood (ML) estimator, 

whereas the HL penalty approach gives an oracle shrinkage estimator (Kwon et 

al., 2013). In other words, an oracle ML estimator is the ML estimator when all 
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covariates with non-zero coefficients are known. Fan and Peng (2004) showed 

that a local solution of the SCAD penalty is asymptotically equivalent to an oracle 

ML estimator. 

Similarly, an oracle shrinkage estimator is the shrinkage estimator when all 

covariates with non zero coefficients are known. Kwon et al. (2013) showed that 

a local solution for the HL penalty is an oracle shrinkage estimator. It is well 

known that shrinkage estimations would be preferred for prediction (Efron and 

Morris, 1975; Casella, 1985; Lee and Nelder, 2006). The Simulation results in 

chapter 4 show that the HL has higher probability of choosing the true model than 

the LASSO and SCAD methods without losing prediction accuracy. 

The study shows that the proposed approach can be easily implemented via a 

slight modification to the existing h-likelihood estimation procedures (Ha and 

Lee, 2003; Ha et al., 2011). It also investigates via crop yield dataset the 

performances of the three variable-selection methods (LASSO, SCAD and HL) 

within the framework of the proposed procedure. 

The study presents a comprehensive assessment and optimization of these 

methods via sparse penalized approaches such as the least absolute shrinkage 

and selection operator (LASSO) (Tibshirani, 1996), the smoothly clipped absolute 

deviation (SCAD) penalty (Fan and Li, 2001) and the very recent H-likelihood 

approach (Lee and Nelder, (2006)) using the crop yield dataset in this 

dissertation. 

The study demonstrates the concepts of Cross-Validation, Shrinkage and Variable 

Selection by comparing the approaches of each of the above mentioned sparse 

penalized approaches to variable selection. All these methods have common 

advantages over subset selection procedures; they are computationally simpler, 
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the derived sparse estimators are stable, and they facilitate higher prediction 

accu- 

racies. 

The sparse penalized methods are useful techniques for selection of relevant 

variables in many practical problems. For example, Tibshirani (1996) introduced 

the least absolute shrinkage and selection operator (LASSO) and found that it can 

perform parameter estimation and variable selection simultaneously. Another 

popular method, the smoothly clipped absolute deviation (SCAD) penalized 

estimation, was proposed by Fan and Li (2001) and Fan and Peng (2004). They 

proved that the SCAD estimator has the oracle property-the asymptotic 

equivalence of the SCAD estimator with the oracle estimator. Here, the oracle 

estimator is an estimator obtained by deleting all irrelevant predictive variables 

(i.e., variables whose true regression coefficients are zero) in advance. 

Several theoretical results about sparse penalized approaches have been studied. 

For the LASSO, Knight and Fu (2000) studied asymptotic properties of LASSOtype 

estimators with a fixed number of parameters. Zou (2006) developed the 

adaptive LASSO that has the oracle property when the weights over the shrinkage 

parameters are controlled properly. 

For high-dimensional cases, where the number of parameters exceeds the sample 

size, the sign consistency of the LASSO estimator was proved by Zhao and Yu 

(2006) and Meinshausen and Buhlmann (2006), respectively. For the SCAD, Fan 

and Li (2001) and Fan and Peng (2004) proved that the SCAD estimator achieves 

the oracle property for the case of a diverging number of parameters, and this 

result is extended to high-dimensional cases by Kim et al. (2008a). 
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Computational complexities should be considered in using sparse penalized 

methods. For the LASSO, Efron et al. (2004) developed the least angle regression 

(LARS) algorithm which can find the entire solution path of the LASSO estima- 

tor exactly. 

A similar path-finding algorithm was proposed by Rosset and Zhu (2007) for the 

families of regularized problems that have the piecewise quadratic property. For 

generalized linear models, Kim et al. (2008b) suggested a gradient decent 

algorithm and Park and Hastie (2007) introduced an approximated path-finding 

algorithm using the idea of the LARS algorithm. For the SCAD, computational 

techniques are more involved since the SCAD penalty is non convex. Fan and Li 

(2001) suggested an iterative local quadratic approximation (LQA) algorithm to 

apply a modified Newton-Raphson algorithm. Kim et al. (2008a) and Wu and Liu 

(2009) proposed concave-convex procedure (CCCP) techniques to find an exact 

local minimizer of the SCAD penalized loss function, and Zou and Li (2008) 

introduced a local linear approximation algorithm and proved that their 

approximation is the tightest convex upper bound of the SCAD penalty function. 

Recently, Wang and Leng (2007) proposed a method of least squares 

approximation (LSA) which provides a simple unified framework applicable to 

most LASSO estimations. The LSA estimator still possesses most of properties of 

the original 

LASSO estimator and can be calculated easily by adapting the LARS algorithm. 

Theoretical properties of the sparse penalized approaches have been studied by 

many authors. For a finite number of parameters, Knight and Fu (2000) studied 

the properties of LASSO-type estimators. Fan and Li (2001) proved that there 

exists a local maximizer of the SCAD-penalized log-likelihood that achieves the 

oracle property. Here, the oracle property means that a penalized maximum 
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likelihood estimator (MLE) is asymptotically equivalent to the oracle MLE that is 

an ideal non-penalized MLE obtained by deleting all irrelevant parameters in 

advance. Zou (2006) proposed the adaptive LASSO that achieves the oracle 

property by varying the weights on the tuning parameter. 

Patrick Waldmann et.al, (2013) compared the statistical performance of two 

methods (the least absolute shrinkage and selection operator-LASSO and the 

elastic net) on two simulated datasets and one real dataset from a 50K 

genomewide single nucleotide polymorphism(SNP) panel of 5,570 Fleckvieh 

bulls. They used cross validation to find the optimal value of regularization 

parameter λ with 

both minimum MSE and minimum MSE + 1SE of minimum MSE. The opti- 

mal λ values were used for variable selection. Based on the first simulated data, 

they found that the minMSE in general picked up too many SNPs. At min MSE 

+1SE, the LASSO didn’t acquire any false positives, but selected too few correct 

SNPs. The elastic net provided the best compromise between few false positives 

and many correct selections when the penalty weight α was around 0.1. However, 

in their simulation setting, this α value didn’t result in the lowest minMSE +1SE. The 

number of selected SNPs from the QTLMAS 2010 data was after correction for 

population structure 82 and 161 for the LASSO and the elastic net, respectively. 

In the Fleckvieh dataset after population structure correction lasso and the elastic 

net identified from 1291 to 1966 important SNPs for milk fat content, with major 

peaks on chromosomes 5, 14, 15, and 20. Hence, conclude that it is important to 

analyse GWAS data with both the lasso and the elastic net and an alternative 

tuning criterion to minimum MSE is needed for variable 

selection. 
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For a diverging number of parameters, Fan and Peng (2004) proved that the 

results of Fan and Li (2001) hold when the number of parameters is less than the 

sample size. Kim, Choi, and Oh (2008) studied the asymptotic properties of the 

SCAD-penalized least square estimator (LSE) in linear regression when the 

number of parameters exceeds the sample size. They proved that the oracle LSE 

asymptotically becomes a local minimizer of the SCAD-penalized residual sum of 

squares. They also proved that the oracle LSE asymptotically becomes the global 

minimizer of the SCAD-penalized residual sum of squares when the design matrix 

is non-singular. Zhao and Yu (2006) and Meinshausen and Buhlmann (2006) 

proved the sign consistency of the LASSO when the number of parameters 

exceeds the sample size. The sure independence screening method, a type of 

correlation learning, was proposed by Fan and Lv (2010) for ultrahigh-

dimensional model selection problems. For a detailed overview of current 

research on variable selection in high-dimensional models, see Fan and Lv 

(2010). 

In their article titled ” Asymptotic oracle properties of SCAD-penalized least 

squares estimators”, Jian Huang and Huiliang Xie (2007) studied the asymptotic 

properties of the SCAD-penalized least squares estimator in sparse, 

highdimensional, linear regression models when the number of covariates may 

increase with the sample size. They were particularly interested in the use of this 

estimator for simultaneous variable selection and estimation. They showed that 

under appropriate conditions, the SCAD-penalized least squares estimator is 

consistent for variable selection and that the estimators of non zero coefficients 

have the same asymptotic distribution as they would have if the zero coefficients 

were known in advance. Simulation studies indicate that this estimator performs 

well in terms of variable selection and estimation. What this study seeks to do is 

to compare the number of significant variables selected by each of the specified 

methods and propose the best amongst them based on the one that gives the 
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least penalized cross-validated errors (PCVE). 

2.6 Joint-GLM and Hierarchical Generalized Linear 

Models 

In addition to variable selection, this thesis is interested in modelling crop yield 

in the three northern regions of Ghana using the recently developed randomeffect 

models known as hierarchical Generalized Linear Models (HGLMs; Lee and 

Nelder, 1996; Lee, Nelder and Pawitan, 2006). Fan and Li (2002) proposed the 

penalized marginal likelihood method using the SCAD penalty function for 

gamma frailty model, and very recently Androulakis et al. (2012) extended it to 

other frailty distributions such as inverse Gaussian distribution. The models they 

considered are the shared models with only one frailty component, using frailty 

distributions which give an explicit marginal likelihood (Andersen et al., 1997). 

However, the marginal likelihood function of such models involves analytically 

intractable integrals when eliminating the frailties. The hierarchical likelihood (h-

likelihood; Lee and Nelder, 1996) obviates the need for the marginalization over 

the frailty distribution and provides a statistically efficient procedure in various 

random-effect models such as hierarchical GLMs (HGLMs; Lee and Nelder, 

1996; Lee, Nelder and Pawitan, 2006). 

HGLMs consist of the three objects, namely the data, fixed unknown constants 

(parameters) and unobserved random variables (unobservable s). Traditional 

Bayesian models consist of the two objects, the data and unobservable s, while 

frequentist’s (or Fisher’s) models consist of the data and parameters. By allowing 

all three objects in the statistical modeling it is possible to describe various 

features in the data, for example, within-subject correlation in longitudinal 

studies, smooth spatial and temporal trends, function fittings, and factor analysis, 

heteroskedasticity, heavy-tailed distributions, robust modelling and sparse 

variable selections. 
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In the statistical literature, unobservable s appear with various names such as 

random effects, latent processes, factor, missing data, unobserved future 

observations, potential outcomes etc. Handling of such unobservable s is the key 

to new extended likelihood inferences. Lee and Nelder (1996, 2006) and Lee et 

al., (2006) have shown how to model and make inferences using the h-likelihood. 

Inferences about unobservables can be made without resorting to an empirical 

Bayes framework (Lee and Nelder, 2010). A single algorithm, iterative weighted 

least squares, can be used throughout all new models and requires neither prior 

distributions of parameters nor multi-dimensional quadrature. The h-likelihood 

plays a key role in the synthesis of the computational algorithms needed for broad 

class of new models. 

The hierarchical generalized linear models is a synthesis of three widely used 

existing model classes; generalized linear models (McCullagh and Nelder, 1989), 

linear mixed models having both fixed and random effects (Longford, 1993) and 

models with structured dispersion as used in the analysis data from quality 

improvement experiments (Nelder and Lee, 1991, 1998). It uses the h-likelihood 

(Lee and Nelder, 1996) for inference about fixed and random effects given 

dispersion components and an adjusted profile h-likelihood for inference about 

dispersion components given fixed and random effects. This method therefore 

leads to reliable and useful estimators. It shares properties with those derived 

from marginal likelihoods, while having the considerable advantage of not 

requiring the integrating out of random effects. 

The algorithm for fitting these models can be reduced to the fitting of 

twodimensional set of generalized linear models, one dimension been mean and 

dispersion, and the other been fixed and random effects, so that no special code 

is needed for the estimation of dispersion components. This formulation implies 

that, the models-checking techniques derived for generalized linear models 
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(McCullagh and Nelder, 1989, chapter 12), can be carried over to the wider class. 

The hierarchical generalized linear models method does not require the use of 

prior probabilities. The model, it’s fitting methods as well as theoretical 

justification are detailed in chapter three of this thesis. 

Jiao H et.al (2005) in their article titled ”Modelling local item dependence with the 

hierarchical generalized linear model”, proposes a three-level hierarchical 

generalized linear model (HGLM) to model LID when LID is due to such contextual 

effects. The proposed three-level HGLM was examined by analysing simulated 

data sets and was compared with the Rasch-equivalent two-level HGLM that 

ignores such a nested structure of test items. The results demonstrated that the 

proposed model could capture LID and estimate its magnitude. Also, the twolevel 

HGLM resulted in larger mean absolute differences between the true and the 

estimated item difficulties than those from the proposed three-level HGLM. 

Furthermore, it was demonstrated that the proposed three-level HGLM estimated 

the ability distribution variance unaffected by the LID magnitude, while the 

twolevel HGLM with no LID consideration increasingly underestimated the ability 

variance as the LID magnitude increased. Noh et al., (2005) modelled heavy tailed 

distributions for random effects to take ascertainment into account in human QTL 

studies. Noh et al., (2006) used HGLM to minimize bias in heritability estimation 

for binary traits in human family data. HGLM has also been successfully applied 

in survival analysis with random effects (Noh et al., 2006). 

2.7 Modelling Crop Yield 

Statistical models, in which historical data on crop yields and weather are used to 

calibrate relatively simple regression equations, provide a common alternative to 

process-based models. Three main types of statistical approaches are found in the 

literature: those based purely on time series data from a single point or area (time 
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series methods), those based solely on variations in space (cross-section 

methods) and those based on variations both in time and space (panel methods). 

Time-series models are generally believed to have the advantage of capturing the 

behaviour particular to the given area, whereas panel and cross-section methods 

must assume common parameter values for all locations, and cross-section 

methods in particular are prone to errors from omitted variables such as soil 

quality or fertilizer inputs that vary spatially. On the other hand, time-series 

models are often limited by data whereas panel and cross-section methods can 

aggregate data from multiple sites. A further discussion of the strengths and limits 

of particular methods in the context of predicting yield responses to climate 

change can be found in Lobell and Burke (2009). 

The main advantages of statistical models are their limited reliance on field 

calibration data, and their transparent assessment of model uncertainties. For 

example, if a model does a poor job of representing crop yield responses to 

climate, this will be reflected in a low coefficient of determination (R2) between 

modelled and observed quantities, as well as a large confidence interval around 

model coefficients and predictions. Although process-based models could in 

theory be accompanied with similar statistics, in practice they rarely are. 

Statistical models are not without serious shortcomings, however, and in 

particular they are subject to problems of co-linearity between predictor 

variables (e.g., temperature and precipitation), assumptions of stationarity (e.g., 

that past relationships will hold in the future, even if management systems 

evolve), and low signal-to-noise ratios in yield or weather records in many 

locations. 

An example of the co-linearity problem was highlighted by Sheehy et al. (2006) in 

response to the statistical models of Peng et al. (2004), which showed a 10 per 

cent decline of Philippine rice yields with a 10C increase in average minimum 
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temperature (Tmin). Sheehy et al. (2006) argued that solar radiation was a strong 

negative correlate of Tmin, and thus an apparent negative effect of warming could 

easily arise from a positive effect of higher solar radiation. Similarly, Lobell and 

Ortiz-Monasterio (2007) showed that historical correlations between Tmin and 

wheat yields in Mexico arose in part because of a negative correlation between 

solar radiation and Tmin. 

Despite the frequent caveats to results from statistical approaches (e.g., White, 

2009), little work has been done to systematically evaluate their performance for 

predicting yield responses to climate. As their widespread use continues, it would 

be useful to know the specific conditions under which these models are most 

likely to mislead, and to quantify the errors incurred by adopting this convenient 

if imperfect approach. Moreover, because the aforementioned factors that 

challenge statistical approaches (e.g., co-linearity, signal-to-noise) will vary with 

scale, it is useful to evaluate statistical models at a range of different spatial scales. 

As a step toward these goals, this dissertation evaluates the ability of statistical 

models to predict yield responses to some nine (9) variables and their interaction 

terms for nearly 790 sites in the three Northern regions of Ghana. Since the ’true’ 

yield responses are unknown, we invoke the ’perfect model’ approach whereby a 

statistical model is tested for its ability to recreate the underlying relationships 

between the factors used and yields. Such a study is very relevant in our country 

Ghana since Agriculture is our main backbone. 

The World Bank in 2009 presents Ghana’s GDP shares of agriculture, industry, 

manufacturing (as part of industry) and services between 1965 and 2008. The 

report indicates that before the late 1980s when the economy growth rate was 

negative, agricultural growth rate, which was also negative, was less negative 

than the other sectors in the economy. Thus, our GDP share of agriculture rose in 
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this period and peaked at 60 per cent in a few years in the late 1970s and early 

1980s. When growth started to recover and turned into positive after 1983, the 

non-agricultural sector needed more recovery time as it declined more in the 

previous period. While growth in the agricultural sector also turned to become 

positive, its share in GDP fell back to its level in the 1960s immediately after the 

independence. 

Improved understanding of the potential effects of climate change on crop yields 

is central to planning appropriate and timely responses. Analysts wishing to 

anticipate these effects must inevitably rely on some conceptual or numerical 

model of how crop yields respond to climate. A widely used approach to this 

prediction problem is to rely on numerical models that emulate the main 

processes of crop growth and development. These process-based models are 

typically developed and tested using experimental trials and thus offer the 

distinct advantage of leveraging decades of research on crop physiology and 

reproduction, agronomy, and soil science, among other disciplines. Yet these 

models also require extensive input data on cultivar, management, and soil 

conditions that are unavailable in many parts of the world. 

More significantly, even in the presence of such data these models can be very 

difficult to calibrate because of a large numbers of uncertain parameters. Often 

this parameter uncertainty is ignored and a subjective decision is made to 

proceed with a single set of parameter values that produces acceptable 

agreement with observations. When uncertainties in parameter values are 

explicitly considered, however, the uncertainty estimates for model projections 

can widen substantially. 

For example, Iizumi et al. (2009) and Tao et al. (2009) describe efforts to estimate 

distributions of parameter values for a simplified process-based model from data 
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on yields of rice and maize, respectively. Both studies employed a Markov Chain 

Monte Carlo technique to retrieve parameter distributions, with the width of 

these distributions reflecting the inability of historical datasets to completely 

constrain parameter values. Parameter uncertainties then translated to large 

uncertainties in projecting responses to climate change, particularly for future 

scenarios that exceeded those in the calibration period (Iizumi et al., 2009). 

This is a common technique, for instance, in climate modelling studies where one 

model is used as ’observations’ and the others are tested for their ability to 

reproduce observations (Murphy et al.,2004; Tebaldi and Knutti, 2007). This 

approach does not rely on the ’perfect model’ actually being perfect (which no 

model is), but rather tests the ability of a given model and calibration technique 

to recreate the behaviour of a reference model. In this case, they used the well-

established and widely used process-based model CERES-Maize as our ’perfect 

model’ to simulate historical yields, and then fit statistical regressions to the 

simulated data. They then evaluated the performance of the statistical models for 

different sites, level of spatial aggregation, and number of years used to calibrate 

the model. 

Food security is a crucial issue in sub-Saharan Africa as a consequence of 

unreliable rainfall, marginal soil fertility and a low level of inputs leading to 

declining crop yields. As a case study, Braimoh and Vlek, 2005 investigated the 

most important variables affecting maize yield in northern Ghana. They combined 

a soil quality index on a continuous scale with a social data set to model maize 

yield using linear multiple regression. Five significant variables were identified 

(P < 0.05): soil quality index, fertilizer use, household size, distance from main 

market, and the interaction between fallow length and soil quality index. The 

effect of the interaction between soil quality and fallow on maize yield is negative, 

suggesting the influence of litter quality and N immobilization in the soils. Their 
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conclusion was that, Research and policy should focus on the development of site-

specific, legume-based cropping, and the integration of crop and livestock 

farming in Northern Ghana and similar areas in sub-Saharan Africa. 

Evenson and Mwabu in 2001 studied land productivity effects of the training and 

visit (T and V) systems of agricultural extension in Kanya, taking into account 

other determinants of crop yields such as the schooling of farmers and 

characteristics of agro-ecology. The T and V system was incorporated into 

Kanya’s system of agricultural extension in 1982 as a strategy for raising farm 

yields. The data they used evaluate the performance were collected by the 

government of Kanya in 1982 and 1990, but the estimation results reported in 

their paper were based primarily on the 1982 data set. The sample used for 

estimation contains information about crop production, agricultural extension 

workers, educational attainment of farmers, usage of farm inputs among others. 

A quantile Regression technique was used to investigate productivity effects of 

agricultural extension and other farm inputs over the entire conditional 

distribution of farm yield residuals. 

Their results showed that, productivity effect of agricultural extension is highest 

for farmers at the extreme ends of distribution of yield residuals. Complementary 

of unobserved farmer ability with extension service at higher yield residuals and 

the diminishing returns to the extension inputs, which are uncompensated for by 

the ability at the lower tail of the distribution, are hypothesized to account for this 

U-shaped pattern of the extension effect. Their findings suggests that for a given 

level of extension input, unobserved factors such as farm management abilities, 

affect crop yield differently. Effects of schooling on farm yields are positive but 

statistically insignificant. Other determinants of farm yields they analysed 

included labour input, farmers experience, agro-ecological characteristics of 

farms, fallow acreage, and type of crop grown (Evenson and Mwabu, 2001). 
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Lobell and Burke in 2010 studied the use of statistical models to predict crop yield 

responses to climate change. In their study, predicting the potential effects of 

climate change on crop yields requires a model of how crops respond to weather. 

As predictions from different models often disagree, understanding the sources 

of this divergence is central to building a more robust picture of climate changes 

likely impacts. They used a perfect model approach to examine the ability of 

statistical models to predict yield responses to changes in mean temperature and 

precipitation, as simulated by a process-based crop model. The CERES-Maize 

model was first used to simulate historical maize yield variability at nearly 200 

sites in Sub-Saharan Africa, as well as the impacts of hypothetical future scenarios 

of 20C warming and 20 per cent precipitation reduction. Statistical models of 

three types (time series, panel, and cross-sectional models) were then trained on 

the simulated historical variability and used to predict the responses to the future 

climate changes. 

The agreement between the process-based and statistical models’ predictions 

was then assessed as a measure of how well statistical models can capture crop 

responses to warming or precipitation changes. The performance of statistical 

models differed by climate variable and spatial scale, with time-series statistical 

models ably reproducing site-specific yield response to precipitation change, but 

performing less well for temperature responses. In contrast, statistical models 

that relied on information from multiple sites, namely panel and cross-sectional 

models, were better at predicting responses to temperature change than 

precipitation change. 

The models based on multiple sites were also much less sensitive to the length of 

historical period used for training. For all three statistical approaches, the 

performance improved when individual sites were first aggregated to country-

level averages. Results suggest that statistical models, as compared to CERES-



 

59 

Maize, represent a useful, even if imperfect, a tool for projecting future yield 

responses, with their usefulness higher at broader spatial scales. It is also at these 

broader scales that climate projections are most available and reliable, and 

therefore statistical models are likely to continue to play an important role in 

anticipating future impacts of climate change (Lobell and Burke, 2010). 

The Alliance for a Green Revolution in Africa (AGRA) with the primary goal of 

easing the flow of produce from the farm-gate to the market by linking 

smallholder farmers to commercial buyers and processors (FtM Grant Narrative 

Report, 2011) is one of the key agencies presently undertaking broad range of 

activities, including the provision of education and advisory services to farmers, 

expansion of farmer institutions, and development of agribusiness and improving 

market linkages, aimed at raising the productivity of Ghanaian farmers. Their 

primary goal it to ease the flow of produce from the farm-gate to the market by 

linking smallholder farmers to commercial buyers and processors (FtM Grant 

Narrative Report, 2011). However, recent analysis show that for a majority of 

staple crops, agricultural productivity is decreasing and any output gains if sub-

Saharan Africa are attributed primarily to the expansion of cultivated land 

(Kraybill, Bashsaasha, and Betz, 2009). These practices have contributed to 

Ghana to having one of the highest rates of soil depletion in all of Sub-Saharan 

Africa. 

Improved farming technologies such as high yield crop varieties, chemical 

fertilizers, and irrigation techniques have been central in raising yields in other 

parts of the world; however, African farmers have been much slower in adopting 

these new methods. One reason that farmers cite for not adopting the new 

technologies is a lack of information regarding how to apply the improved inputs 

(Morris, Kelly, Kopicki, and Byerlee, 2007). In many cases if the improved inputs 

are not applied correctly yields will be lower than traditional crop varieties, 

leading farmers to abandon the new technologies. Consequently, access to 
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reliable information is an integral part in any farmer’s ability to raise 

productivity. Information about improved methods or new technologies come 

through a variety of mechanisms such as formal government extension, mass 

media such as radio, and as often is the case, through other farmers. 

Agricultural extension is the primary mechanism that developing country 

governments use to assist farmers in expanding their ability to adopt and 

implement new methods and to relay information concerning new technologies. 

Throughout Africa extension programs have the reputation of being largely 

ineffective (Dejene, 1989; Gautam, 2000), adding very little to the productivity of 

farmers. This reputation is no exception in Ghana. 

Previous studies have investigated the relationship between agricultural 

extension and productivity with varying results. Birkhaeuser, Evenson, and Feder 

(1991) review 26 studies that use linear regression to determine the relationship 

between extension contact and farm productivity, with only 11 statistically 

significant at the 90 per cent level. Evenson (1997) points out that because of 

large variation in program design and field worker skill it is not feasible to make 

broad generalizations about the economic contribution of agricultural extension. 

Birkhaeuser, Evenson, and Feder (1991) also point out two major difficulties of 

including extension variables in the estimation of agricultural production 

functions. First, most studies use a farm-level extension contact variable that does 

not account for knowledge spill overs occurring when farmers talk to each other 

and exchange information. In this case a farmer that has not been visited by an 

extension agent, but has obtained the same potentially output increasing 

information from a neighbour, has received the treatment without any statistical 

accounting of it, biasing the results upward. 
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The second difficulty with using a farm-level extension variable is that there is 

possible endogeneity within the farmer-extension worker interactions. That is, 

more productive farmers may have some unobservable quality, such as a desire 

for the best farming methods, which would also lead them to seek out extension 

agents. Owens, Hoddinott, and Kinsey (2003) control for the endogeneity of the 

extension variable by including farm plot characteristics, location dummies, and 

a variable representing farmer ability into the regression equation. 

This thesis attempts to correct for both the endogeneity and spill over effects by 

including control variables for farmer ability and information exchange between 

farmers. Another relevant question with respect to agricultural extension in 

Ghana is whether the farmer-extension worker interaction has differential effects 

on farms of different size. As is the case in most developing countries, the 

Ghanaian government can only devote limited resources to agricultural extension 

programs and so most programs are only administered to a limited proportion of 

the population. Because there is significant variation of farm size throughout the 

three northern regions and Ghana as a whole, and likely significant variation in 

the determinants of output for different sized farms, it is critical for all 

stakeholders, the academia and the general public to understand which support 

services and policies will benefit farms and improve crop yield for the different 

farmer based organizations of different farm sizes. 

Past research has found relationships between farm size and factors of 

production and also farm size and output. Larger farms are more likely to use 

advanced farming inputs such as fertilizer, irrigation, and improved seed varieties 

(Feder, Just, and Zilberman, 1985) when compared to smaller farms. This has led 

many agricultural programs to solely target larger, more sophisticated farms that 

are viewed as better equipped to make use of additional resources. 
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Conversely, a vast literature exists showing an inverse relationship between land 

productivity and farm size (Sen 1962; Berry and Cline 1979; Rosenzweig and 

Binswanger, 1993) suggesting that smaller farms are more productive and would 

be better targets of available resources. It may prove advantageous for the 

Ministry of Agriculture to provide assistance to farms of all sizes simultaneously, 

in which case it is important to understand how extension enters the production 

technology of various farm sizes differently. 

This study further examines the relationship between farm size and crop type, 

with particular attention given to six support services. 

Chapter 3 

Methodology 

3.1 Introduction 

In this chapter, a review the concept of regularization in statistics and penalized 

methods, such as Lasso, SCAD and the H-likelihood are presented. Also, a review 

of existing methods for fixed effects selection such as GLMs and the proposed 

Joint GLM method are presented. For both fixed and random effects modelling, 

the HGLM method is proposed and well discussed in this chapter. 

3.2 The Concept of Regularization in Statistics 

The concept of penalization was first introduced in the context of solving integral 

equation numerically by Tikhonov (1943). As is well known, if f ∈ L2(R) and K(x,y) 

is a smooth kernel, the range of the operator A, R(A), A : L2(R) → L2(R) with (Af)(y) 

≡ R K(x,y)f(x)dx is dense in L2(R) but not onto. Thus, the inverse A−1 is ill-posed. 

The solution to the equation 
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 Af = g (3.1) 

is hard to determine since approximations to g easily lie outside R(A). Tikhonov’s 

solution was to replace 3.1 by the minimization of 

kAf − gk2 + γW(f) 

, where the Tikhonov’s factor γ > 0 is a regularization parameter and W(f) is a 

smoothness penalty such as R [f0(x)]2dx. Numerical (finite dimensional) 

approximations to this problem are much stable. Note that unless γ = 0, the 

solution will not satisfy (3.1). 

There has been an enormous amount of work in statistics dealing with 

regularization in a wide spectrum of problems. An exhaustive survey is beyond 

the scope of this dissertation. We therefore present a unifying view encompassing 

more recent developments. The main features of most current data are both size 

and complexity. The size may permit us to non-parametrically estimate quantities 

which are ’unstable’ and ’discontinuous’ functions of the underlying distribution 

of the data, with the density being a typical example. 

Complexity of the data, which usually corresponds to high dimensionality of 

observations, makes us attempt more and more complex models to fit the data. 

The fitting of models with a large number of parameters is also inherently 

unstable (Breiman, 1996). Both of these features, force us to regularize in order 

to get sensible procedures. For recent discussions of these issues from different 

points of view, see Donoho (2000) and Fan and Li (2006). We will consider only 

the asymptotic of regularization and only in the simplest context, i.i.d samples of 

size n of p dimensional vectors. The main issues are already quite clear in this 

context. 
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Loosely, regularization is the class of methods needed to modify maximum 

likelihood to give reasonable answers in unstable situations. There are also a 

number of generic issues that will arise such as the reasons for choosing 

particular forms of regularization, how to determine the analogue of the 

Tikhonov factor γ which, as we shall see, is somewhat driven by our particular 

statistical goals, and last but not least, computational issues which are also critical 

nowadays. 

3.2.1 Variable selection 

In statistics, the first instance of this type of problem arose in the context of 

multiple linear regression with continuous predictor variables, when the number 

of predictor variables is larger than the sample size. Suppose we observe an i.i.d 

sample (Zi,Yi), i = 1,...,n, where Zi = (Zi1,...,Zip). The resulting model is 

  (3.2) 

Where εi, i = 1,...,n are i.i.d N(0,σ2). In the case of p > n, the usual least squares 

equations ’over-fit’. All observations are predicted perfectly, but there are many 

solutions to the coefficients of the fit and new observations become not uniquely 

predictable. 

The classical solution to this problem was to try to reduce the number of variables 

by processes such as forward and backward regression with reduction in 

variables determined by hypothesis tests, see Draper and Smith (1998), for 

example. An alternative strategy that emerged (Hoerl and Kennard, 1970) was 

ridge regres- 

sion, adding to the residual sum of squares  a plenty, , 

which now yields a unique solution. These methods, often actually have two aims; 

to construct a good predictor (the values of coefficients in the regression are then 
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irrelevant - goal 1) and to give causal interpretations of the factors and determine 

which variables are ’important’ (goal 2). 

Regularization is important for both aims. But, as we shall see, the appropriate 

magnitude of the regularization parameter (tuning parameter) may be governed 

by which aim is more important. Goal 1 is the one which is primary in machine 

learning theory. The model postulated is non-parametric, 

 Y = m(Z) + ε (3.3) 

Where E(ε/Z) = 0 and m is essentially unknown. A fundamental approach is to 

consider a family of basis functions gj(Z), j = 1,2,..., such that m is arbitrarily well 

approximated in, for instance, the L2 sense, inf  

∞ as p → ∞, where β = (β1,...,βp)T . A parametric model postulation with gj(Z) = Z(j), 

j = 1,...,p, corresponds to the linear models specification. Then, 

since, as we have seen, minimizing  is unreasonable for 

, it is consistent with the penalty point of view to minimize 

 n p 

 X X 2 

(Yi − βjgj(Zi)) + γPen(β) (3.4) i−1 j=i 

The regression choice of  is not nowadays the one attracting the 

greatest attention theoretically, but the LASSO, Pen(β) = Ppj=1 |βj2| (Tibshirani, 

1996) is being studied extensively. This stems from the idea that, at least to a high 

degree of approximation, most |βj2| in the best representation of m(Z) as a linear 

combination of p basis elements gj(Z) in the L2 sense are 0. That is, the 

representation is ”sparse” in the sense of Donoho and Johnstone (1998). Then the 

”natural” penalty is 

p 

 Pen(β) = X1(|βj| > 0) (3.5) 
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j=1 

An unpleasant function of β. Evidently,  is the closest convex member 

of the family of penalties . 

Minimizing subject to penalty 3.5 may also be seen as selecting a model including 

the variables with βj 6= 0, following Goal (2). This approach and its generalization 

to generalized linear and other models as well as related penalties has been 

developed by Fan and coworkers and others, see Fan and Li (2001), Fan and Peng 

(2004), Fan and Li (2006) and Zou and Hastie (2005). Note that, at least implicitly, 

this point of view implies that we believe a meaningful (sparse) representation in 

basis functions gj. 

p∗ 

 m(Z) = Xβjgj(Z) (3.6) 
j=1 

is true for some . 

Penalization is far from the only form of regularization that has arisen in statistics. 

In the context of density estimation, binning in histograms is the oldest method, 

and kernel methods were proposed by Rosenblatt (1956) and Parzen 

(1962). In turn these methods led to Nadaraya-Watson estimation (Nadaraya, 

1964; Watson, 1964) in non-parametric regression. There are also methods 

which have appeared outside non-parametric regression contexts, where 

formulations such as semi parametric or generalized linear models do not capture 

the necessary structure. 

Throughout this dissertation, we limit ourselves to the case where our 

observations X1,...,Xn are i.i.d, taking values in a space χ, typically Rp. We assume 

that their common distribution P ∈ P, our model, which through most of our 
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discussion, we assume is non parametric, effectively all P, although we can and 

shall impose smoothness or other general properties on the members of P. We let 

Pn denote the empirical distribution, placing mass n−1 at each observation. 

For our treatment of covariance estimation it may be convenient to think of X = 

(X1,X2,...,Xp,...)T , as a stochastic process for which we have data of size n on the first 

p coordinates, and of the unknown P as living on R∞. However, we will only be 

interested in estimating the covariance matrix of these first p 

coordinates. 

Most statistical activities centre around estimation or testing hypotheses or putting confidence 

regions on parameters, which we define as functions θ(P), mapping P into Θ. Θ is not necessarily 

just R or a Euclidean space. We shall limit ourselves almost exclusively to function valued 

parameters. 

For instance, suppose P ∈ P are characterized as having densities f(.), which are 

continuous. Then θ(P) = f(.) is a parameter. If P is the joint distribution of (Z,Y ), 

then θ(P) = E(Y |Z = .), the regression function is a parameter. It will also be 

convenient to think of parameters which themselves vary with n and p, θ(n,p)(P). 

Thus, the covariance matrix P of (X1,...,Xp)T , which we are interested in studying 

is, θ(p)(P) if we think of our observation as being (X1,X2,...)T . 

Similarly, the extreme percentile of the distribution of X ∈ R, F −1(1) where F is the 

empirical distribution function of X, typically equals ∞ and cannot be estimated, 

but ), the quantile corresponding to the maximum of X1,...,Xn can. We will 

usually suppress such dependence on p and n. Any estimate θˆ(X1,...,Xn) of θ(P) 

may, by sufficiency of the Pn, be thought of as a function θn(Pn), where the domain 
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of θn is at least the possible empirical distributions and typically includes at least 

all finite discrete distributions on χ. The least we can require of an estimate (really 

a sequence of estimates) is consistency: 

 ρ(θ,θˆ(P)) →P 0 (3.7) 

where ρ is Euclidean distance if Θ is Euclidean and ρ is a suitably defined metric, 

e.g., the L2 distance, if Θ is a function space. 

If P contains all discrete distribution, then the natural thing to use as an estimate 

of θ(P) is the ”plug-in” estimate θ(Pn). For instance, if χ ∈ R, and θ(P) is the mean, 

which we represent as θ(P) = R xdP(x), then θ(Pn) = R xdPn(x) = X¯, the sample 

mean. If θ(P) = F(.), where F(x) = P(X ≤ x), the cdf of X, then θ(Pn) is the empirical 

cdf, ). Consistency for plug-in estimates follows if 

1. θ is continuous in %, for a given metric % on P 

2. Pn is consistent with respect to %. That is, %(Pn,P) →P 0 if P is true. 

In the usual situations, where Θ is Euclidean, θ 7→ (.,θ) is smoothly invertible, and 

θ(Pn) makes sense, consistency holds. But, consider the situation we have 

discussed, θ(P) = f(.). Now the density. θ(Pn) doesn’t make sense, since the 

discrete distributions do not belong to P. What is done, in this case, and implicitly 

in all such situations we know about is regularization. A generic regularization 

process is summarized as, 

1. A sequence of approximations. 
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(i) We construct a sequence θk defined on P and the discrete 

distributions, say on M such that ρ(θk(P),θ(P)) → 0, that is, θk(P) → θ(P), 

or more generally %(θk(P),θ(n,p)(P)) → 0 as k,n,p → ∞, for each P ∈ P. 

P 
(ii) θk(Pn) → θk(P) for all k. 

2. Selection of approximations. We select a data determined value kˆ
n(X1,...,Xn) 

and uses as estimate, θkˆn(Pn). 

That is, we approximate θ(P) by a ’nice’, call it regular, parameter θk which can be 

estimated by plug-in and then determine how fine an approximation we will use. 

Of course, k need not be an integer, but could be a continuous parameter such as 

the bandwidth. It is often useful to decompose the 

 θk(Pn) − θ(P) = [θk(Pn) − θk(P)] + [θk(P) − θ(P)] (3.8) 

The first term is naturally identified with variance, the second with bias, and the 

choice of k is the choice of best balance between the two. In this review, we 

necessarily mention only a small subset of the many ways the approximations 

have been chosen, but do stress the importance of the choice of k in many 

instances. 

3.2.2 Sequence Approximation 

We return to model 3.1, which could equally well be written that we observe (Z,Y 

) with a completely unknown joint distribution (subject possibly to moment and 

smoothness conditions). Our goal is estimation in the L2(P) sense of the function 

valued parameter θ(P) = m(.) = E(Y |Z = .). This goal makes sense if we wish, 

knowing P, to predict a new Y given a new Z. If we use the predictor δ(Z), our loss 

is 

Z 
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 `(P,δ(Z)) = (y − δ(Z))2dP(z,y) (3.9) 

The best choice of δ(Z) if, of course, m(Z). Since we don’t know P, we must use our 

”training sample” (X1,...,Xn) to construct δˆ(Z;X1,...,Xn). Since m(Z) cannot be 

estimated by plug-in if Z is continuous, we need to apply regularization. The first 

step is to select a sequence of approximation θk(P) which are meaningful if P = Pn. 

As we mentioned, there are many ways of selecting the sequence θk(P) = mk(.), 

penalization as in (3.4), see, for instance, Zhang et al.(2004), or in a more 

structured way, sometimes referred to as the method of sieves, which we now 

explain. 

We consider the models ) for some β, and define 

an estimate appropriate to the parametric model Pk. Least squares is the natural 

choice here. Compute βˆ
k, the least squares estimate and ̂  ), where 

g(Z) = (g1(Z),...gk(Z))T . The corresponding population mk(.) is just 

), where β = (β1,...,βk)T = argminβ 
R (R (y − δ(Z))2dP(z,y)). 

3.3 Choice of regularization parameter 

We want to select kˆ = k(Pn), which is optimal in terms of our loss function, 

 R(P,δ) = Ep(Y − δ(Z;X1,...,Xn))2 (3.10) 

the expected squared error integrated out with respect to Z and (X1,...,Xn). And so 

our first goal is consistency, R(P,mˆ k(.)) → R(P,m(.)). It is easy to see that, by 

orthogonality, this is equivalent to R (mˆ k(z) − m(z))2dP(z) →P 0. This is equivalent 

to choose ρ to be L2(P) distance in the range of θ(P)(.), which we identify as all 
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square integrable functions of Z. Consistency corresponds to what we have called 

Goal (I). 

As a concrete example, suppose that we believe that Pk is correct for some k, and 

our goal is to find the correct model or smallest correct model if the Pk are nested, 

as in our case, and then estimate β. The type (I) goal formulation leads, after 

construction of an unbiased estimator of the MSEk = E(mˆ k(Z) − m(Z)2), where 

m(z) is the true population parameter, to a solution due to Akaike (1970), 

Mallows (1973) and others, ”choose kˆ to minimize . This 

choice comes from the representation 

 E(Yi0 − mˆ k(Zi))2 = E(Yi − mˆ k(Zi))2 + 2Cov(mˆ k(Zi),Yi) (3.11) 

where Yi0 = m(Zi) + ε0i is a new independent observation, and 

 

under the normality assumption on ε, see Efron (2004) for more details. On the 

other hand, pursuit of the type (II) goal puts great importance on identifying k0(P) 

= min(k : P ∈ Pk), the smallest model containing P first and then estimating β for 

purposes of interpretation. A Bayesian argument (Schwarz, 1978) to choose k by 

maximizing the posterior probability of Pk leads to the penalty k logn which 

evidently leads to much lower values of kˆ. 

The Akaike/Mallows criterion does choose a model which is ”correct” but not of 

smallest size. Readers are referred to Shao (1997) for more discussion on this 

issue. When p is allowed to increase with n, Bunea et al. (2006) show that 

consistent variable selection can also be achieved via multiple testing. Much more 

general choices of k involving types of cross validation are given later in this 
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section. 

3.3.1 Selection of regularization parameter via cross validation 

Cross-validation is a method that uses part of data to fit the model and the rest 

part to test the performance of the fitted model. Cross-validation and 

bootstrapping are the two classes of resampling methods currently 

recommended for prediction error measures for variable selection. Cross-

validation procedures partition the data into two disjoint sets. The model is fit 

with one set (the training set), which is subsequently used to predict the 

responses for the observations in the second set (assessment set). Bootstrap 

procedures form many samples of the original data by sampling with 

replacement. Details of Cross-validation procedures and their application to the 

variable selection problem are outlined below. 

We have touched several ways to select γ(or k) in our previous discussion. We 

now address cross validation, as a most general model selection rule. An 

extensive review of model selection has been given by Wang (2004). Shao (1997) 

provided an interesting taxonomy of various model selection schemes in linear 

regression context. A general approach is leave one out cross validation. 

1. Leave-one-out cross validation. 

Let X(−i) = Xj : j 6= i and consider the predictor of ), trained 

from X(−i) by penalizing with γPen(β). Then the cross validation estimate of 

error is just 

  (3.12) 

The ”optimal” ˆγ is defined as giving the smallest cross validation error. 

The motivation here is reasonably clear and goes back to the work of Stone 

 is an unbiased estimate of the actual risk of 
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) which we expect is very close to that of ˆmγ(X1,...,Xn;Zn+1) = mˆ 

γ(Zn+1) for which we want to compute E(Yn+1−mˆ γ(Zn+1))2. For a linear 

estimator (ˆmγ(X1),...,mˆ γ(Xn))T = H(γ)(Y1,...,Yn)T . 

Shao (1993) proves with asymptotic results and simulations that the model 

with the minimum value for the leave-one-out cross-validation estimate of 

prediction error is often over specified. That is, too many insignificant 

variables are contained in set β1. He recommends using a method that 

leaves out a subset of observations, called n-fold cross-validation. 

2. Generalized cross validation: Generalized cross-validation minimizing 

  (3.13) 

was proposed by Craven and Wahba (1979) for computational reasons, as 

an approximation to leave-one-out cross validation, since the computation 

 of ˆ ) multiplies computation time by a factor of n. 

Efron (2004) showed that all the methods we have discussed in this section 

so far correspond to the estimation of the expected optimism, 

 E(Yi0 − mˆ γ(Zi))2 − E(Yi − mˆ γ(Zi))2 (3.14) 

in an approximately unbiased fashion. Using a Rao-Blackwell type 

argument, he further showed that the model-based penalty methods (Cp, 

AIC, SURE) outperformed the non-parametric methods such as leave 1 out 

CV, assuming the model is believable. They also gave similar connections 

between parametric and non-parametric bootstrapping methods. 

Again, For linear models, we have 
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  (3.15) 

By Taylor expansion, 

  (3.16) 

Since , GCV yields the same result as AIC and Mal- 

low’s Cp asymptotically. 

The extent to which the use of CV and GCV yield procedures satisfying our 

optimality criteria has been studied (Li, 1985, 1986, 1987). Birge and 

Massart (1997) showed that leave one out cross validation is equivalent to 

Mallows Cp in regression, making it optimal for nested models but selecting 

too large a model if all 2p sub-models are considered. 

3. V-fold cross validation. 

In fact, few of these methods for selecting have been used in machine 

learning practice. The standard approach is to choose V dividing n, divide 

the sample into V disjoint parts of size m = n/V say Ψ(1),...,Ψ(V ), and then use 

the n−m observations in V −1 of the parts to calculate ˆmγ(Ψ(−l)) and 

evaluate 

  (3.17) 

an unbiased estimate of the risk of the prediction based on n - m 

observations. Then, although looking at more than a single partition is not 

necessary for theory, form ), and choose ˆγ by mini- 

mizing Q(γ). Leave 1 out CV is also of this form with V = n. However, taking, 

say, , where Ω(n) is slowly varying, can be shown to work very 

generally to establish both oracle and minimax results, see Gyorfi et al. 

(2002), Bickel et al. (2006). Some further discussion is in Dudoit and Van 

der Veen (2005). 
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A great advantage of both leave 1 out CV and V-fold CV is that they immediately 

generalize to any prediction question, such as generalized linear model prediction 

as in Fan and Li (2006), or more general model selection. V-fold cross validation 

is closely related to the m out of n bootstrap and sub-sampling.But that is not 

within the scope of this thesis. This discussion of the choice of γ in classification 

has been entirely in the context of Goal (I). When we turn to Goal (II), in which we 

assume there is a true model Pk, the situation is different. If we choose via BIC, or 

in more complex situations, the closely related Bayesian, MDL criterion of 

Rissanen (1984), we can obtain the true k with probability tending to 1 and thus 

safely act as if kˆ gave us the true model. On the other hand, as we have noted 

previously, AIC and the Goal (I) oriented criteria end up picking models that are 

larger than necessary. 

Precisely in this thesis, the researcher suggests using a repeated 10-fold CV. A 

repeated 10-fold CV consisting of 100 runs of the 10-fold CV procedure with 

different random splits into 10 disjoint groups. It is a balanced version of LMO- 

CV, since every object is used exactly 100 times for assessing the candidate model. 

The study introduced the PCVE (Penalized Cross Validated Errors) which is based 

on a repeated 10-fold CV. This PCVE is used for the comparison of different 

penalized methods of variable selection and was found to perform better than 

LOO-CV. The parameter n of the repeated n-fold CV was set to n=10 in this study. 

This corresponds to leaving out 10 per cent of the data during crossvalidation. 

The number of repetitions was set to 100. 
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Figure 3.1: Schematic illustration of leave-multiple-out cross-validation. m: 

number of objects; d: number of objects left out; B: number of splits into 

construction and validation data; RCV2 −d: leave-d-out cross-validated squared 

correlation coefficient; and, MSEPCV −d: leave-d-out cross-validated mean squared 

error of prediction.(Flow chart of the proposed Repeated n-fold Cross validation) 

3.4 Computational Methods for Penalized Variable 

selection 

The main idea of penalized approaches is to impose a certain type of penalty to 

the regression coefficients, such that they are shrunk towards zeros, and some 

small coefficients will become exactly zero, achieving the purpose of variable 

selection. As a continuous variable selection procedure, the penalized method 

gives better prediction and small variance than traditional searching methods 

when the model is properly tuned. In general, the penalized likelihood function is 

of the form −2log(likelihood) + Pλ(β) where Pλ(β) is the penalty and λ ≥ 0. As λ 

increases, the penalty term also increases and and impose more shrinkage on the 

coefficients. 
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3.4.1 Least Absolute Shrinkage and Selection Operator (LASSO) 

We consider the setting where we have observed data (y1,x1),...,(yn,xn) with each yi 

a realisation of a scalar random variable Yi, and each xi = (xi1,...,xip)T a p-vector of 

explanatory variables. Let X be a matrix whose ith row is given by xTi . Without 

loss of generality, the study shall require that the columns of X are centred. It 

assumes that 

 Yi = µ + (Xβ)i + εi, (3.18) 

where each εi is i.i.d N(0,σ2). In the classical linear model, the study assumes X has 

full column rank, and so p < n. 

The tuning parameter λ controls the sparsity of the estimate, with large values of 

λ resulting in estimates with many components set to 0. Unfortunately, this 

optimisation problem is hard, and to the best of our knowledge, it is 

computationally intractable for p > 50. 

The Lasso (Tibshirani, 1996) solves the related problem: 

 (µ,ˆ βˆ(λ)) = argmin  (3.19) 

The non-differentiability of the `1 norm at 0 ensures that the resulting estimator 

is sparse, and its convexity makes the overall optimisation problem convex. There 

exist very efficient algorithms for solving this problem, even when p > 105 (see 

for example the R package glmnet of Friedman et al.). 

Theoretical Properties for Variable Selection 

In this section the researcher presents some necessary and sufficient conditions 

for the Lasso estimator to correctly estimate the sign of β. This conditions are so 

for the noiseless case, where 
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 y = µ + Xβ (3.20) 

The case with noise is similar. For convenience we define N = 1,...,pS, and for a set 

of variables J, we let XJ denote the matrix formed from the columns of X indexed 

by J. The study assumes that XS has full column rank. 

Theorem 1: 

Let λ > 0, and 

θ = XNT XS(XST XS)−1sgn(βS) 

If kθk∞ ≤ 1, and for j ∈ S 

(3.21) 

 , (3.22) 

then there exist a Lasso solution with sgn(βˆ(λ)) = sgn(β). As a partial converse, if 

there exist a Lasso solution with sgnβˆ(λ) = sgn(β), then kθk∞ ≤ 1. 

Remark 1: 

kθk∞ can be interpreted as the maximum in absolute value over j ∈ N of the dot 

product of sgn(βS) and the coefficient vector obtain by regressing X(j) on XS. 

That is  

kθk∞ = max|sgn(βS)T (XST XS)−1XST X(−j)|. (3.23) 
j∈N 

The condition kθk∞ ≤ 1 is known as (a form of) the irrepresentable condition in 

literature. 

Proof. By considering sub-gradients or simply directional derivatives, the LASSO 

estimator satisfies 

  (3.24) 

where kτk∞ ≤ 1 and τj = sgn(βˆ
j) for j such that βˆ

j = 0 (6and the dependence of βˆ 

on λ is suppressed). These are known as the KKT conditions for LASSO (in the 

noiseless case) in the literature. This equation is expanded into 
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  (3.25) 

The converse is to be proved first. 

Suppose sgn(β) = sgn(βˆ) (so βˆ
N = 0), then since XS has full column rank, the top 

block of 3.25 can be re-written as 

  (3.26) 

We can substitute this into the second block of equations of 3.25 to get 

  (3.27) 

But if sgn(βS) = sgn(βˆ
S) then τS = sgn(βS). Thus observing that kτNk∞ ≤ 1 completes 

the proof of the converse. Now to the positive statement. We claim that taking 

 

 

satisfies the KKT condition 3.25 or equivalently, since we are taking βˆ
N = 0, 

equation 3.26 and 3.27. Indeed, the assumption that 

 

for j ∈ S ensures that sgn(βˆ
S) = sgn(βS), so the condition for τS is satisfied. 

Then checking 3.26 and 3.27 is easy. 
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Prediction and Estimation 

In order to understand the sort of results we should expect for the prediction and 

estimation properties of the LASSO, we first imagine that S is known. If we truly 

knew S, we could simply apply the least squares estimator where we take the 

design matrix as XS. If we let  and write Ω  , 

we have 

(3.28) 

(3.29) 

It is shown that the LASSO achieves these rates for prediction and estimation up 

to a log(p) factor, and subject to some conditions on the design matrix. It requires 

that there exists a φ > 0 such that for all b satisfying kbNk1 ≤ 4kbSk1, it holds that 

  (3.30) 

this type of condition is known as the compatibility condition. It can be noted that 

the constant 4 appearing in the definition is quite arbitrary and could be replaced 

by any constant greater than 1. Furthermore, it will require that the columns of X 

are scaled such that kX(j)k2 = n for j = 1,...,p. 

Theorem 2. Let 

 

Then with probability at least 1 − (p1−A2/8 + p−5sA2/(2φ2)), 

 

Proof. By the definition of (ˆµ,βˆ), it is clear that 

 

  (3.31) 

Define the following events. 
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Ω2 = ε−2 ≤ 5λ2s/φ2 

It is straightforward to show that P(Ω1 ∩ Ω2) ≤ 1 − (p1−A2/8 + p−5sA2/(2φ2)). In all of 

the following, we work on Ω1 ∩ Ω2. Since 

 

it can be seen from 3.31 that 

 

 

  (3.32) 

First suppose that kβˆ
S − βSk1 ≤ 5λs/φ2. Then from 3.32 we have, 

 , (3.33) 

so in particular 

kβˆN − βNk1 ≤ 4kβˆS − βSk1 

Thus 

 

≤ 5λkβˆ
S − βSk1 

 

where in the last line we made use of the compatibility condition 3.30. 
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3.4.2 Smoothly Clipped Absolute Deviation (SCAD) 

Again, consider the setting where (Xi,Yi),i = 1,...,n,as n observations satisfying 

  (3.34) 

where Yi ∈ R is a response variable, Xi is a pn × 1 covariates vector and εi has mean 

0 and variance σ2. Here the superscripts are used to make it explicit that both the 

covariates and parameters may change with n. For simplicity, we assume 

βo = 0 

In sparse models. the pn covariates can be classified into two categories: the 

important ones whose corresponding coefficients are non-zero and the trivial 

ones whose coefficients are zero. For notational convenience, we write 

 , (3.35) 

where  0). Here kn(≤ pn) is the number of 

non trivial covariates. Let mn = pn − kn be the number of zero coefficients. Let Y = 

(Y1,...,Yn)0 and let X = (Xij,1 ≤ i ≤ n,1 ≤ j ≤ pn) be the n × pn design matrix. According 

to the partition of β, write X = (X1,X2), where X1 and X2 and n × kn and n × mn 

matrices, respectively. 

Given a > 2 and λ > 0, the SCAD penalty at θ is 

 

λ|θ|, 

pλ(θ;a) = −(θ2 − 2aλ|θ| + λ2)/[2(a − 1)], 

(a + 1)λ2/2, 

|θ| ≤ λ, λ < 

|θ| ≤ aλ, 

|θ| > aλ. (3.36) 

 

More insight into it can be gained through its first derivative: 
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sgn(θ)λ, 

0 
p λ(θ;a) = sgn(θ)(aλ − |θ|)/(a − 1), 

0, 

|θ| ≤ λ, λ < 

|θ| ≤ aλ, 

|θ| > aλ. 

(3.37) 

The SCAD penalty is continuously differentiable on (−∞,0) ∪ (0,∞), but not 

differentiable at 0. Its derivative vanishes outside [−aλ,aλ]. As a consequence, 

SCAD penalized regression can produce sparse solutions and unbiased estimates 

for large coefficients. More detailed discussions of this penalty can be found in 

Fan and Li (2001). 

The penalized least squares objective function for estimating β with the SCAD 

penalty is 
pn 

 Qn(b;λn,a) = kY − Xbk2 + nXpλn(bj;a) (3.38) 
j=1 

where k.k is the L2 norm. Given penalty parameters λn and a, the LS-SCAD 

estimator of β is 

 βˆ
n ≡ βˆ(λn;a) = argminQn(b;λn,a) (3.39) 

We write  the way we partition β into β1 and β2. 

Asymptotic properties of the LS-SCAD estimator 

Below, the results on the asymptotic properties of the LS-SCAD estimator are 

stated. Results for the case of fixed design are slightly different from those for the 

case of the random design. For convenience, the main assumptions required for 

conclusions in this section are listed A1 to A5 for fixed covariates. Let ρn,1 be the 

smallest eigenvalue of n−1X0X. τn,kn and ωn,mn are the largest eigenvalues 

of  and , respectively. Let ) and  

(Xi,kn+1,...,Xipn). 

1. (a) εi’s are i.i.d with mean 0 and variance σ2 
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(b) For any j ∈ {1,...,pn}, kXjk2 = n 

 √ √ √ √ 

2. (a) limn→∞ knλn/ ρn,1 = 0; (b) limn→∞ pn/ nρn,1 = 0. 

 √  √ √ √ 

3. (a) limn→∞ knλn/( ρn,1min1≤j≤kn |βj| = 0; (b) limn→∞ knλn/(

 nρn,1min1≤j≤kn |βj| 

0; 

4. 5. 

 

For random covariates, we require conditions (B1) through (B4). Suppose (Xi0,εi)’s 

are i.i.d as (X0,ε) = (X1,...,Xpn,ε). Analogous to the fixed design case, ρ1 denotes the 

smallest eigenvalue of E[XX0]. Also πkn and ωmn are the largest 

eigenvalues of ] and ], respectively. 

1. (Xi0,εi) = (Xi1,...,Xipn,εi), i = 1,...,n are i.i.d. with 

(a) E[Xij] = 0, V ar(Xij) = 1 

(b) E[ε|X] = 0, V ar(ε|X) = σ2 

2. (a) limn→∞ p2n/(nρ21) = 0 

(b) limn→∞ knλ2n/ρ1 = 0 

3. 

4. 
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Theorem 1: (Consistency in fixed design setting). Under 

(A1) − (A2), 

kβˆ
n − βnk →P 0 as n → ∞ 

A similar results hold for random design case. 

Theorem 2: (Consistency in the random design setting). 

Suppose that there exists an absolute constant M4, such that for all n, max1≤j≤pn E[Xj4] ≤ 

M4 < ∞, then under (B1) − (B2), 

kβˆ
n − βnk →P 0 as n → ∞ 

For consistency, λn has to be kept small so that the SCAD penalty would not 

introduce any bias asymptotically. Note that in both design settings, the 

restriction on the penalty parameter λn does not involve mn, the number of trivial 

covariates. 

This is shared by the Lq(0 < q < 1)-penalized estimators in Huang, Horowitz and 

Ma (2006). However, unlike the bridge estimators, no upper bound requirement 

is imposed on the components of β1, since the derivative of the SCAD penalty 

vanishes beyond a certain interval while that of the Lq penalty does not. The next 

two theorems state that the LS-SCAD estimator is consistent for variable 

selection. 

Theorem 3: (Variable selection in the fixed design setting). Under (A1)−(A4), βˆ
2n 

= 0mn with probability tending to 1. 

Theorem 4: (Variable selection in the random design setting). 

Suppose there exists an absolute constant M such that max1≤j≤pn |Xj| ≤ M < ∞. 
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Then under (B1) − (B4), βˆ
2n = 0mn with probability tending to 1. (A3.a) and (A3.b) 

are identical to (A2.a) and (A2.b), respectively, provided that 

 

(B2) has a requirement for max1≤j≤pn |βj| similar to (A3). (A4) concerns the 

largest eigenvalues of  and . Due to the standardization of 

covariates, 

πn,kn ≤ kn 

and 

ωn,mn ≤ mn 

So (A4) is implied by 

 = 0 (3.40) 

Likewise, (B4) can be replaced with 

 = 0 (3.41) 

Both (A4) and (B4) require λn not to converge too fast to 0 in order for the 

estimator to be able to ”discover” the trivial covariates. It may be of concern if 

there are λn’s that simultaneously satisfy (A2) − (A4) (in the random design 

setting (B2) − (B4)) under certain conditions. When liminf ρn,1 > 0 and liminfn→∞, 

it can be checked that there exists λn that meets both (A3) and (A4) as long as pn = 

0(n1/3). If we further know either that kn is fixed, or that the largest eigenvalue of 

n−1X0X is bounded from above, as is assumed in Fan and Peng (2004),pn = 0(n1/2) 

is sufficient. When both of these are true, pn = 0(n) is adequate for the existence 

of such λn’s. Similar conclusions hold for the random design case except that pn = 

0(n1/2) is indispensable there. 



 

87 

The advantage of the SCAD penalty is that once the trivial covariates have been 

correctly picked out, regression with or without the SCAD penalty will make no 

difference to the non-trivial covariates. So it is expected that βˆ
1n is asymptotically 

normally distributed. 

Let An, n = 1,2,... be a sequence of matrices of dimension d × kn with full row 

rank. 

Theorem 5: (Asymptotic normality in the fixed design setting). Under (A1) − 

(A5), 

 , (3.42) 

where  

Theorem 6: (Asymptotic normality in the random design setting). Suppose that 

there exists an absolute constant M such that max1≤j≤pn kXjk ≤ 

M < ∞ and aσ4 such that E[ε4|X11] ≤ σ4 < ∞ for all n. Then under (B1)−(B4), 

 −1/2 n 

 n−1/2 X AnE−1/2[Xi1Xi01]XXi1Xi01(βˆ1n − β1) →D N(0d,Id), (3.43) 

 n i=1 

where . 

For the random design the assumptions for asymptotic normality are no more 

than those for variable selection. While for the fixed design, a Lindeberg-Feller 

condition (A5) is needed in addition to (A1) − (A4). 

Computing the SCAD 

The algorithm of Hunter and Li (2005) is used to compute the LS-SCAD estimator 

for a given λn and a. This algorithm approximates a non-convex target function 

with a convex function locally at each iteration step. Steps to compute the 

approximate standard error of the estimator are also described. 
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1. Computation of the LS-SCAD estimator 

Given λn and a the target function to be minimized is 

pn 

 Qn(b;λn,a) = X(Yi − Xi0b)2 + nXpλn(bj;a). (3.44) 
 i=1 j=1 

Hunter and Li (2005) proposes to minimize its approximation 

 n pn 

Qn,ξ(b;λn,a) = X(Yi − Xi0b)2 + nXpλn,ξ(bj;a) 
 i=1 j=1 

 . (3.45) 

Around b(k) = (b(k),1,...,b(k),pn)0, it can be approximated by 

 

where ξ is a very small perturbation to prevent any component of the 

estimate from getting stuck at 0. Therefore the one-step estimator starting 

from b(k) is 

 b(k+1) = (X0X + nDξ(b(k);λn,a))−1X0Y, (3.47) 

where Dη(b(k);λn,a) is the diagonal matrix whose diagonal elements are 

. Given the tolerance τ, con- 

vergence is claimed when 

  (3.48) 

And finally the bj’s that satisfy 

  (3.49) 
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are set to 0. A good starting point would be b(0) = βˆ
LS, the least squares 

estimator. The perturbation ξ should be kep(t small so that difference 

between Qn,ξ(.) and Qn(.) is negligible. Hunter and Li 2006 suggests using 

 . (3.50) 

2. Standard Error 

The standard errors for the non-zero coefficient estimates can be obtained 

via the approximation 

 ) (3.51) 

So 

 

  (3.52) 

Since 

 

 

, 

 

letting Uij = Uij(ξ;λn,a), we have, for j,l = 1,...,kn, 

 ) (3.53) 

 . (3.54) 
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Let C = Cjl,j,l = 1,...,kn, where 

 . (3.55) 

The variance-covariance matrix of the estimates can be approximated by 

 

(3.56) 

3. Selection of λn 

The above computational algorithm is for the case when λn and a are 

specified. In data analysis, they can be selected by minimizing the 

generalized cross validation score, which is defined to be 

  (3.57) 

where 

 ] (3.58) 

is the number of effective parameters and D0(βˆ
1n;λn,a) is a sub-matrix of the 

diagonal matrix Dξ(βˆ
n;λn,a) with ξ = 0. By sub-matrix, we mean the diagonal 

of D0(βˆ
1n;λn,a) only contains the elements corresponding to the non-trivial 

components in βˆ. Note that here X1 also only includes the columns of which 

the corresponding elements of βˆ
n are non-vanishing. 

The requirement that a > 2 is implied by the SCAD penalty function. 

Simulation suggests that the generalized cross validation score does not 

change much with a given λ. So to improve computing efficiency, we fix a = 

3.7, as suggested by Fan and Li (2001). 
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3.5 Hierarchical Likelihood (HL) 

Classical likelihood and its extensions that we have discussed so far are defined 

for fixed parameters. We may say confidently that we understand their properties 

quite well, and there is a reasonable consensus about their usefulness. 

Statisticians have disagreed on a general definition of likelihood that also covers 

unobserved random variables, e.g. Bayarri et al. (1987). Many ask if there exist a 

theoretical basis for choosing a particular form of general likelihood? We can 

actually ask a similar question about the classical likelihood, and the answer 

seems to be provided by the likelihood principle (Birnbaum, 1962) that the 

likelihood contains all the evidence about a (fixed) parameter. 

Bjornstad (1996) established the extended likelihood principle, showing that a 

particular definition of general likelihood contains all the evidence about both 

fixed and random parameters and this formed the basis for the definition of 

extended likelihood and h-likelihood of Lee and Nelder (1996). Lee and Nelder 

(1996) introduced the h-likelihood for inferences in hierarchical GLMs’ but being 

fundamentally different from classical likelihood, it generated some 

controversies. One key property of likelihood inference that people expect is an 

invariance with respect to transformations. 

The extended likelihood for estimation lacks invariance, so that different scales of 

the random parameters can lead to different estimates. The dependence on scale 

makes the extended likelihood immediately open to criticism. In fact, this has 

been the key source of the controversies. This problem is resolved for the h-

likelihood, as it is defined as an extended likelihood for a particular scale of the 

random parameters with special properties, i.e., it is not defined on an arbitrary 

scale, so that transformation is not an issue. 
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For uniformity of notations and as a reminder, we use fθ() to denote probability 

density functions of random variables with fixed parameters θ; the arguments 

within the brackets determine what the random variable is, and it can be 

conditional or unconditional. Thus, fθ(y,v), fθ(v), fθ(y|v) or fθ(v|y) correspond to 

different densities even though we use the same basic notation fθ(). Similarly, the 

notation L(a;b) denotes the likelihood of parameter a based on data or model b, 

where a and b can be of arbitrary complexity. For example, L(θ;y) and L(θ;v|y) are 

likelihoods of θ based on different models. The corresponding loglihood is 

denoted by `(.). 

3.5.1 Fisher’s Likelihood 

The classical likelihood framework has two types of object, a random outcome y 

and an unknown parameter θ, and two related processes on them: 

1. Data generation: Generate an instance of the data y from a probability 

function with fixed parameters θ 

fθ(y) 

2. Parameter inference: Given the data y, make statements about the unknown 

fixed θ in the stochastic model by using the likelihood 

L(θ;y) 

. 

The connection between these two processes is 

L(θ;y) ≡ fθ(y) 
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where L and f are algebraically identical, but on the left-hand side y is fixed while 

θ varies, while on the right-hand side θ is fixed while y varies. The function fθ(y) 

summarizes, for fixed θ, where y will occur if we generate it from fθ(y), while 

L(θ;y) shows the distribution of ’information’ as to where θ might be, given a fixed 

dataset y. Since θ is a fixed number, the information is interpreted in a qualitative 

way. 

Fisher’s likelihood framework has been fruitful for inferences about fixed 

parameters. However, a new situation arises when a mathematical model 

involves random quantities at more than one level. Consider the simplest example 

of a 2-level hierarchy with the model 

yi,j = β + vi + εi,j, 

where vi ≈ N(0,λ) and εi,j ≈ N(0,φ) with vi and εi,j being uncorrelated. This model 

leads to a specific multivariate distribution. Classical analysis of this model 

concentrates on estimation of the parameters β, λ and φ. 

From this point of view, it is straightforward to write down the likelihood from 

the multivariate normal distribution and to obtain estimates by maximizing it. 

However, in many recent applications the main interest is often the estimation of 

β+vi. These applications are often characterized by a large number of parameters. 

Although the vi are thought of as having been obtained by sampling from a 

population, once a particular sample has been obtained they are fixed quantities 

and the likelihood based upon the marginal distribution provides no information 

on them. 

3.5.2 Extended Likelihood 

There have been many efforts to generalize the likelihood, e.g., Lauritzen (1974), 
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Butler (1986), Bayarri et al. (1987), Berger and Wolpert (1988) or Bjornstad 

(1996), where the desired likelihood must deal with three types of object: 

unknown parameters θ, unobservable random quantities v and observed data y. 

The previous two processes now take the forms: 

1. Data generation: 

(i) Generate an instance of the random quantities v from a probability 

function fθ(v) and then with v fixed, 

(ii) generate an instance of the data y from a probability function fθ(y|v). 

The combined stochastic model is given by the product of the two proba- 

bility functions 

 fθ(v)fθ(y|v) = fθ(y,v) (3.59) 

2. Parameter inference: Given the data y, we can 

(i) make inferences about θ by using the marginal likelihood L(θ;y), and (ii) 

given θ, make inferences about v by using a conditional likelihood of the 

form 

L(θ,v;v|y) ≡ fθ(v,y) The 

extended likelihood of the unknown (θ,v) is defined by 

L(θ,v;y,v) ≡ L(θ;y)L(θ,v;v|y). 

The connection between these two processes is given by 

(3.60) 

L(θ,v;y,v) ≡ fθ(y,v) (3.61) 

so the extended likelihood matches the definition used by Butler (1986), Berger 

and Wolpert (1988) and Bornstad (1996). On the left-hand side y is fixed while 

(θ,v) vary, while on the right-hand side θ is fixed while (y,v) vary. In the extended 

likelihood framework the v appear in data generation as random instances and in 

parameter estimation as unknowns. 
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In the original framework there is only one kind of random object y, while in the 

extended framework there are two kinds of random objects, so that there may be 

several likelihoods, depending on how these objects are used. The h-likelihood is 

a special kind of extended likelihood, where the scale of the random parameter v 

is specified to satisfy the following conditions; 

3.5.3 Canonical scale, h-likelihood and joint inference 

Let θ1 and θ2 be an arbitrary pair of values of fixed parameter θ. The evidence 

about these two parameter values is contained in the likelihood ratio 

 

Suppose there exists a scale v, such that the likelihood ratio is preserved in the 

following sense 

  (3.62) 

where ˆvθ1 and ˆvθ2 are the MLE’s of v for θ at θ1 and θ2, so that ˆvθ is 

informationneutral concerning θ. Alternatively, 3.62 is equivalent to 

, 

which means that neither the likelihood component L(θ,vˆθ;v|y) nor ˆvθ carry any 

information about θ, as is required by the classical likelihood principle. Such a v-

scale shall be called and referred to as the canonical scale of the random 

parameter, and we make an explicit definition to highlight this special situation: 

If the parameter v in L(θ,v;y,v) is canonical we call L an h-likelihood. 

To call L(θ,v;y,v) an h-likelihood assumes that v is canonical, and we shall use the 

notation H(θ,v) to denote h-likelihood and h(θ,v) the h-loglihood. The hloglihood 
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can be treated like an ordinary loglihood, where, for example, we can take 

derivatives and compute Fisher information for both parameters (θ,v), etc. 

In an arbitrary statistical problem it may not be obvious what the canonical scale 

is. However, it is quite easy to check whether a particular scale is canonical. When 

it exists, the canonical scale has many interesting properties that make it the most 

convenient scale to work with. Let Im(θˆ) be the observed Fisher information of 

the MLE θˆ from the marginal likelihood L(θ;y) and let the partitioned matrix 

 

I11 

Ih−1(θ,ˆ vˆ) =  21 

I 

 

I12 

 

I22  

be the inverse of the observed Fisher information matrix of (θ,ˆ vˆ) from the 

hlikelihood H(θ,v;y,v), where I11 corresponds to the θ part. Then 

1. The MLE θˆ from the marginal likelihood L(θ;y) coincides with the θˆ from 

the joint maximizer of the h-likelihood L(θ,v;y,v). 

2. The information matrices for θˆ from the two likelihoods also match, in the 

sense that 

 

This means that (Wald-based) inference on the fixed parameter θ can be 

obtained directly from the h-likelihood framework. 

3. Furthermore, I11 yields an estimate of var(vˆ − v). If ˆv = E(v|y)|θ=θˆ this 

estimates 

var(vˆ − v) ≥ E(var(v|y)), 

accounting for the inflation of variance caused by estimating θ. 
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There are many models which do not have a canonical scale. Maintaining 

invariance of inferences from the joint maximization of the extended loglihood 

for trivial re-expressions of the underlying model leads to a definition of the scale 

of random parameters for the h-likelihood, which covers the broad class of GLM 

models. It is regarded that this scale as a weak canonical scale and study models 

allowing such scale. However, models exist which cannot be covered by such a 

condition. For such models, the adjusted profile likelihoods is proposed for 

inferences for fixed parameters, which often gives satisfactory estimations. 

3.5.4 Variable selection using the Penalized H-Likelihood 

This section discusses useful penalty functions for variable selection. Consider 

variable selection of fixed effects β by maximizing a penalized profile h-likelihood 

hp using ) and a penalty; it is defined by 

 ) (3.63) 

where Jγ (|·|) is a penalty function that controls model complexity using the tuning 

parameter γ. Note here that no penalty was imposed on the frailty parameter θ. 

Typically, setting γ = 0 result in the sub-hazard frailty model, whereas the 

regression coefficient estimates βˆ tend to 0 as γ → ∞ is inclined to choose a 

complex model (Fan and Lv, 2010). 

Various penalty functions have been used in the literature on the variable 

selection in the statistical models including Cox-type PH models (Fan and Li, 

2001, 2002; Fan and Lv,2010). This dissertation mainly consider the following 

three penalty functions, but our results can be applied to other penalty functions 

which are not discuss here. 

(i) LASSO (Tibshirani, 1996) 
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 Jγ (|β|) = γ |β|, (3.64) 

(ii) SCAD (Fan and Li, 2001) 

 , (3.65) 

where a = 3.7 and x+ denotes the positive part of x, i.e. x+ is x if x > 0, 

zero otherwise. 

(iii) HL (Lee and Oh, 2009) 

, 

where u(|β|) = [{8bβ2/a + (2 + b)2}1/2 + 2 − b]/4 

A good penalty function should estimates that satisfy unbiasedness, scarsity, and 

continuity (Fan and Li, 2001, 2002). The LASSO in (3.64) is the most common 

penalty as L1 penalty, but it does not simultaneously satisfy these three 

properties. Fan and Li (2001) showed that SCAD in (3.65) satisfy all the these 

properties and that it can perform well as the orcale procedure in terms of 

selecting the correct subset model and estimating the true non-zero coefficient, 

simultaneously. Lee and Oh (2009) proposed a new penalty unbounded at the 

origin within the framework of a random effect model. The new unbound HL 

penalties in (3.66), Ja,b(β), at various values of b = 0,2 and 30 and a = 1 are shown 

in Figure 1. 

The form of the penalty changes from a quadratic shape (b = 0) for ridge 

regressions to a cusped form (b = 2) for LASSO and then to an unbounded form (b 

> 2) at the origin. In case of b = 2, it allow for an infinite gain at zero. The SCAD 

provides oracle ML estimates (least squares estimators), whereas the HL gives 

oracle shrinkage estimates.;When there is multi-collinearity, shrinkage 
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estimation is better than the ML estimation. Lee et al. (2010, 2011a,b) have shown 

its advanages of the HL approach over LASSO and SCAD methods, especially when 

the number of covariates is larger than the sample size (i.e p > n); it actually has a 

property for a variable selection without losing prediction power. Since a in 

(3.66) has a greater sensitivity to change of penalty than b, we consider only a few 

values for b, e.g. b = 2.1,3,10,30,50 representing small, medium and large. 

3.5.5 Penalized h-likelihood procedure 

By maximizing the penalized h-likelihood hp in (3.63), we need to screen variable 

and estimate their associated regression coefficients simultaneously. In other 

words, those variable whose regression coefficients are estimated as zero are 

automatically deleted. To achieve the goal, using hp, the estimation procedures of 

the fixed parameters(β,θ) and random effects ν are required. First, the maximum 

penalized h-likelihood (MPHL) estimates of (β,ν), given frailty parameter θ, are 

obtained by solving the joint estimating of β and ν: 

p 

∂hp/∂βj = ∂h∗w/∂βj − nX[Jγ (|βj|)]0 = 0 
j=1 

and 

(3.67) 

 = 0 (3.68) 

Note that (3.67) is an adjusted estimating equation induced by adding the penalty 

term, whereas (3.68) is the same as the standard estimating equation without 

penalty. However, for the three penalty functions considered in (3.64)-(3.66), Jγ 

in (3.67) becomes non-differentiable at the origin and it does not have continuous 

second-order derivatives. To overcome this difficulty in solving (3.67) we use 

local quadratic approximation (referred to as LQA, Fan and Li, 2001) to such 

penalty functions. That is, given an initial value of β0 close to the true value of β, 

the penalty function Jγ can be locally approximated by a quadratic function as 
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  for βj ≈ βj0 (3.69) 

Then the negative Hessian matrix of β and ν based on hp can be explicitly written 

as a simple matrix from (Ha and Lee, 2003): 

   

 2 2 XT W ∗X + nPγ XT W ∗Z 

 H(hp;β,v) = −∂ hp/∂(β,v) =   (3.70) 

  ZT W ∗X ZT W ∗Z + U  

Where . Here X and Z are n × q and n × q∗ model 

matrices for β and v whose ijth row vectors are xTij and zijT respectively, W ∗ = W 

∗(β,v) = −∂2hw/∂η2 is a form of the symmetric matrix given in Appendix 2 of Ha and 

Lee(2003) and Ha et al. (2013), η = Xβ + Zν and U = −∂2`2/∂v2 is a q∗ × q∗ matrix 

that takes a form of U = BD(P−1,...,P−1) if ν ∼ N(0,P), where q∗ = q × r and BD(·) 

denotes a block diagonal matrix. 

Following Ha and Lee (2003) and (3.68), it can be shown that given θ, the MPHIL 

estimates of (β,ν) are obtained from the following scores equations: 

      

 XT W ∗X + nPγ XT W ∗Z βˆ XT w∗ 

   =   (3.71) 

  ZT W ∗X ZT W ∗Z + U  vˆ  ZT w∗ + R∗  

where w∗ = W ∗η+(δ−µ) with ) and R∗ = Uv+(∂`/∂v). 

Here w is the weight wij and Λs01 is the baseline cumulative sub-hazard function. 

In particular, R∗ = 0 if the log-frailty v follows N(0,P). The scores equations (3.69) 

are extensions of the existing estimation procedures. For example under no 

penalty (i.e.,Pγ) they become the score equations of Ha et al. (2003) for the 
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standard sub-hazard frailty models. for variable selection under the Fine-Gray 

model (1999) without frailty, they also reduce to 

 (XT W ∗X + nX)βˆ = XT w∗, (3.72) 
γ 

implying that the new equations (3.69) gives a special case of the penalized 

equation (3.70) for the Fine-Gray model. Notice that to avoid some numerical 

diffi- 

culty in solving (3.69), we employ , for a small 

positive value of ), instead of Pγ,to assure the existence of  

(Lee and Oh, 2009). As long as  is small, the diagonal element of  are close to 

those of Pγ. In fact, this algorithm is identical to that of Hunter and Li (2005) for 

improving the LQA; see also Johnson et al. (2008). 

This dissertation reports βˆ = 0 if all five printed decimals are zero. In case of the 

SCAD and HL penalties, there exist several local maximums. Thus, a good initial 

value is essential to obtain a proper estimate βˆ. Also in this thesis, a LASSO 

solution is used as the initial value for the SCAD and HL penalties. 

Next, for estimation of θ, an adjusted profile h-likelihood pτ(hp) is used (Ha and 

Lee, 2003; Lee et al., 2006) which eliminates (β,v) from hp in (3.64), defined by 

  (3.73) 

where τ = (βT ,vT )T and ̂ τ = τˆ(θ) = (βˆT (θ),vˆT (θ))T . The estimates of θ are obtained 

by solving the score equations ∂pτ(hp)/∂θ = 0 as in Ha et al. (2013). Accordingly,it 

is seen that the proposed procedure is easily implemented via a slight 

modification to the existing h-likelihood procedures (Ha and Lee,2003;Ha et al., 

2011, 2013). 
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3.5.6 Standard error and selection of tuning parameter 

This subsection first shows that the standard error (SE) of βˆ can be obtained by 

computing an approximated covariance estimate of βˆ. For this, consider a 

further penalized profile h-likelihood after estimating v in hp of (3.64), defined 

by 

p 

 hˆ
p(β,θ) ≡ hp|v=vˆ = hˆ − nXJγ (|βj|), (3.74) 

j=1 

where  In frailty models, regression parameters β 

frailty parameter θ are asymptotically orthogonal (Lee and Nelder, 1996; Ha and 

Lee, 2003; Ha et al, 2011), so that, in estimating θ is minimal. Thus, the SEs of βˆ 

from a sandwich formula (Fam amd Li, 2002; Cai et al, 2005) based on ˆp. 

 cov(βˆ) = H(hˆ
p;β)−1cov(∂hˆ

p/∂β)H(hˆ
p;β)−1 (3.75) 

where H(hˆ
p;β) ≡ −∂2hˆ

p/∂β2 = Hββ+nP
γ . Here, Hββ ≡ H(hˆ;β) ≡ −∂2hˆ

p/∂β2 

explicitly computed as follows: 

 

 = {(XT W ∗X) − (XT W ∗Z)(ZT W ∗Z + U)−1(ZT W ∗X)}|v=vˆ (3.76) 

since  (Ha and Lee, 2003; Ha et al., 

2011). Here, the researcher use Hββ to estimate cov(∂hˆ
p/∂β). This study 

investigates the performance of the proposed SE using (3.72) by simulation 

studies in the next section. 

Selecting important variables, using the penalized likelihood approaches also 

depends on an appropriate choice of the tuning parameters (Wang et al., 2007; 
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Zhang et al., 2010). For the choice of the tuning parameters γ, a generalized cross-

validation(GCV) statistic has been extensively used (Fan and Li, 2001, 2002; 

Androulakis et al., 2012). However, Wang et al. (2007) showed that the GCV 

approach can not select the tuning parameters satisfactorily, with a non-

ignorable over-fitting effect in the resulting model (Fan and Lv, 2010; Zhang et al., 

2010) 

Thus, they proposed to use a BIC-based selection criterion. In spit of Wang et al. 

(2007), this study propose to use a BIC-type criterion based on the h-likelihood 

for selecting tuning parameters γ, defined by 

 , (3.77) 

where )] with  is the 

first-order Laplace approximation to the marginal partial likelihood  

 (Therneau et al., 2003; Ha et al.,2011). and it is evaluated at 

(β,θ), and 

 

Note that ˆγ = argminγ{BIC(γ)} is calculated using a simple grid search method as 

in Fan and Li (2002) 

In summary, in the inner loop we maximize hp for τ = (βT ,vT ) (i.e, the researcher 

solves (3.69)) and the adjusted profile h-likelihood pτ(hp) in (3.71) for θ, 

respectively. In the outer loop, the study finds γ that minimizes BIC(γ) in (3.73). 

After convergence has occurred, the study computes the estimates of SEs for βˆ 

using 

(3.72). 
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3.6 Generalized Linear Models (GLM’s) 

A classical statistical Linear model is define as 

y = Xβ + ε 

where y is a response variable, X is a model matrix with elements usually 

depending on some predictor variables, the ε are random variables. β is a vector 

of unknown parameters, and the purpose of statistical inference with a linear 

model is to learn about β from the data. This definition of a linear model is based 

on several important assumptions: 

For the systematic part of model a first assumption is additivity of effects; the 

individual effects of the explanatory variables are assumed to combine additively 

to form the joint effect. The second assumption is linearity: the effect of each 

explanatory variable is assumed to be linear, in the sense that doubling the value 

of x will double the contribution of that x to the mean µ. 

For the random part of the model a first assumption is that the errors associated 

with the response variable are independent. Secondly that the variance of the 

response is constant, and, in particular, does not depend upon the mean. The 

assumption of normality, although important as the basis for an exact finite-

sample theory, becomes less relevant in large samples. The theory of least 

squares can be developed using assumptions about the first two moments only, 

without requiring a normality assumption. The first-moment assumption is the 

key to the unbiasedness of estimates of β, and the second moment to their 

optimality. 

Generalized linear models (GLM) was first introduced by Nelder and Wedderburn 

(1972, JRSSA) as extensions of classical linear models. It is derived by two 
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extensions, one to the random part and one to the systematic part. Random 

elements may now come from a one-parameter exponential family, of which the 

normal distribution is a special case. Distributions in this class include Poisson, 

binomial, gamma and inverse Gaussian as well as normal. A generalized linear 

model consists of three components: 

1. A random component, specifying the conditional distribution of the 

response variable, yi given the explanatory variables. 

2. A linear function of the regressors, called the linear predictor, 

 

on which the expected value µi of yi depends. 

3. An invertible link function 

g(µi) = ηi, 

which transforms the expectation of the response to the linear predictor. 

The inverse of the link function is sometimes called the mean function: g−1(ηi) = 

µi. 

3.6.1 Exponential Family of Distributions 

The response variable in a GLM can have any distribution from the exponential 

family. A distribution belongs to the exponential family of distributions if its 

probability density function, or probability mass function, can be written as 

 )]; (3.78) 

where b, a and c are arbitrary functions, φ an arbitrary scale parameter, and θ is 

known as the canonical parameter of the distribution (in the GLM context, θ will 

completely depend on the model parameters β, but it is not necessary to make 
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this explicit yet). It is possible to obtain general expressions for the mean and 

variance of exponential family distributions, in terms of a, b and φ. The log 

likelihood of θ, given a particular y, is simply log[fθ(y)] considered as a function of 

φ. That is 

 

And also 

 

Treating ` as a random variable, by replacing the particular observation y by the 

random variable Y , enables the expected value of  to be evaluated: 

 

Using the general result that ) = 0 (at the true value of θ) and re-

arranging implies that 

 E(y) = b0(θ). (3.79) 

i.e. the mean, of any exponential family random variable, is given by the first 

derivative of b w.r.t. θ, where the form of b depends on the particular distribution. 

This equation is the key to linking the model parameters, β, of a GLM to the 

canonical parameters of the exponential family. In a GLM, the parameters β 

determine the mean of the response variable, and, via (3.79), they thereby 

determine the canonical parameter for each response observation. 

Differentiating the likelihood once more yields 

 

And plugging this into the general result, ] (the derivatives 

are evaluated at the true θ value), gives 
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Which re-arranges to the second useful general result: 

var(Y ) = b00(θ)a(φ) 

a could in principle be any function of φ, and when working with GLMs there is 

no difficulty in handling any form of a, if φ is known. However, when φ is 

unknown matters become awkward, unless we can write a(φ) = φ/ω, where ω is 

a known constant. This restricted form in fact covers all the cases of practical 

interest here. a(φ) = φ/ω allows the possibility of, for example, unequal variances 

in models based on the normal distribution, but in most cases ω is simply 1. Hence 

we now have 

 var(Y ) = b00(θ)φ/ω (3.80) 

In subsequent sections it will often be convenient to consider var(Y ) as a function 

of µ ≡ E(Y ), and, since µ and θ are linked via (3.79), we can always define a 

variance function V (µ) = b00(θ)/ω, such that var(Y ) = V (µ)φ. 

3.6.2 Fitting Generalized Linear Models 

Recall that in GLM’s, an n-vector of independent response variables, Y , where µ ≡ 

E(Y ), via 

g(µi) = Xiβ 

and 

Yi ≈ fθi(yi) 

where fθi(yi) indicates an exponential family distribution, with canonical 

parameter θi, which is determined by µi (via equation 3.79) and hence ultimately 

by β. Given vector y, an observation of Y , maximum likelihood estimation of β is 

possible. Since the Yi are mutually independent, the likelihood of β is 

n 
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L(β) = Yfθi(yi) 
i=1 

And hence the log-likelihood of θ is 

 

 

where the dependence of the right hand side on β is through the dependence of 

the θi on β. Notice that the functions a, b and c may vary with i - this allows 

different binomial denominators, ni, for each observation of a binomial response, 

or different (but known to within a constant) variances for normal responses, for 

example. φ, on the other hand, is assumed to be the same for all i. As discussed in 

the previous section, for practical work it suffices to consider only cases where 

we can write ai(φ) = φ/ωi, where ωi is a known constant (usually 1), in which 

case 

 ) (3.81) 

Maximization proceeds by partially differentiating ` w.r.t. each element of β, 

setting the resulting expressions to zero and solving for β. However, these 

equations are exactly the equations that would have to be solved in order to find 

β by non-linear weighted least squares, if the weights V (µi) were known in 

advance and were independent of β. 

3.6.3 Iterative Weighted Least Squares 

The underlying procedure for fitting GLMs by maximum likelihood takes the form 

of iterative weighted least squares (IWLS) involving an adjusted dependent 

variable z, and an iterative weight W. Given a starting value of the mean ˆµ0 and 

linear predictor ˆη0 = g(µˆ0), z and W are computed as 
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where the derivative is evaluated at ˆµ0, and 

 

where V0 is the variance function evaluated at ˆµ0. z is now regressed on the 

covariates x1,x2,x3,...,xp with weight W to produce revised estimates βˆ
1 of the 

parameters, from which we get a new estimate ˆη0 of the linear predictor. 

Iteration then starts and continuous until the changes are sufficiently small. 

Although nonlinear, the algorithm has a simple starting procedure by which the 

data themselves are used as a first estimate of ˆµ0. Simple adjustments to the 

starting values are needed for extreme values such as zeros in count data. Given 

the dispersion parameter φ, the ML estimators for β are obtained by solving the 

IWLS equation 

 XtΣ−1Xβˆ = XtΣ−1z (3.82) 

where Σ = φW −1, and the variance-covariance estimators are obtained from 

 var(βˆ) = (XtΣ−1X)2 = φ(XtWX)−1 (3.83) 

In IWLS equations 1/φ plays the part of a prior weight. We may view the IWLS 

equations (3.82) as WLS equations from the linear model 

z = Xβ + e, 

where e = (y − µ)(∂µ ∂η ) ≈ N(0,Σ). Note here that I = XtΣ−1X is the expected Fisher 

information and the IWLS equations (3.82) are obtained by the Fisher scoring 

method, which uses the expected Fisher information matrix in the Newton-
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Raphson method. The Fisher scoring and Newton-Raphson methods reduce to the 

same algorithm for the canonical link, because here the expected and observed 

informations coincide. Computationally the IWLS procedure provides a 

numerically stable algorithm. For a detailed derivation of this algorithm see 

McCullagh and Nelder (1989, section 2.5). 

3.6.4 Deviance for Goodness of fit 

For a measure of goodness of fit, analogous to the residual sum of squares for 

normal models, two such measures are in common use: the first is the generalized 

Pearson χ2 statistic, and the second the log likelihood-ratio statistic, called the 

deviance in GLMs. These take the form 

χ2 = X(y − µˆ)2/V (µˆ) 

and 

D = 2φ[`(y;y) − `(µˆ;y)] 

where ` is the loglihood of the distribution. For normal models the scaled 

deviances χ2/φ and D/φ are identical and become the scaled residual sum of 

squares, having an exact χ2 distribution with n − p degrees of freedom. In general 

they are different and we rely on asymptotic results for other distributions. When 

the asymptotic approximation is doubtful, for example for binary data with φ = 1, 

the deviance cannot be used to give an absolute goodness-of-fit test. 

For grouped data, e.g. binomial with large enough n, we can often justify assuming 

that χ2 and D are approximately χ2. The deviance has a general advantage as a 

measure of discrepancy in that it is additive for nested sets of models, leading to 

likelihood-ratio tests. Furthermore, the χ2 approximation is usually quite accurate 

for the differences of deviances even though it could be inaccurate for the 
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deviances themselves. Another advantage of the deviance over the χ2 is that it 

leads to the best normalizing residuals (Pierce and Schafer, 1986). 

3.6.5 Estimation of the Dispersion Parameter 

It remains to estimate the dispersion parameter φ for those distributions where 

it is not fixed (φ is fixed at 1 for the Poisson and binomial distributions). If the 

term c(y,φ) in the loglihood is available explicitly, the full likelihood can be used 

to estimate β and φ jointly. But often c(y,φ) is not available, so estimation of φ 

needs a special consideration. One can simply state that φ may be estimated using 

either χ2 or D, divided by the appropriate degrees of freedom. While χ2 is 

asymptotically unbiased (given the correct model) D is not. However, D often has 

smaller sampling variance, so that, in terms of MSE, neither is uniformly better 

(Lee and Nelder, 1992). If φ is estimated by the REML method (Chapter 3) based 

upon χ2 and D, the scaled deviances χ2/φˆ and D/φˆ become the degrees of 

freedom n−p, so that the scaled deviance test for lack of fit is not useful when φ is 

estimated, but it can indicate that a proper convergence has been reached in 

estimating φ. 

3.6.6 Residuals 

In GLMs the deviance is represented by sum of deviance components 

D = Xdi, 

where the deviance component 

 

The forms of the deviance components for our preferred GLM distributions are 

as follows; 
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1. Normal - (yi − µˆi)2 

2. Gamma - 2(  

Two forms of residual are based on the signed square-root of the components of 

χ2 or D. One is the Pearson residual 

 

and the other is the deviance residual 

√  

 rD = sign(y − µ) d 

Deviance residuals as a set are usually more nearly normal with non-normal GLM 

distributions than Pearson residuals (Pierce and Schafer, 1986) and are therefore 

to be preferred for normal plots etc. Other definitions of residuals have been 

given. 

3.6.7 Model Checking 

Model checking is perhaps the most important part of applied statistical 

modelling. In the case of ordinary linear models, this is based on examination of 

the model residuals, which contain all the information in the data, not explained 

by the systematic part of the model. Examination of residuals is also the chief 

means for model checking in the case of GLMs, but in this case the standardization 

of residuals is both necessary and a little more difficult. 

For GLMs the main reason for not simply examining the raw residuals, ˆei = yi−µˆi, 

is the difficulty of checking the validity of the assumed mean variance relationship 

from the raw residuals. For example, if a Poisson model is employed, then the 

variance of the residuals should increase in direct proportion to the size of the 

fitted values (ˆµi). However if raw residuals are plotted against fitted values it 

takes an extraordinary ability to judge whether the residual variability is 



 

113 

increasing in proportion to the mean, as opposed to, say, the square root or square 

of the mean. For this reason it is usual to standardize GLM residuals, in such a way 

that, if the model assumptions are correct, the standardized residuals should have 

approximately equal variance, and behave, as far as possible, like residuals from 

an ordinary linear model. 

The analysis process consists of two main activities: the first is model selection, 

which aims to find parsimonious well-fitting models for the basic responses being 

measured, and the second is model prediction, where the output from the 

primary analysis is used to derive summarizing quantities of interest together 

with their uncertainties (Lane and Nelder, 1982). In this formulation it is clear 

that summarizing statistics are quantities of interest belonging to the prediction 

stage, and thus that they cannot be treated as a response in model selection. 

Discrepancies between the data and the fitted values produced by the model fall 

into two main classes, isolated or systematic. 

1. Isolated Discrepancy - Isolated discrepancies appear when a few 

observations only have large residuals. Such residuals can occur if the 

observations are simply wrong, for instance where 129 has been recorded 

as 192. Such errors are understandable if data are hand recorded, but even 

automatically recorded data are not immune. Robust methods were 

introduced partly to cope with the possibility of such errors. Observations 

with large residuals are systematically down-weighted so that the more 

extreme the value the smaller the weight it gets. Total rejection of extreme 

observations (outliers) can be regarded as a special case of robust methods. 

Robust methods are data driven, and to that extent they may not indicate 

any causes of the 

discrepancies. 
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A useful alternative is to seek to model isolated discrepancies as being 

caused by variation in the dispersion, and to seek covariates that may 

account for them. The techniques of joint modelling of mean and dispersion 

developed in this thesis makes such exploration straightforward. 

Furthermore if a covariate can be found which accounts for the 

discrepancies this gives a model-based solution which can be checked in the 

future. Outliers are observations which have large discrepancies on the y-

axis. For the x-axis there is a commonly used measure, the so-called 

leverage. Outliers or data points with large leverage tend to be potentially 

influential. 

2. Systematic Discrepancy - Systematic discrepancies in the fit of a model 

imply that the model is deficient rather than the data. There is a variety of 

types of systematic discrepancy, some of which may mimic the effects of 

others. For this reason it is hard, perhaps impossible, to give a fool proof set 

of rules for identifying the different types. Consider, for example, a simple 

regression model with a response y and a single covariate x. Fitting 

a linear relation with constant-variance normal errors: discrepancies in the 

fit might require any of the following: 

(a) x should be replaced by f(x) to produce linearity, 

(b) the link for y should not be the identity, 

(c) both (1) and (2): both should be transformed to give linearity, 

(d)the errors are non-normal and require a different distribution, 

(e) the errors are not independent and require specification of 

some kindof correlation between them 

(f) an extra term in the model should be added, and so on. 



 

115 

GLMs allow for a series of checks on different aspects of the model. Thus we can 

check the assumed form of the variance function, of the link, or of the scale of the 

covariates in the linear predictor. A general technique is to embed the assumed 

value of, say, the variance function in a family indexed by a parameter, fit the 

extended model and compare the best fit with respect to the original fit for a fixed 

value of the parameter. 

3.6.8 Model Checking Plots 

Residuals based on r = y − µˆ play a major role in model checking for normal 

models. Different types of residual have been extended to cover GLMs. These 

include standardized (Studentized) and deletion residuals. We propose to use 

standardized residuals from component GLMs for checking assumptions about 

components. Note that var(r) = φ(1−q), so that a residual with a high leverage 

tends to have large variance. 

The standardized residuals are 

 
The standardized Pearson residual is given by 

 

Similarly, the standardized deviance residual is given by 

 

In this thesis we use deviance residuals since they give a good approximation to 

Normality for all GLM distributions (Pierce and Schafer, 1986), excluding extreme 

cases such as binary data. With the use of deviance residuals the 

normalprobability plot can be used for model checking. 
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The model-checking plots of Lee and Nelder (1998) are applied to GLMs. In a 

normal probability plot ordered values of standardized residuals are plotted 

against the expected order statistics of the standard normal sample. In the 

absence of outliers this plot is approximately linear. Besides the normal 

probability plot for detecting outliers, two other plots are used: 

1. the plot of residuals against fitted values on the constant-information scale 

(Nelder, 1990), and 

2. the plot of absolute residuals similarly. 

For a satisfactory model these two plots should show running means that are 

approximately straight and flat. If there is marked curvature in the first plot, this 

indicates either an unsatisfactory link function or missing terms in the linear 

predictor, or both. If the first plot is satisfactory, the second plot may be used to 

check the choice of variance function for the distributional assumption. If, for 

example, the second plot shows a marked downward trend, this implies that the 

residuals are falling in absolute value as the mean increases, i.e. that the assumed 

variance function is increasing too rapidly with the mean. 

The study also used the histogram of residuals. If the distributional assumption is 

right it shows symmetry provided the deviance residual is the best normalizing 

transformation. In GLMs responses are independent, so that these modelchecking 

plots assume that residuals are almost independent. Care will be necessary when 

we extend these residuals to correlated errors in later techniques employed in 

this thesis. 

3.7 Proposed Joint Generalized Linear Model (JGLM) 

Given a statistical model we prefer to use likelihood inferences. However, there 

are many practical problems for which a complete probability mechanism 
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(statistical model) is too complicated to specify fully or is not available, except 

perhaps for assumptions about the first two moments, hence precluding a 

classical likelihood approach. Typical examples are structured dispersions of 

non-Gaussian data for modelling jointly, the mean and dispersion. Wedderburn’s 

(1974) quasilikelihood approach deals with this problem, and the analyst needs 

to specify only the mean-variance relationship rather than a full distribution for 

the data. 

Suppose we have independent responses y1,...,yn with means E(yi) = µi and 

variance var(yi) = φV (µi), where µi is a function of unknown regression 

parameters β = (β1,...,βp) and V () is a known function. Wedderburn defined the 

quasi-likelihood (QL, strictly a quasi-loglihood) as a function q(µi;yi) satisfying 

 , (3.84) 

and, for independent data, the total quasi-likelihood is Pi q(µi;yi). 

The regression estimate βˆ satisfies the GLM-type score equations 

 , (3.85) 

Within the context of Wedderburn’s (1974) quasi-likelihood approach; 

1. There exists an implied probability structure, a quasi-distribution from a 

GLM family of distributions, that may not match the underlying distribution. 

For example, the true distribution may be the negative-binomial, while the 

quasi-distribution is Poisson. Also, a quasi-distribution might exist on a 

continuous scale, when the true distribution is supported on a discrete 

scale, or vice versa. 
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2. There does not exist an implied probability structure, but a quasilikelihood 

is available, i.e. there exists a real valued function q(µi;yi), whose derivatives 

are as in equation 3.85. 

3. The estimating equations 3.85 can be further extended to correlated 

responses. Then, a real valued function q(µi;yi) may not even exist. 

The original quasi-likelihood approach was developed to cover the first two 

contexts and has two notable features: 

1. In contrast to the full likelihood approach, we are not specifying any 

probability structure, but only assumptions about the first two moments. 

This relaxed requirement increases the flexibility of the QL approach 

substan- 

tially. 

2. The estimation is for the regression parameters for the mean only. For a 

likelihood-based approach to the estimation of the dispersion parameter φ 

some extra principles are needed. 

With the general quasi-likelihood approach, for a response yi and predictor xi, the 

study specify, using known functions f(.) and V (.) 

 

or 

g(µi) = xtiβ 

where g(µi) is the link function, and var(yi) = φV (µi) ≡ Vi(β,φ). It is possible to 

generate a GLM using either the quasi- or full likelihood approach. The QL extends 

the standard GLM by 

1. allowing a dispersion parameter φ to common models. and 
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2. allowing a more flexible and direct modelling of the variance function. 

3.7.1 Iterative weighted least squares 

The main computational algorithm for QL estimates of the regression parameters 

can be expressed as iterative weighted least squares (IWLS). It can be derived as 

a Gauss-Newton algorithm to solve the estimating equation. The study solves 

 

by first linearizing µi around an initial estimate β0 and evaluating Vi at the initial 

estimate. Let ηi = g(µi) = xtiβ be the linear predictor scale. Then 

 

so 

 
and 

 

Putting these into the estimating equation results into 

 = 0 (3.86) 

which is solve for β as the next iterate, giving an updating formula 

  (3.87) 

where X is the model matrix of the predictor variables, P is a diagonal matrix with 

elements 



 

120 

 

where Vi = φV (µ0i ), and z is the adjusted dependent variable 

 ) (3.88) 

The constant dispersion parameter φ is not used in the IWLS algorithm. 

3.7.2 Extended Quasi-likelihood 

Wedderburn’s original theory of quasi-likelihood (QL) assumes the dispersion 

parameter φ to be known, so his quasi-distribution belongs to the one parameter 

exponential family. For unknown φ, the statement that ’QL is a true loglihood if 

and only if the distribution is in the exponential family’ is not generally correct. 

In practice, the dispersion parameter is rarely known, except for standard models 

such as the binomial or Poisson, and even in these cases the assumption that φ = 

1 is often questionable. However, the classical QL approach does not tell us how 

to estimate φ from the QL. This is because, in general, the quasi-distribution 

implied by the QL, having log-density 

 , (3.89) 

contains a function c(yi,φ) which may not be available explicitly. Jorgensen (1987) 

called this GLM family the exponential dispersion family, originally investigated 

by Tweedie (1947). 

Although the standard QL formulation provides consistent estimators for the 

mean parameters provided the assumed first two-moment conditions hold, it 

does not include any likelihood-based method for estimating φ. Following 

Wedderburn’s original paper, one can use the method of moments, giving 
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so we expect a consistent estimate 

, 

where µi is evaluated using the estimated parameters, and p is the number of 

predictors in the model. Alternatively, one might consider the so-called 

pseudolikelihood (PL) 

 , (3.90) 

where ˆµi is computed using the QL estimate. The point estimate of φ from the PL 

is the same as the method-of-moments estimate. In effect, it assumes that the 

Pearson residuals 

  (3.91) 

are normally distributed. 

The PL cannot be used to estimate the regression parameters, so that if we use it 

in conjunction with the quasi-likelihood, we are employing two distinct 

likelihoods. However, if we want to use the GLM family (3.89) directly, estimation 

of φ needs an explicit c(yi,φ). Nelder and Pregibon (1987) defined an extended 

quasi-likelihood (EQL) that overcomes this problem. The contribution of yi to the 

EQL is 

 ) (3.92) 

and the total is denoted by q+ = Pi Qi, where d(yi,µi) is the deviance function defined 

by 

  (3.93) 



 

122 

In effect, EQL treats the deviance statistic as -variate, a gamma variate with 

mean φ and variance 2φ2. This is equivalent to assuming that the deviance 

residual 

rdi ≡ sign(yi − µi)pdi 

is normally distributed. For one-parameter exponential families, the deviance 

residual has been shown to be the best normalizing transformation (Pierce and 

Schafer, 1986). Thus, it can be expected that the EQL works well under GLM 

family. The EQL approach allows a GLM for the dispersion parameter using the 

deviance as ’data’. In particular, in simple problems with a single dispersion 

parameter, the estimated dispersion parameter is the average deviance 

 

which is analogous to the sample mean d¯ for the parameter φ. In contrast with 

PL, the EQL is a function of both the mean and variance parameters. More 

generally, the EQL forms the basis for joint modelling of structured mean and 

dispersion parameters, both within the GLM framework. 

3.7.3 Joint GLM of Mean and Dispersion 

Suppose that we have two interlinked models for the mean and dispersion based 

on the observed data y and the deviance d: 

E(yi) = µi, ηi = g(µi) = xtiβ, var(yi) = φiV (µi) 

E(di) = φi, ξi = h(φi) = gitγ, var(di) = 2φ2i where gi is the model matrix used 

in the dispersion model, which is a GLM with a gamma variance function. Now the 

dispersion parameters are no longer constant, but can vary with the mean 

parameters. One key implication is that the dispersion values are needed in the 

IWLS algorithm for estimating the regression parameters, and that these values 

have a direct effect on the estimates of the regression parameters. The EQL q+ 
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yields a fitting algorithm, which can be computed iteratively using two 

interconnected IWLS: 

1. Given ˆγ and the dispersion estimates φis, use IWLS to update βˆ for the 

mean model. 

2. Given βˆ and the estimated means ˆµis, use IWLS to update ˆγ with the 

deviances as data. 

3. Iterate Steps 1-2 until convergence. 

For the mean model in the first step, the updating equation is 

  (3.94) 

where 

 , (3.95) 

is the adjusted dependent variable and P is diagonal with elements 

 
As a starting value, we can use φi ≡ φ, so no actual value of φ is needed. Thus, this 

GLM is specified by a response variable y, a variance function V (.), a link function 

g(.), a linear predictor Xβ and a prior weight 1/φ. 

For the dispersion model, first compute the observed deviances di = d(yi,µˆi) 

using the estimated means. For a moment, we let ) with qi = 0. 

For the REML adjustment we use the GLM leverage for qi. 

The updating formula for ˆγ is 

, 



 

124 

Where the dependent variables are defined as 

 ) (3.96) 

and Pd is diagonal with elements 

 

This GLM is characterized by a response d, a gamma error, a link function h(.), a 

linear predictor Gγ and a prior weight (1 − q)/2. 

At convergence one can compute the standard errors of βˆ and ˆγ. If the GLM 

deviance is used, this algorithm yields estimators using the EQL, while with the 

Pearson deviance it gives those from the PL. 

The deviance components d∗ become the responses for the dispersion GLM. Then 

the reciprocals of the fitted values from the dispersion GLM provide prior weights 

of the next iteration for the mean GLM; these connections are marked in figure 

3.2. The resulting see-saw algorithm is very fast to converge. This means that all 

the inferential tools used for GLMs can be used for the GLMs for the dispersion 

parameters. For example, the model-checking techniques for GLMs can be applied 

to check the dispersion model. 
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Figure 3.2: GLM attributes for joint GLMs. 

 

d∗ = d/(1 − q), gamma(d∗,φ) = 2{−log(d∗/φ) + (d∗ − φ)/φ} 

This gives the EQL procedure if q = 0, and the REML procedure if q is the GLM 

leverage (Lee and Nelder, 1998). 

3.7.4 REML Procedure for QL Models and JGLM’s allowing true 

likelihood 

In estimating the dispersion parameters, if the size of β is large relative to the 

sample size, the REML procedure is useful in reducing bias. Because 

E(∂2q+/∂β∂φi) = 0, 

Lee and Nelder (1998) proposed to use the adjusted profile loglihood 

 pβ(q+) = [q+ − {log det(I(βˆ
γ)/2π)}/2]|β=βγ (3.97) 

where I(βˆ
γ) = Xt P−1 X is the expected Fisher information, P = ΦW −1, W = (∂µ/∂η)2V 

(µ)−1, and Φ = diag(φi). In GLMs with the canonical link satisfying dµ/dθ = V (µ) - 

the observed and expected information matrices are the same. In general they are 
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different. For confidence intervals, the use of observed information is better 

because it has better conditional properties, see Pawitan (2001, Section 9.6), but 

the expected information is computationally easier to implement. 

The interconnecting IWLS algorithm is as before, except for some modification to 

the adjusted deviance 

d∗i = di/(1 − qi) 

where qi is the ith diagonal element of 

X(XtΣ−1X)−1XtΣ−1. 

(The adjusted deviance also leads to a standardized deviance residual 

 

rdi = sign(yi − µi)pd∗i /φi. 

which can be compared with the theoretical standard normal). Suppose that the 

responses y have a normal distribution, i.e. V (µ) = 1. If the β were known each d∗i 

= (yi − xiβ)2 = di would have a prior weight 1/2, which is reciprocal of the 

dispersion parameter. This is because 

 

and 

 

and 2 is the dispersion for the  distribution, a special case of the gamma. 

With β unknown, the responses ) would have a prior 

weight (1 − qi)/2 because , and var( ). Another intu- 

itive interpretation would be that  has approximately χ2 distribution with 1 − 

qi degrees of freedom instead of 1, because they have to be estimated. For normal 
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models our method provides the ML estimators for β and the REML estimators 

for φ. For the dispersion link function h() we usually take the logarithm. 

The REML algorithm using EQL gives a unified framework for joint GLMs (JGLMs) 

with an arbitrary variance function V (). However, since the EQL is an 

approximation to the GLM likelihood, we use the true likelihood for that variance 

function, if it exists. For example, suppose that the y component follows the 

gamma GLM such that E(y) = µ and var(y) = φµ2; we have 

 , (3.98) 

Where 

 

The corresponding EQL is 

  (3.99) 

Here, we notice that logf(y) and logq(y) are equivalent up to the Stirling 

approximation 

 . (3.100) 

Thus, the EQL can give a bad approximation to the gamma likelihood when the 

value of φ is large. It can be shown that ∂pβ(L)/∂γk = 0 leads to the REML method 

with 

, 

where dg() is the di-gamma function. 

3.8 Generalized Linear Mixed Models 

Let y be an N-vector of responses, and X and Z be an N × p and N × q model 
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for the fixed-effect parameters β and random-effect parameters ν. The standard 

linear mixed model specifies 

 y = Xβ + Zν + e (3.101) 

Where e ∼ MV N(0,Σ),ν ∼ MV N(0,D), and ν and e are independent. The 

variance matrices Σ and D are parametrized by an unknown variance-component 

parameter τ, so random-effect models are also known as variance-component 

models. The random-effect term ν is sometimes assumed to be ), and 

the error term ), where Ik is a k × k matrix, so the variance- 

component parameter is  

If inferences are required about the fixed parameters only, they can be made from 

the implied multivariate normal model. 

y ∼ MV N(Xβ,V ) 

Where 

V = ZDZ0 + Σ 

for known variance components, the MLE 

 βˆ = (XtV −1X)−1XtV −1y (3.102) 

is the BLUE and BUE. When the variance components are unknown, we plug in 

the variance component estimators, resulting in a non-linear estimator for the 

mean parameters. The simplest random-effect model is the classical one-way 

layout 

 yij = µ + νi + eij, i = 1,...,q, j = 1,...,ni (3.103) 
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where µ is the overall mean parameter. The index i typically refers to a cluster 

and the vector yi = (yi1,...yini) to a set of measurements taken from the cluster. Thus, 

a cluster may define a person, a family or an arbitrary experimental unit on which 

we obtain multiple measurements. 

3.8.1 Likelihood estimation of fixed parameters 

If the interest is only about fixed parameters, marginal likelihood inferences can 

be made from multivariate normal model 

y ∼ MV N(Xβ,V ) 

It is instructive to look closely at the theory of the simplest random-effect model. 

Consider the one-way random-effect model 

 yij = µ + νi + eij, i = 1,...,q, j = 1,...,ni (3.104) 

Where for simplicity we shall assume that the data are balanced in the sense that 

ni ≡ n. Measurements within a cluster are correlated according to 

 Cov(yij,yik) = σ2, j 6= k 

and . 

So, yi = (yi1,...,yin)t is multivariate normal with mean µ1, and the variance matrix has 

the so-called compound- symmetric structure 

  (3.105) 

where Jn is an n × n matrix of ones. Setting ), the loglihood of the 

fixed parameters is given by 
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Where µ is subtracted element-by-element from yi. To simplify the likelihood, we 

use the formulae (e.g.,Rao 1973) 

 

  (3.106) 

where In is an n × n matrix of ones. 

thus, 

  (3.107) 

Where we have defined the error and cluster sums of squares respectively as 

SSE = XX(yij − y¯i)2 

 i i 

SSE = nX(¯yi. − y..¯ )2 
i 

It is clear that for any fixed (σe2,σν2), the MLE of µ is the overall mean ¯y.., so the 

profile Likelihood of the variance components is given by 

 
3.8.2 Inferences about the fixed effects 

From the multivariate normal model, the marginal loglihood of the fixed 

parameters is given by (β,τ) in the form 

 , (3.109) 
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Where the dispersion parameter τ enters through the marginal variance First we 

show that, conceptually, multiple-component models are no more complex than 

single-component models. Extensions of the profile likelihood to include more 

random components take the form 

y = Xβ + Z1ν1 + ... + Zmνm + e, 

Where Zi are N × qi model matrices, and the νi are independent MV Nqi(0,Di). 

In some applications the random effects are iid, so the variance matrix is 

given by 

 

It is also quite common to see a slightly more general variance matrix 

 

with known matrix R. This can be reduced to the simple iid form by re-expressing 

the model in the form. 

y = Xβ + ZR1/2R−1/2ν + e 

= Xβ + Z?ν? + e 

by defining  and  , where  is the square root matrix of R. 

Now ). This means that methods developed for the iid case can 

be applied more generally. for fixed τ, taking the derivative of the loglihood with 

respect to β gives 

 

So that the MLE of β is the solution of 
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XtV −1Xβˆ = XtV −1y, 

The well known generalized least-squares formula. Hence the profile likelihood 

of the variance parameter τ is given by 

 , (3.110) 

and the fisher information of β is the solution of 

I(βˆτ) = XtV −1X. 

In practice, the estimated value of τ is plugged into the information formula, from 

which we can find the standard error for the MLE βˆ in the form. 

βˆ = βˆτ 

 

Where the dependence of V on the parameter estimate is made explicit. The 

standard errors computed from this plug-in formula do not take into account the 

uncertainty in the estimation of τ, but this is nevertheless commonly used. 

Because E(∂2/∂β∂r) = 0, i.e. the mean and dispersion parameters are 

orthogonal(Pawitan 2001), this variance inflation caused by the estimation of τ is 

fortunately asymptotically negligible. However, it could be non-negligible if the 

design is very unbalanced in small samples. In such cases numerical methods such 

as 

Jackknife method is useful to estimate the variance inflation in finite samples 

(Lee,1991). For finite sample adjustment of t- and F-test see Kenward and Roger 

(1997). In the linear Models it is not necessary to have distributional assumptions 

about y, but only that 
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 E(Y ) = Xβ and var(Y ) = V 

So that the MLE above is the BLUE for given dispersion parameters. Then the 

dispersion Parameters are estimated by the method of moments using ANOVA. 

However, this simple technique is difficult to extend to more complex models. 

3.8.3 Estimation of variance components 

If we include the REML adjustment to account for the estimation of the fixed effect 

β, because E(∂2l/∂β∂r) = 0, from profile likelihood we get an adjusted 

profile likelihood 

 

In normal linear mixed models, this likelihood can be derived as an exact 

likelihood either by conditioning or marginalizing. 

3.8.4 Conditional likelihood 

Let βˆ = Gy where G = (XtV −1X)−1XtV −1 From 

 

and for fixed τ, βˆ ∼ MV N(β,(XtV −1X)−1), so 

 
giving the conditional likelihood 

 

The loglihood gives pβ(l/t) 
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3.8.5 Marginal likelihood 

The marginal likelihood is constructed from the residual vector. Let 

PX ≡ X(XtX)−1Xt 

be the hat matrix with rank p. Let A be an n × (n − p) matrix satisfying AtA = In−p 

and AAt = In − Px. Now R = Aty spans the space of residuals, and 

satisfies 

E(r) = 0 

Then, R and βˆ are independent because. 

cov(R,βˆ) 

Let T = (A,G). Then, matrix manipulation shows that 

f(y) = f(R,βˆ)|T| 

= f(R,βˆ)|TtT|1/2 

= f(R)f(βˆ)|XtX|−1/2 

This residual density f(R) is proportional to the conditional density f(y/βˆ), and 

the corresponding loglihood is, up to a constant term, equal to the adjusted profile 

loglihood pβ(l/τ). 

3.8.6 Classical estimation of random effects 

Since the study deals with random parameters, the classical approach is based on 

optimising the mean-square error 
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E||νˆ − ν||2, 

which gives the BUE νˆ = E(ν/y). In the general normal linear mixed model (3.101) 

we have 

 E(ν\y) = (Zt P−1 Z + D−1−1Zt P−1(y − Xβ)) (3.111) 

If the data are not normal, the formula is BLUE. If β is unknown, one can use its 

BLUE (3.102) and the resulting estimator of ν is still BLUE 

For the record, the researcher emphasis that Henderson (1959) recognized that 

the estimates (3.102) and (3.111) derived for optimal estimation can be obtained 

by maximizing the joint density function [ our emphasis of ] y and ν: 

  (3.112) 

with respect to β and ν. In the 1950 he called these the joint maximum likelihood 

estimates. It is known that such a joint optimization works only if the random 

effects ν are the canonical scale for β and this is so here. However, the result is not 

invariant with respect to non-linear transformations of ν. Later in 1973 

Henderson wrote that these estimates should not be called maximum likelihood 

estimates, since the function being maximized is not a likelihood. It is thus clear 

that he used the joint maximization only as an algebraic device, and did not 

recognize the theoretical implications in terms of extended likelihood inference 

the derivative of f(y,ν) with respect to β is 

 

Combining this with the derivative with respect to ν and setting them to zero 

gives 
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 Xt−1X Xt P−1 Z βˆ Xt P−1 

   =   (3.113) 

  Zt P−1 X Zt P−1 Z + D−1  νˆ  Zt P−1 y  

The estimates resulting from these simultaneous equations are exactly those we 

get from (3.102) and (3.111). The joint equation, which forms the basis for the 

most algorithms in the mixed models, is often called Henderson’s mixed model 

equation. When D−1 goes to zero the resulting estimating equation is the same as 

that treating ν as fixed. Thus, the so-called intra-block estimator can be obtained 

by taking D−1 = 0. 

3.8.7 Inference for mean parameters 

From the optimization of the log-density, given D and Σ, the h-likelihood estimates 

β And υ satisfy the mixed model equation 3.113. Let H be the square matrix of the 

left hand side of the equation,V = ZDZt +Σ and Λ = ZtΣ−1Z+D−1. The solution for β 

gives the MLE, satisfying 

 XtV −1Xβˆ = XtV −1y (3.114) 

and the solution for υ gives the empirical BUE 

υˆ = E(vˆ\y) = E(υ\y)|β=βˆ 

= DZtV −1(y − Xβˆ) 

= Λ−1ZtΣ−1(y − Xβˆ) 
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This yields (XtV −1X)−1, as a variance estimate for βˆ, which coincides with that for 

the ML estimate.we now show that H−1 also gives the correct estimate for 

E{(υˆ−υ)(υˆ−υ)t}, one that accounts for the uncertainty in β.ˆ When β is known the 

random-effect estimate is given by 

υ˜ = E(v\y) 

So we have 

var(υ˜ − υ) = E(υ˜ − υ)(υ˜ − υ)t = E{var(υ|y)} 

where 

var(υ|y) = D − DZtV −1ZD = Λ−1 

So when β is known Λ−1. Gives a proper estimate of the variance of ̃ υ − υ. However, 

when β is unknown, the plugged-in empirical Bayes estimate Λ−1|β=βˆ for var(υˆ−υ) 

does not properly account for the extra uncertainty due to estimating β. By 

contrast, the h-likelihood computation gives a straight forward correction. 

Now we have 

 var(υˆ − υ) = E{var(υ\y)} + E{(υˆ − υ˜)(υˆ − υ˜)t} (3.115) 

where the second term shows the variance inflation caused by estimating the 

unknown β as an estimate for var(υˆ − υ). The appropriate component of H−1 

gives 

{Λ−1 + Λ−1ZtΣ−1X(XtV −1X)−1XtΣ−1ZΛ−1}|β=βˆ 

Because ˆυ − υ˜ = −DZtV −1X(βˆ − β) it can be shown that 

{(υˆ − υ˜)(υˆ − υ˜)t} = Λ−1ZtΣ−1X(XtV −1X)−1XtΣ−1ZΛ−1. 



 

138 

Thus, the h-likelihood approach correctly handles the variance inflation caused 

by estimating the fixed effects. From this we can construct confidence bounds for 

unknown υ. 

3.8.8 Estimation of variance components 

We have previously derived the profile likelihood for the variance component 

parameter τ, but the resulting formula 3.110 is complicated by terms involving |V 

| or V −1. In practice these matrices are usually too unstructured to deal with 

directly. Instead we can use formulae derived from the h-likelihood. First, the 

marginal likelihood of (β,τ) is 

 

 

 

 
(Going from the first to the second formula involves tedious matrix algebra.) One 

can obtain the marginal loglihood in terms of the adjusted profile likelihood: 

, 

 = pυ(h|β,τ) (3.116) 



 

139 

where, from before, 

. 

The constant (2π) is kept in the adjustment term to make the loglihood an exact 

log-density; this facilitates comparisons between models as in the example below. 

Thus the marginal likelihood in the mixed effects models is equivalent to an 

adjusted profile likelihood obtained by profiling out the random effects. 

In the one-way random-effect model 

 yij = µ + νi + eij,i = 1,...,q,j = 1,...,n (3.117) 

From our previous derivations, given the fixed parameters (µ,τ), 

 

 

 

So the adjusted profile loglihood becomes 
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, 

Note that the h-loglihood h(µ,τ,υ) and information matrix I(υˆi) are unbounded as 

συ2 goes to zero, even though the marginal loglihood ι(µ,σe2,συ2 = 0) exists. The 

theoretical derivation here shows that the offending terms cancels out. Nu- 

merically, this means that we cannot use pυ(h) at (µ,σe2,συ2 = 0). This problem 

occurs more generally when we have several variance components. In these cases 

we should instead compute pυ(h) based on the h-likelihood of the reduced model 

when one or more of the random components is absent. For this reason the 

constant 2π should be kept in the adjusted profile loglihood. (Lee and Nelder, 

1996) 

3.8.9 REML estimation of variance components 

In terms of the h-likelihood, the profile likelihood oft the variance components 

3.110 can be rewritten as 

ιp(τ) = ι(βˆ
τ,τ) 

  (3.118) 

where τ enters the function through Σ,D,βˆ
τ and ˆυτ, and as before I(υˆτ) = ZtΣ−1Z + 

D−1 = Λ since I(υˆβ,τ) is not a function β. The joint estimation of βˆ and ˆυ as a 

function of τ was given previously by (3.116) If we include REML adjustment for 

the estimation of the fixed effect β, results in 
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 = pβ,υ(h|τ) (3.119) 

where here the p(.) notation allows the representation of the adjusted profiling of 

both fixed and random effects simultaneously. Hence in the normal case, the 

different forms of likelihood of the fixed and random effects simultaneously. 

Hence, in the normal case, the different forms of likelihood of the fixed 

parameters match exactly the adjusted profile likelihood derived from the h-

likelihood. Since ι(β,τ) = pυ(h), also the equation 

 pβ,υ(h) = pβpυ(h) (3.120) 

A useful result that would be only approximately true in non-normal cases. 

3.8.10 fitting algorithm 

The h-likelihood approach provides an insightful fitting algorithm, particularly 

with regard to the estimation of the dispersion parameters. The normal case is a 

useful prototype for the general case dealt with in the next chapter. Consider an 

augmented classical linear model 

ya = Tδ + ea 

where ea ∼ MV N(0,Σa), and 

 y X Z β 

 ya =  ,T  ,δ =   

 ψM 0 I v 

(3.121) 

 

It can be seen that, Σ = σ2I and Because the augmented linear model is a 

GLM with a constant variance function it is possible to apply the REML methods 
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for the joint GLM in section 3.7 to fit the linear mixed models. Here the deviance 

components corresponding to e are the squared residuals 

di = (yi − Xiβˆ − Zivˆ)2 

and those corresponding to eMare 

dMi = (ψM − vˆi)2 = vˆi, 

and the corresponding leverages are diagonal elements of 

 
The estimation of (β,τ,v). in the linear mixed model can be done by IWLS for the 

augmented linear model as follows, where for the clarity we show all the required 

equations: 

0. Start with an estimate of the variance parameter τ. 

1. Given the current estimate of τ update δˆ by solving the augmented 

generalized least squares equation: 

 

2. Given the current value of δ get an update ofτ;the REML estimators can be 

obtained by fitting a gamma GLM as follows: the estimator for σ2 is obtained 

from the GLM, characterized by a response d∗ = d/(1 − q) a gamma error, a 

link h(), a linear predictor γ (intercept only model), and a prior weight (1 − 

q)/2 and estimator, for σv2is obtained by the GLM, characterize by a 

response d∗M = dM/(1−qM) a gamma error, a link hM(), a linear predictor γM 

( intercept only model) and a prior weight (1−qM)/2. 

Note here that 

E(d∗) = σ2 
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and 

var(d∗) = 2σ2/(1 − qi), 

and 

 

and 

, 

This algorithm is often much faster than the ordinary REML procedure of 

the previous section. The MLE can be obtained by taking the levelages to be 

zero. 

3. Iterate between 1 and 2 until convergence. At convergence, the standard 

error of βˆ and ˆv − v can be computed from the inverse of the information 

matrix H−1 from the h-likehood and the standard errors of ˆτ are computed 

from the Hessian of pβ,v(h|τ) at τ. Typically there is no explicit formula for 

this quantity. 

This is an extension of the REML procedure for joint GLMs to linear mixed 

models. Fitting involves inter-connected component GLMs. Each connected GLM 

can be viewed as a joint GLM. Then, these joint GLMs are connected by an 

augmented linear model for β and v components. 

3.9 Hierarchical Generalized Linear Models (HGLM) 

The Hierarchical Generalized Linear Models is a synthesis of three widely used 

existing model classes; the Generalized Linear Models (McCullagh and Nelder, 

1989), Mixed Linear Models having both fixed and random effects (Longford, 

1993), and models with structured dispersions (Nelder and Lee, 1991, 1998). The 

h-likelihood (Lee and Nelder, 1996) is used for inference about fixed and random 
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effects given dispersion components, and an adjusted profile h-likelihood for 

inference about dispersion components given fixed and random effects. This 

leads to a reliable and useful estimators; these share properties with those 

derived from marginal likelihoods, while having the considerable advantage of 

not requiring the integrating out of random effects. 

The algorithm for fitting these models can be reduced to the fitting of a 

twodimensional set of generalized linear models; one dimension being mean and 

dispersion, and the other fixed and random effects, so that no special code is 

needed for the estimation of the dispersion components. This formulation implies 

that the model-checking techniques derived for generalised linear models 

(McCullagh and Nelder, 1989, Chap 12) can be carried over to the wider class. 

This method does not require the use of prior probabilities. 

3.9.1 The Model 

The Hierarchical Generalized Linear Models of Lee and Nelder (1996) are defined 

as follows. Conditional on random effects u, the response y follows a GLM family, 

satisfying E(y/u) = µ and var(y/u) = φV (µ), for which the kernel of the likelihood 

is given by 

 

Where θ = θ(µ) is the canonical parameter. The linear predictor takes the form 

 η = g(µ) = Xβ + Zv, (3.122) 

Where v = v(u), for some monotone functions v(.), are the random effects and β 

are the fixed effects. The random component u follows a distribution conjugate to 

a GLM family of distributions with parameters λ. For clarity of purpose and for 

the sake of this thesis; suppose that we have responses y = (y1,y2,...,yn)T and 
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unobserved random variables u = (u1,u2,...,uq)T , having E(yi/(u)) = µ0i and 

var(yi/(u)) = φiV0(µ0i). 

1. Given random effects u, the elements yi of y follow a generalized linear 

model, which has likelihood 

 )) (3.123) 

where θ(µ0i) denotes the canonical parameter and φi is the dispersion 

parameter. The linear predictor takes the form 

 η0 = g(µ0) = Xβ + Zv (3.124) 

Where u0 = (u01,u02,...,u0n)T , g() is the link function, X is the n×p model matrix for 

fixed effects β, and Z is the n×q model matrix for random effects v = g1() = 

(v1,v2,...,vq)T , where vi = g1(ui), for some strictly monotonic function of ui. 

2. The random effects ui, are independent with dispersion parameters λi. 

For simplicity of presentation, we use the subscript 0 for y/v components and 

1,2,... for the components. We suppress scripts when unnecessary. For simplicity 

of argument, we first consider a model with one extra random component, though 

there is no difficulty in generalising this to two or more such components. 

We let φi and λi vary over units to allow for structured dispersions. 

For example, the normal linear mixed models is an HGLM because 

1. y/u follows a GLM distribution with Var(y/u) = φ, with φ = σ2 and 

V (µ) = 1, η = µ = Xβ + Zv, where v = u 

2. u ≈ N(0,λ) with λ = σv2. 
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We call this model the normal-normal HGLM, where the first adjective refers to 

the distribution of the y|u component and the second to the u component. 

3.9.2 H-Likelihood Approach 

The h-likelihood, denoted by h, is defined by 

 h = `(θ0,φ;y\ν) + `(α;ν), (3.125) 

where `(α;ν) is the logarithm of the density function for ν with parameter α, and 

`(θ0,φ;y|ν) is that for y|ν. The random component ν is the scale on which the 

random effect u occurs linearly in the linear predictor. It is possible to derive the 

h-likelihood from density functions of u and y|u as well; ̀ (α;ν) can be derived from 

the density function of u with differential element dv(u) and `(θ0,φ;y|v(u)), the 

logarithm of the density function for y|u, since ν is the strictly monotonic function 

of u. The h-likelihood is the logarithm of the joint density function for ν and y. 

When both distributions are normal the h-likelihood is Henderson’s joint 

likelihood. When one or both of the distributions are non-normal, the hlikelihood 

is an obvious generalization of the joint likelihood. 

Clearly the h-likelihood is not an orthodox likelihood because the ν are not 

observed. Estimates derived from maximizing the h-likelihood is known as 

maximum h-likelihood estimates (MHLEs); these are obtained by solving. 

 ∂h/∂β = 0 (3.126) 

∂h/∂ν = 0 

From the definition of the h-likelihood (3.125) it is easy to see that the MHLEs for, 

β given u are obtained by the GLM equations with ν(u) as an offset. As with 

maximum likelihood (ML) estimates, the MHLEs for random effects are invariant 
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with respect to the transformation of random components u; for example, 

estimating equations ∂h/∂ν = 0 and ∂h/∂u = 0 result in the same random effect 

estimate. 

For normal linear mixed models the classical approach provides sensible 

inferences about β and the random parameters v; for further discussion, see e.g. 

Robinson (1991). However, its extension to non-normal models is not 

straightforward. To prepare for the necessary extensions later, we study here h-

likelihood inference for linear mixed models. The general model can be stated 

equivalently as follows: conditional on v the outcome y is normal with mean 

 E(y|v) = Xβ + Zv (3.127) 

and variance Σ, and v is normal with mean zero and variance D. From above, the 

extended loglihood of all the unknown parameters is given by 

 `e(β,τ,v) = log f(y|v) + log f(v) (3.128) 

  (3.129) 

where the dispersion parameter τ enters via Σ and D. To use the h-likelihood 

framework, first we need to establish the canonical scale for the random effects. 

Given the fixed parameters, by maximizing the extended likelihood, we obtain 

 vˆ = (ZtΣ−1Z + D−1)−1ZtΣ−1(y−Xβ) (3.130) 

and from the second derivative `e with respect to v, we get the Fisher information 

 I(vˆ) = (ZtΣ−1Z + D−1) (3.131) 



 

148 

Since the Fisher information depends on the dispersion parameter τ, but not on 

β, the scale v is not canonical for τ, but it can be for β. In fact it is the canonical 

scale. This means that the extended likelihood is an h-likelihood, allowing us to 

make joint inferences about β and v, but estimation of τ requires a marginal 

likelihood. Note that ˆv is a function of fixed parameters, so that we use notations 

vˆ, ˆv(β,τ) and ˆvβ,τ for convenience. This is important when we need to maximize 

adjusted profile likelihoods. The canonical scale v is unique up to linear 

transformations. 

For non-linear transformations of the random effects, the h-likelihood must be 

derived following the invariance principle; i.e., 

 H(β,τ,u(v)) ≡ H(β,τ,v) (3.132) 

With this, joint inferences of β and v from the h-likelihood are invariant with 

respect to any monotone transformation (or re-expression) of v. The study 

compares the h-likelihood inference with the classical approach: All inferences - 

including those for the random effects - are made within the (extended) likelihood 

framework, Joint estimation of β and v is possible because v is canonical for β, 

Estimation of the dispersion parameter requires an adjusted profile likelihood. 

For inferences from HGLMs we should define the h-loglihood of the form 

 h ≡ log fβ,φ(y|v) + log fλ(v) (3.133) 

where (φ,λ) are dispersion parameters. It can be seen that in normal mixed linear 

models v is the canonical scale for β. However, this definition is too restrictive 

because, for example, there may not exist a canonical scale for non-normal 

GLMMs. 
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3.9.3 Conjugate Hierarchical Generalized Linear Models 

Much current work on this area assumes that the distribution of the random 

component ν is normal. The normality assumption is convenient when the 

random components ν are correlated. However, the distribution of ν, or 

equivalently u, is better decided by the properties of the data or the purposes of 

inference. So a broader class of hierarchical models is of interest. In generating a 

new class of HGLMs, we first try for a simple form of random effect estimates. 

Secondly, if possible, we want to avoid a difficulty with the inference about the 

population mean E(y) with fixed effects, B. In the GLMM, t0 = E(y|u) = g−1(η + ν). 

So that µ = g−1(η) 6= Eg−1(η+ν)) = E(y), unless the link function η is the identity 

function with E(ν) = 0. 

In multiplicative models, where, µ0 = µu, this bias can be avoided by having a 

distribution of u satisfying E(u) = 1 

For simplicity of argument, let the response be yij for i = 1,...,t and j = 1,...,ni, with n 

= Pni, and ui the unobserved random components. We define the conjugate HGLM 

as follows. Consider the canonical link model such that  

θij + νi, where ) and νi = θ(ui). Then, we have 

∂h/∂βk = X(yij − µ0ij)xkij/φ. 
y 

Assume that the kernel of `(α;ν) 

(3.134) 

X {a1(α)νi − a2(α)b(νi)} (3.135) 
i 

where a1() and a2() are some functions of dispersion parameters a. Even though 

expression (3.135) takes the form of the Bayesian conjugate prior (Cox and 

Hinkley, 1974), that prior is for θ0 itself, whereas for our conjugate distribution it 
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is for ν only; we do not specify priors for ,β, φ or α. Then the kernel of the h-

likelihood becomes 

 X 0 0 X 

 {θ y − b(θ )}/φ + {a1(α)ν − a2(α)b(ν)}. 
 ij i 

Since ∂b(θ(µ))/∂θ = µ so that ∂b(ν)/∂ν = u we have 

. 

thus equating ∂h/∂νi to 0 gives an estimate of the random effect 

  (3.136) 

where yi+ = Pj yij and . This shows that, in the conjugate HGLMs, the 

MHLE for the random effects has a simple form on the u − scale. If E(u) = 

a1(α)/a2(α), and the fixed effects have an intercept term, then from equations 

(3.134) and (3.136) we have Puˆi = al(α)/a2(α), analogously to the result for 

residuals in normal linear models. This section considers various HGLMs in more 

detail, in particular the HGLMs with conjugate distributions. 

3.9.4 GLM family for the Random Components 

A key aspect of HGLMs is the flexible specification of the distribution of the 

random effects u, which can come from an exponential family with log-density 

proportional to 

Σ[k1c1(u) + k2c2(u)] 

for some functions c1(.) and c2(.), and parameters k1 and k2. The weak canonical 

scale gives a nice representation of loglihood for random effects, which can be 

written as 
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  (3.137) 

for some known functions θM(u) and bM(.), so that it looks conveniently like the 

kernel of the GLM family, and choosing a random-effect distribution becomes 

similar to choosing a GLM model. Examples of these functions based on common 

distributions are given in Table 3.1. (We use the label M to refer to the mean 

structure). Allowing for the constraint on E(u) as discussed above, the constant 

ψM takes a certain value, so the family (3.137) is actually indexed by a single 

parameter λ. Table 3.1 also provides the corresponding values for ψM in the 

different families. As to be demonstrated later, in conjugate distributions we have 

E(u) = ψM and var(u) = ρVM(ψM) Recall that the loglihood based on y|v 

is 

 

Now, by choosing the specific functions θM(u) = θ(u) and bM(θM) = b(θ), we obtain 

the conjugate loglihood 

  (3.138) 

Table 3.1: GLM family of random components for HGLM 

y/v distribution y/v link u distribution u link model 

Normal identity Normal identity conjugate model 

Poisson log Gamma log conjugate model 

Binomial compl.-log-

log 

Beta logit conjugate model 

Gamma reciprocal Inverse-

gamma 

reciprocal conjugate model 

Gamma log Inverse-

gamma 

log conj with canonical link 

Poisson log Normal identity Ext conjugate model* 

Binomial logit Normal identity Ext conjugate model* 

Binomial comp.-log-log Gamma log Ext conjugate model 

Gamma log Gamma log Ext conjugate model 

for the random effects. 
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Cox and Hinkley (1974) defined the so-called conjugate distribution. We call 

(3.138) the conjugate loglihood to highlight that it is not a log-density for ψM. The 

corresponding HGLM is called a conjugate HGLM, but there is of course no need 

to restrict ourselves to such models. It is worth noting that the weak canonical 

scale of v leads to this nice representation of conjugacy. In conjugate distributions 

the scale of random effects is not important when they are to be integrated out, 

while in conjugate likelihood the scale is important, leading to nice inferential 

procedures. 

In principle, various combinations of GLM distribution and link for y|v and a 

conjugate to any GLM distribution and link for v can be used to construct HGLMs. 

Examples of useful HGLMs are shown in Table 3.1. Note that the idea allows a 

quasi-likelihood extension to the specification of the random effects distribution, 

via specification of the mean and variance function. 

∗ = A generalised linear model with a normal distribution and identity link for the 

random effects u. 
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Figure 3.3: Generalised linear model attributes for hierarchical generalised linear 
models 

3.9.5 Gamma-Inverse Gamma Model 

We assume that the conditional distribution of y given u is the gamma distribution 

with dispersion parameter φ = 1/ν0 whose log-likelihood has kernel 

), where θ0 = 1/µ0. 

Canonical link models 

The conjugate HGLM leads to the model θij0 = θij + νi, where θij = 1/µij, and νi = l/ui. 

We choose the conjugate distribution (inverse gamma) such that 

E(ui) = 1. This gives a log-likelihood for ν of the form 
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 `(α;ν) = X{−ανi + αlogνi + (α + 1)logα − logΓ(α + 1)}. (3.139) 

The estimating equations for ˆui are given by 

 uˆi = {ν(yi+ − µi+ + α)}/α (3.140) 

and those for β by the standard GLM equations for a canonical link, 

 X 0 

 (yij − µij)xkij = 0 (3.141) 
ij 

As with the corresponding GLMs, we require the linear predictor to be positive to 

ensure that the mean remains positive. 

Log-link Models 

With the canonical link, because of the requirement that µ0ij > 0, care should be 

taken in computing βˆ and ν0. So, with gamma errors, the log-link is often used. 

Consider the multiplicative model µ0 = µu with E(u) = 1. Let ηij0 = logµ0ij = logµij + 

νi, where logµ = Xβ and ν = logu. Suppose that ui has the inverse gamma density 

function, 

 ) (3.142) 

so that the kernel of h becomes 

 . 

The MHL equations for β are 
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 = 0 (3.143) 

from ∂h/∂νi = Pj(νyij/µijui − ν) − (α + 1) + α/ui, we obtain 

  (3.144) 

The next Section shows that the MHLE for β is the same as the marginal ML 

estimator. Here it is the  scale on which the random effects µ occur linearly in the 

estimating equations(3.143) and 

  (3.145) 

In the normal-normal mixed model, µ = Xβ are location parameters and the 

random effects estimators are location invariant. The above multiplicative model 

can be written as logy = logµ + logu + loge, where e ∼ Γ(1,υ); here µ are scale 

parameters and equation(3.144) shows that the random effects estimators are 

also scale invariant. 

3.9.6 Inverse Gaussian-Gamma Model 

The researcher assume that the conditional distribution of y given µ is the inverse 

Gaussian distribution with dispersion parameter φ = 1/ν whose log-likelihood 

has 

kernel , where  

3.9.7 Canonical link models 

The conjugate HGLM leads to the model , where θij = 1/µ2ij and 

νi = 1/µ2i . Here the kernel of `(α;ν) for the conjugate likelihood is P{−α1νi + 

α2(2νi)−1/2}, giving ˆ  . For the inverse Gaussian distri- 
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bution, the conjugate distribution is not unique but depends on the 

parametrization see Consonni and Veronese(1992). Suppose that νi has a gamma 

distribution, giving 

`(α;ν) = X{(α − 1)logν + αlogα − αν − logΓ(α)} 

Here µ02 = µ2/(1 + µ2ν) so that the MHL equation for ν becomes 

(3.146) 

 = 0 (3.147) 

whence 1  1). Thus a simple form of random effect 

estimators is possible with distributions other than the conjugate distribution. 

3.9.8 Log-link models 

With inverse Gaussian errors, the log-link may often be used, as with gamma 

errors. Consider the multiplicative model  with log-link so that we have 

, where η = logµ = Xβ, ν = logµ. Suppose that µi 

has the inverse gamma distribution with E(µi) = 1 so that `(α;ν) has kernel P{−(α 

+ 1)νi − α/µi}. Now let ri = l/µi; then . Since `(β,φ;y/µ) 

has kernel −ν Pij(yijri2/2µ2ij − ri/µij), the MHLE for r is easy to derive and is given 

by 

 

 

= 0 

so we have 

  (3.148) 

Now suppose that ri ∼ N(d,1/α). Desmond and Chapman (1993) considered a 

model similar to this, since it allows an explicit marginal likelihood. Here ν = −logr 

is not defined for r ≤ 0 and the Jacobian appears awkward. Further, both ̀ (β,φ,y/µ) 

and `(α;r), the likelihood derived from the density of r directly, are quadratic 
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functions of r so here it seems natural to use `(α;r) instead of ι(α;ν) in forming the 

h-likelihood, because then we have a ∂h/∂ri = −P
j v(riyij/µ2ij − 1/µij) − αri + dα, so 

that 

  (3.149) 

In this model we can show that the conditional likelihood of r|y is a normal 

distribution such that E(ri|y) is the right-hand side of the above equation and 

  (3.150) 

3.10 Properties of Maximum h-likelihood estimates 

Consider the hierarchical model 

 y|ν ∼ f1(y|ν,β,φ) (3.151) 

ν ∼ f2(ν|α), 

where f1 and f2 are arbitrary density functions of y|ν and ν respectively. Assume that 

φ and α are given and, β are parameters of interest. The h-likelihood h(β,φ,α;y,ν) has 

components `(β,φ;y|ν) = logf1(y|ν,β,φ) and `(α;ν) = logf2(ν|α). 

It can also be written in the form 

 h = `(β,φ;y|ν) + `(α;ν) = L + `(β,φ,α;ν|y) (3.152) 

where L is the marginal likelihood and 

Z 

 `(β,φ,α;ν|y) = log{f1(y|ν,β,φ)f2(ν|α)/ f1(y|ν,β,φ)f2(ν|α)dν} (3.153) 
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is the logarithm of the density function of v/y. 

For GLMMs, Breslow and Clayton(1993) investigated the Laplace approximation 

for the marginal likelihood L: 

 LαAˆ (B) + h(β,φ,α;y,ν˜). (3.154) 

Here  where D∗ is the matrix whose ijth element is 

∂2h/∂νi∂νj|ν=ν˜, and ν is a solution of the equations ∂h/∂ν = 0 given β. Breslow and 

Clayton(1993) showed that the Laplace approximation(3.154) is very accurate 

for likelihood-based inferences in GLMMs with common group means and one ν 

component. Breslow and Clayton(1993) again extended these results to models 

with arbitrary fixed effects and more than one ν-component. Consider the 

approximate marginal ML estimating equations 

 ∂L/∂βˆ = ∂A(β)/∂β + ∂h(β;y,ν˜)/∂β = 0 (3.155) 

In GLMMs, Breslow and Clayton(1993) showed that A(β) depends on β through 

the GLM weight function. Assuming that this GLM weight varied slowly as a 

function of β, the y proposed to ignore the term ∂A(β)/∂β in obtaining the 

marginal ML estimate. Then the second term in the above equations becomes 

 ∂h(β;y,ν˜)/∂β ≈ ∂h/∂β|ν=ν˜ + ∂h/∂ν|ν=ν˜(∂ν/∂β˜ ) = 0 (3.156) 

Here they ignored the second term and justified the method as jointly maximizing 

Green’s(1987) penalized quasi-likelihood and also as maximizing the Bayes 

posterior distribution. Thus for GLMMs, Breslow and Clayton(1993) 

recommended the MHLEs for β as an approximate marginal ML estimator. 
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3.10.1 Fixed Vrs Random Effects 

Fixed effects can describe systematic mean patterns such as trend, while random 

effects may describe either correlation patterns between repeated measures 

within subjects or heterogeneities between subjects or both. The correlation can 

be represented by random effects for subjects, and heterogeneities by saturated 

random effects. In practice, it is often necessary to have both types of random 

components. However, sometimes it may not be obvious whether effects are to 

be treated as fixed or random. For example, there has been much debate among 

econometricians about two alternative specifications of fixed and random effects 

in mixed linear models: see Baltagi (1995) and Hsiao (1995). 

When yi are random, the ordinary least-square estimator for β, treating vi as fixed, 

is in general not fully efficient, but is consistent under wide conditions. By 

contrast, estimators for β, treating vi as random, can be biased if random effects 

and covariates are correlated (Hausman, 1978). Thus, even if random effects are 

an appropriate description for vi one may still prefer to treat the vi as fixed unless 

the assumptions about the random effects can be confirmed. Without sufficient 

random effects to check their assumed distribution it may be better to treat them 

as fixed. 

This produces what is known as the intra-block analysis, and such an analysis is 

robust against assumptions about the random effects in normal linear mixed 

models. Econometrics models are mainly based upon the normality assumption. 

However, with binary data the robustness property of intra-block estimators no 

longer holds. In general there is no guarantee that the intra-block analysis will be 

robust. 
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3.10.2 Random Effect Estimation 

For any function r() let r = r(u). The quantity δ = E(r|y) is the best unbiased 

predictor for a random effect r in the sense that 

 E(δ)Ey{E(r|y)} = E(r) (3.157) 

and it has the minimum mean-square error of prediction 

0 
E(δ − r) P(δ − r) 

for any positive definite matrix P; see Searle et al. (1992). Given β, let ˜µ be a 

solution of the equations ∂h/∂ν = 0. Under the normal-normal mixed model ν = 

E(v|y) and ν is linear in y; hence ν is called the best linear unbiased 

predictor(BLUP). 

We have seen that  is the best unbiased predictor for the gamma-inverse gamma 

and inverse Gaussian-normal model with log-link; see equation(3.141) and the 

sentence following equation (3.149). Now, under appropriate conditions, we 

show that ˜r and ˆr = r˜|β=βˆ converge to E(r|y), so that the MHLEs for r are 

asymptotical best unbiased predictors. Asymptotic arguments can be derived for 

any strictly monotonic transformation of u. Given φ and α, the Laplace 

approximation for expression(3.154) is based on the expansion of h: 

 hαhˆ (β,φ,α;y,ν˜) − (ν˜ − ν)0D∗(ν˜ − ν)/2 = Lˆ + `ˆ(β,φ,α;ν|y) (3.158) 

Ignoring the constant term, which depends only on y and not on v, expressions 

(3.154) and (3.158) imply that 

 ν|y ∼ N(ν,D˜ ∗−1) (3.159) 
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would be a good approximation for the distribution of v|y. If so, given, β, the 

solution ˜ν of ∂h/∂v = 0 is approximately E(v|y). The convergence rate of D∗−1 in 

expression (3.159) plays a crucial role in the asymptotic properties of the MHLEs 

obtained from equations(3.126). We assume earlier that ) for all i, 

where n is the sample size, the standard condition for the Laplace approximation. 

For simplicity of argument, we consider again HGLMs with one v-component 

where D(∗) is a diagonal matrix with the ith element  and n = 

Pni. It is true that ) if the number of groups t remains the 

same but within-group sample sizes ni −→ ∞ at the same rate. Lee and Nelder 

(1996) show that 

ν˜i = E(νi|y) + 0p(n−1) 

Similarly, they showed that 

(3.160) 

  (3.161) 

and that equations (3.160) and (3.161) often hold exactly on some scale of µ. 

; for example, on the µ-scale, iu = E(µ|y) and var(µ|y) = D∗−1 with  

−∂2h/∂µ2i |µ=µ˜, for the Poisson-gamma model, and, on the r = 1/µ scale, ˜r = E(r|y) 

and var(r|y) = D∗−1 with Di∗ = −∂2h/∂ri2|µ=µ˜, for the multiplicative inverse 

Gaussian-normal models. 

3.10.3 Fixed Effect Estimation 

According to the EM algorithm of Dempster et al. (1977), in which the us are the 

missing data, the (marginal) ML estimate for, β can be obtained by solving 

 E{∂h/∂β|y,βˆ(p)} = 0, (3.162) 

where β(p) is the estimate of β from the previous iteration. However, in general the 

EM algorithm is difficult to apply because the conditional expectation is difficult 
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to evaluate. Having shown that the estimating equations(3.162) become 

∂h/∂β|ν=νˆ = 0 

for the Poisson-gamma model, we consider now the gamma-inverse gamma 

model with log-link. From equation (3.143), the term l/µi appears in the equation 

∂h/∂β = 0. From equation (3.145) it is obvious that equation(3.143) becomes the 

EM equation (3.162): see equation (3.144). This equivalence is well known for 

normal-normal models. Thus in these three models the marginal ML estimators 

for, β are the same as the MHLEs. The alternation between the pair of estimating 

equations in-equation (3.126) is of the EM type for the marginal ML estimator for, 

β, in which 

1. given µ, solving ∂h/∂β = 0 is the M-step and 

2. given, β, solving ∂h/∂β = 0 is the E-step. 

Actually (1) is the first-order approximation to equation(3.162) at ˆν. This 

argument shows that the MHLE, βˆ differs from the marginal ML estimator only 

slightly. Lee and Nelder (1996) showed that the difference is Op(n−1) and hence 

both have asymptotically a common variance. Since the(marginal) ML estimator 

for, β is asymptotically most efficient, so is the MHLE for, β. 

3.10.4 Covariance Estimators of Maximum h-likelihood 

Estimates 

Let 

 

V11 

V =  

 

V21 

   

V12 var(βˆ)  = n  

   

V22 cov(νˆ − ν,βˆ) 

 

cov(β,ˆ νˆ − ν) 

, 

 

var(νˆ − ν) (3.163) 
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  , (3.164) 

where B, C and D are matrices such that the ijth element of B is 

−∂2h/∂βi∂βj|β=β,νˆ =νˆ 

the jkth element of C is 

−∂2h/∂βj∂νk|β=β,νˆ =νˆ 

and the ijth element of D is 

−∂2h/∂νi∂νj|β=β,νˆ =νˆ 

If E(M) is non-singular, under appropriate regularity conditions M−1 converges to 

V as n −→ ∞. This holds when entries of M are replaced by corresponding 

expectations since B, C and D are sums of matrices. If the model matrix X has full 

column rank E(M) is non-singular; see the Hessian matrix (in next Section). It is 

always possible to select the columns of X to have full column rank. 

Given data y, the realized values of random effects v are fixed constants, so the h-

likelihood can be treated as if it were an orthodox likelihood in which ν are 

regarded as fixed parameters for realized but unobserved values of random 

effects. This result leads to the first-order asymptotics for the estimators of β and 

ν. According to Harville (1976), the estimates of cov(β,ˆ νˆ − ν) and var(νˆ − ν) are 

useful for making inferences about realized or sample values of ν. 

Now consider the likelihood-ratio-type test statistics for fixed effects, testing 

/beta = βo. Given dispersion parameters φ and α, we may use the test statistic 
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 Tf = 2[h(β,φ,αˆ ;y,νˆ) − h{βo,φ,α;y,νˆ(βo)}], (3.165) 

where ˆν(βo) is the solution of 

∂h/∂ν|β=βo = 0 

An alternative, using the Laplace approximation of L, expression (3.154), is the 

test statistic 

 Ta = 2{Lˆ(βˆ) − βˆ
o} = Tf + 2{A(βˆ) − A(βo)}. (3.166) 

As Liu and Pierce (1994) have pointed out for GLMMs, the term A(βˆ) − A(/βo) is 

the nuisance parameter adjustment of Cox and Reid (1987) when v are fixed 

nuisance parameters orthogonal to β. But the results of this section show that 

they are not orthogonal so we are uncertain which of Tf and Ta is better. Under the 

hypothesis β = βo the adjustment term in-equation (3.167) is asymptotically 

negligible: see the definition of A(βˆ) in expression (3.154) and the discussion in 

Breslow and Clayton (1993). Using arguments from Cox and Hinkley (1974), the 

expansion of Tf leads to asymptotically equivalent test statistics 

(β − βo)T Iβ,β(β,ˆ νˆ)−1(βˆ − βo) 

and 

(βˆ − βo)T Iββ(βo,νˆ(βo))−1(βˆ − βo), 

where Iβ,β is a consistent estimator of var(βˆ) in the result. So if the limiting 

distribution of β is normal the X2-test would be based on Tf . As shown in earlier 

sections, βˆ differs from the marginal ML estimator by Op(n−1) so the asymptotic 

normality for β holds when the marginal ML estimator is asymptotically normal. 
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3.10.5 Inference Procedure 

From the h-loglihood we have two useful adjusted profile loglihoods: the marginal 

loglihood and the restricted loglihood. 

log fφ,λ(y|βˆ), 

where βˆ is the marginal ML estimator given τ = (φ,λ). Following Cox and Reid 

(1987), the restricted loglihood can be approximated by 

pβ(`|φ,λ). 

In principle we should use the h-loglihood h for inferences about v, the 

marginalloglihood ` for β and the restricted loglihood log fφ,λ(y|βˆ), for the 

dispersion parameters. If the restricted loglihood is hard to obtain we may use 

the adjusted profile likelihood pβ(`). When ` is numerically hard to obtain, Lee and 

Nelder (1996, 2001) proposed to use pv(h) as an approximation to ` and pβ,v(h) as 

an approximation to pβ(`), and therefore to log fφ,λ(y|βˆ), pβ,v(h) gives approximate 

restricted ML (REML) estimators for the dispersion parameters and pv(h) 

approximate ML estimators for the location parameters. Because log fφ,λ(y|βˆ) has 

no explicit form except in normal mixed models, in this thesis we call dispersion 

estimators that maximize pβ,v(h) the REML estimators. 

3.11 Score Equations for Fixed and Random Effect 

Estimators 

In this section the study seeks an efficient score algorithm for, β and ν given φ and 

α. One reason for developing an algorithm for the ν-scale rather than for the µ-
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scale is that ν can often assume any real value where as µ usually has range 

restrictions which may cause problems in convergence. 

Let h have kernel 

 0 0 

where Z is the n × t group indicator matrix whose (ij,k)th element is and ν 

is the t × 1 vector whose ith element is νi. The score equations become 

 φ(∂h/∂βk) = XW(y − µ0)(∂η0/∂µ0)xk = 0, (3.169) 

 φ(∂h/∂νi) = XW(y − µ0)(∂η0/∂µ0)zi + φ{∂ι(α;ν/∂νi)} = 0, (3.170) 

where W is the GLM weight function, W = (∂µ0/∂η0)2V (µ0)−1. By taking conditional 

expectations of the second derivatives analogously to Fisher scoring, we have 

−φE(∂h/∂βk∂βs|ν) = XWxsxk, 

−φE(∂h/∂βk∂βs|ν) = XWxkxs, 

−φE(∂2h/∂νs∂νk|ν) = XWzszk − φ{∂2ι(α;ν)/∂νs∂νk}. 

The corresponding expected Hessian matrix H/φ can be written as 

 

XT WX 

H =  T WX 

Z 

 

XT WZ 

 ZT 

WZ + U  (3.171) 

 X X 

 {φ y − b(φ )}/φ + ι(α;νi) 
 ij i 

and 

(3.167) 

0 
η0 = g(u ) = Xβ + Zν (3.168) 
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where U is a t × t diagonal matrix whose ith element is −φ{∂2ι(α;ν)/∂νi2}, with the 

off-diagonal elements being 0 because the νi are independent. So analogously to 

the derivation on page 42 of McCullagh and Nelder (1989) we have score 

equations 

      

 XT WX XT WZ β + δβ XT Ww 

   =   

  T WX ZT WZ  v + δv  ZT Ww  

Z 

where w is the GLM adjusted dependent variable 

(3.172) 

w = η0 + (y − µ0)(∂η0/∂µµ0) 

and 

(3.173) 

R = Uv + φ{∂l(α;v)/∂(v)} (3.174) 

When the v have a normal distribution with mean 0, R = 0, and the score equations 

become Henderson’s (1975) mixed model equations for normal-normal models. 

On the basis of various approximations, the MHLE score equations (3.173) for 

GLMMs have been derived by many researchers, e.g.Breslow and Clayton (1993), 

Wolfinger (1993), Engel and Keen (1994) and McGilchrist (1994). Equations 

(3.173) are equivalent to 

 

X∗T W ∗X∗ 

 

 
∗T W ∗X∗ Z 

     

X∗T W ∗Z∗ β + δβ X∗T W ∗w∗ 

  =   

Z∗T W ∗Z∗  v + δv  Z∗T W ∗w∗  (3.175) 

where 

   

X 
∗ 

 X =  , 

 0 

   

Z 
∗ 

Z =  , 

 I 



 

1

6

8

 

 w 
∗ 

w =  , 

  −1R  

U 

W ∗ 

 

W = 
 

 

0 

 

0 

 

 

U 

(3.176

) 

This is equivalent to augmenting the model matrices X and Z with extra rows, one 

for each random component, with corresponding extensions to the adjusted 

dependent variable and weight matrix. In conjugate HGLMs, from the equation 

preceding equation (3.136), we have 

 ∂l(α : vi)/∂vi = a1(α) − a2(α)ui = −a2(α)ui − E(ui) (3.177) 

and 

∂2l(α : vi)/∂vi2 = −a2(α)V (ui) 

since 

E(u) = a1(α)/a2(α) 

and 

∂(ui)/∂vi = V (ui) 

. 

Here H/φ is the actual not the expected Hessian matrix, and U is the t × t diagonal 

matrix with the ith element φa2(α)V (ui) and 

 R = Uv − φa2{u − E(u)} = U[v − (∂v/partialu){u − E(u)}] (3.178) 
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Note that 

v − (∂v/partialu){u − E(u)} 

is E(v) to a first-order approximation so that R may be negligible when E(v = )=0. 

When a2(α) = 0, both U and R become null so that equations (3.173) become the 

ordinary GLM score equations. When a2(α) = ∞,vˆ = θ{E(u)}; see the discussions 

below equations (3.136). In conjugate HGLMs the equations (3.176) have the 

following nice interpretation. 

Consider artificial data y∗T = (yT ,E(u)T ) from GLMs such that 

µ∗T = E(y∗T ) = (µ0T ),θ∗ = X∗β + Z∗v (3.179) 

var(y∗) = φdiag{V (µ0),V (u)/φa2(α)} (3.180) 

Then we can show that 

w∗ = θ∗ + (y∗ − µ∗)(∂θ∗/∂µ∗) 

is an augmented adjusted dependent variable where ∂µ∗/∂θ∗ 

= diag{V (µ0),V (u)} 

. 

From the arguments above we have φHˆ −1 as the estimator of the covariance 

matrix of βˆ and ˆv − v; see the result in subsection 3.10.4. When the realized value 

of v are known, φˆ(XT WX)−1 is the estimate of var(β) takes account of the 

information loss caused by estimating the random effects, but not that caused by 

estimating the variance components α. However, this information loss will be 
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negligible because of the asymptotic orthogonality to be shown in the next two 

subsections. Numerical studies for GLMMs by Breslow and Clayton (1993) and 

McGilchrist (1994) support this near-orthogonality. 

3.11.1 Scaled Deviance Test 

For the goodness-of-fit criterion,the scaled deviance is defined by 

D(y,µˆ) = −2{l(µˆ0,φ;y|v) − l(y,φ;y|v)} 

with the estimated degrees of freedom n − trace(H−1H∗) where 

(3.181) 

   

 XT WX XT WZ 
∗ 

 H =   (3.182) 

  ZT WZ ZT WZ  

In the absence of random components v, this becomes the scaled deviance of 

GLMs, D(y,µˆ) = −2{l(µ,φˆ ;y) − l(y,φ;y)} with its degrees of freedom n − rank(X). 

Suppose that vi have a distribution such that var(  and E(v) −→ 0 as 

0. Earlier we show by examples that the MHLEs for v becomes the fixed 

effect estimates when  and the zero estimates when , i.e there are 

no random effects. Here, as  , the estimated degrees of 

freedom go to n−rank(X) and as ). Lee and Nelder 

(1996) we show that E{D(y,µˆ0)} can be estimated by the estimated degrees of 

freedom. Thus, if the computed scaled deviance is much larger than the estimated 

degrees of freedom we may suspect the absence of some necessary fixed or 

random effects in the linear predictor η0, or over dispersion in the y|v 

distribution. The scaled deviance uses the distribution of y|v only, so it cannot be 

used for testing dispersion components. 



 

171 

3.12 Estimation of Dispersion Components 

For estimation of dispersion components, the (marginal) ML estimator may be 

substantially biased owing to the estimation of β. For normal-normal 

models,Patterson and Thompson (1971) introduced restricted (marginal) 

likelihood to yield the REML estimator. Breslow and Clayton (1993) extended this 

approach to GLMMs by using the normal likelihood. We consider an adjusted h-

likelihood 

  (3.183) 

It can be shown that in normal-normal models Patterson and Thompson’s (1971) 

restricted likelihood is equivalent to the adjusted profile h-likelihood (APHL) 

 hP = hA|β=β,vˆ =vˆ; (3.184) 

This is also Cox and Reid’s (1987) adjusted profile likelihood of dispersion 

components (φ,α) with nuisance parameters (β,v), when they are asymptotically 

orthogonal. From equations (3.170) and (3.171), we have 

 n−1E(∂2h/∂β∂φ) = n−1E(∂2h/∂β∂α) = n−1E(∂2h/∂v∂φ) = 0 (3.185) 

Note that 

n−1E(∂2h/∂v∂α) = n−1E(∂2l(α,v)/∂v∂α) = 0(1/n) 

and is 0 in conjugate HGLMs: see equation (3.182). So in the h-likelihood (φ,α) and 

(β,v) are at least asymptotically orthogonal. 
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We can derive the maximum adjusted profile h-likelihood estimators (MAPHLEs) 

for dispersion parameters by solving iterative 

∂hA/∂α|β=β,vˆ =vˆ = 0 

and 

∂hA/∂φ|β=β,vˆ =vˆ = 0 

where βˆ and ˆu are re-evaluate in each iteration. Since 

 ∂[log{det(H)}]/∂θ = trace{H−1(∂H/∂θ)}, (3.186) 

where θ = α or θ = φ and K is the matrix given by the bottom right-hand corner of 

H−1, the score equations are 

  (3.187) 

 

The score equations can be solved by the Newton method because the Hessian 

matrix can be easily obtained by using the fact that 

 

In GLMs, expression (3.188) gives the ML equations with a degrees-of-freedom 

adjustment. For example, if h(β,φ;y) is normal it provides the unbiased estimator 

for φ. In GLMMs where v ∼ N(O,σ2), if we let  , it can be shown that 

  (3.189) 

with ); this yields McGilchrist’s (1994) REML estimator for 

. Further, we have 
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  (3.190) 

If we now approximate l(β,φ;y|v) by a pseudo-likelihood 

  (3.191) 

where S is the Pearson χ2. We obtain the MeGitchrist (1994) REML estimator for 

φ. This is equivalent to assuming that the adjusted dependent variables w have 

normal distributions; see also Wolfinger (1993). Nelder and Lee (1992) showed 

that the dispersion estimator based on the Pearson χ2 is often inefficient unless 

the underlying distribution is normal. So we may expect equation (3.153) to 

provide a better estimator. 

Harville (1977) and Speed (1991) pointed out that in normal-normal models the 

REML estimators can be derived by equating observed and expected sums of 

squares. Note that the first terms in equations (3.187) and (3.188) evaluated at βˆ 

and ˆv are proportional to the observed sum of squares in normal-normal models. 

Lee and Nelder (1996) showed that the remaining terms in equations (3.187) and 

(3.188) are corresponding expectations of the first terms so that their result 

generalizes. 

3.13 Generalizations 

Consider now HGLMs with more than one extra random component, so that 

η0 = Xβ + Z1v(1) + Z2v(2) + ... + Zkv(k) (3.192) 

where Zi is the n×qi model matrix, v(i) are the qi ×1 random effects and v(i) and v(j) 

are independent if i 6= j. Let Z = (Z1,Z2,...,Zk), v = (v(1)T ,v(2)T ,...,v(k)T )T 

and q = Pqi; then model (3.154) be written as η0 = Xβ + Zv as in previous sections. 

Here l(α;v) in the h-likelihood becomes Pl(αi;vi), If the distributions of v(i) are 
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specified the generalizations of the procedures developed above are 

straightforward. For example, as in the score equations (3.173), the score 

equations for β and v become 

 XT WX 
 ZT WX 
 
 

 ... 

 

 

 

ZkT WX 

where 

and 

XT WZ1 

Z1T WZ1 + U1 

... 

ZkT Z1 

     

... XT WZk β + δβ XT Ww 

     

... Z1T WZk v(1) + δv(1)  Z1T Ww + R1  

 =  . . 

 .   .  

.. ..  ..  

   

   

··· ZkT WZk + Uk v(k) + δv(k) 

Ui = −φ{∂2l(αi;vi)/∂v(i)2} 

Ri = Uivi + φ{∂l(αi;v(i))} 

. 

 .  

  

  

ZkT Ww + Rk 

Extensions of MAPHLEs and the scaled deviance with estimated degrees of 

freedom are also straightforward. 

3.13.1 Test Criterion for Random Components 

We propose a test statistic for random components, of the form 

 Td = −2hP (3.193) 

Note the following useful properties of the APHL hP . First, hP is invariant with 

respect to linear transformations of random effects v. Suppose that η0 = η+Zv = η 

+ Zar where Za = ZA−1 and r = Avfor some non-singular matrix A. 
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The h-likelihood can be based on either v or r since both v and r can appear linearly 

in η.Since here the Jacobian term is constant this does not cause any problem for 

inferences based on the h-likelihood. The value of hp remains the same since the 

Jacobian term cancels; see equation (3.184). Thus the value of hp remains fixed for 

equivalent formulations of random effects. Suppose that the 

random components v(i) have a distribution such that var(v(i)) = σi2Di for some 

matrix Di and that E(v(i)) −→ 0 as σi2 −→ 0. The test for σi2 = 0 is then equivalent 

to the test for the absence of random components v(i). For various HGLMs, 

including GLMMs, Lee and Nelder (1996) showed that 

 lim (hP ) = hP(−i), (3.194) 
σi2−→0 

where hP(−i) = hP |σi2 = 0 is the APHL for model (3.192) without the v(i)component. 

Thus values of hP change smoothly with respect to the absence of random effects. 

The term 2π in equation (3.183) plays an important role in this. Owing to the 

invariance of hP with respect to linear transformations we have 

lim (hP (vˆ)) = lim (hP (rˆ)), (3.195) ρ−→1 ρ−→1 

where hP (vˆ) and hP (rˆ) are the APHLs with respect to random effects v and r 

respectively. The left-hand side is not computable, owing to the singularity of the 

covariance matrix at ρ = 1, but the right-hand side can be easily computed since it 

is equivalent to the absence of random effects rj2. Thus with hp we may test not 

only the HGLMs can be defined in the framework of Bayesian hierarchical models. 

For GLMMs, Bayesian procedures for posterior distributions have been developed 

by Zeger and Karim (1991) by using the Gibbs sampler; for some comparisons 

with GLMM analysis see Breslow and Clayton (1993). Bayesian models with 

conjugate priors have been studied by George et al. (1993). 
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3.13.2 Deviances in HGLMs 

Lee and Nelder (1996) proposed to use three deviances based upon fθ(y,v), fθ(y) 

and fθ(y|βˆ) for testing various components of HGLMs. For testing random effects 

they proposed to use the deviance −2h, for fixed effects −2` and for dispersion 

parameters −2 log fθ(y|βˆ). When ` is numerically hard to obtain, they used pv(h) 

and pβ,v(h) as approximations to ` and log fθ(y|βˆ). When testing hypotheses on the 

boundary of the parameter space, for example for λ = 0, the critical value is  for 

a size-α test. This results from the fact that the asymptotic distribution of 

likelihood-ratio test is a 50 : 50 mixture of  and  distributions (Chernoff, 

1954; Self and Liang, 1987): for application to random-effect models see Stram 

and Lee (1994), Vu et al. (2001), Vu and Knuiman (2002), Verbeke and 

Molenberghs (2003) and Ha and Lee (2004). 

Based upon log fθ(y|v), Lee and Nelder (1996) proposed the use of the scaled 

deviance for the goodness-of-fit test, defined by 

 D = D(y,µˆ) = −2{`(µˆ;y|v) − `(y;y|v)}, (3.196) 

where `(µˆ;y|v) = log f(y|v;βˆ) and µ = E(y|v), having the estimated degrees of 

freedom, d.f. = n − pD, where 

  (3.197) 

and Σ 0). Lee and Nelder (1996) showed that E(D) can be 

estimated by the estimated degrees of freedom; E(D) ≈ n−pD under the assumed 

model. Spiegelhalter et al. (2002) viewed pD as a measure of model complexity. 

This is an extension of the scaled deviance test for GLMs to HGLMs. 
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If φ is estimated by the REML method based upon pβ,v(h), the scaled deviances 

D/φˆ become the degrees of freedom n − pD so that the scaled deviance test for 

lack of fit is not useful when φ is estimated, but it can indicate that a proper 

convergence has been reached in estimating φ. 

For model selection for fixed effects φ the information criterion based upon the 

deviance `, and therefore pv(h), can be used, while for model selection for 

dispersion parameters, the information criterion based upon the deviance pβ(`), 

and therefore pv,β(h), can be used. However, these information criteria cannot be 

used for models involving random parameters. For those Spiegelhalter et al. 

(2002) proposed to use in their Bayesian framework an information criterion 

based upon D. 

We claim that one should use the information criterion based upon the 

conditional loglihood logfθ(y|v) instead of D. Suppose that y ≈ N(Xβ,φI), where the 

model matrix X is n × p matrix with rank p. Then, there are two ways of 

constructing the information criterion; one is based upon the deviance and the 

other is based upon the conditional loglihood. First suppose that φ is known. 

Then, the AIC based upon the conditional loglihood is 

AIC = n log φ + Σ(yi − xtiβˆ)2/φ + 2pD, 

while the information criterion based upon the deviance D is 

(3.198) 

DIC = Σ(yi − xtiβˆ)2/φ + 2pD. (3.199) 

Here the two criteria differ by a constant and both try to balance the sum of the 

residual sum of squares, Σ(yi −xtiβˆ)2 and the model complexity pD. Now suppose 

that φ is unknown. Then, 

 DIC = Σ(yi − xtiβˆ)2/φˆ+ 2pD, (3.200) 
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which becomes n+2pD if the ML estimator is used for φ and n+pD if the REML 

estimator is used. So it always chooses the simplest model of which the extreme 

is the null model, having pD = 0. Here 

 , (3.201) 

which becomes n log φˆ+n+2pD if the ML estimator is used for φ and n log φˆ+ n + 

pD if the REML estimator is used. Thus, the AIC still tries to balance the residual 

sum of squares Σ(yi − xtiβˆ)2 and the model complexity pD. This means that we 

should always use the conditional likelihood rather than the deviance. Thus, we 

use −2 log fθ(y|v) + 2pD for model selection involving random parameters. In this 

thesis, four deviances, based upon h, pv(h), pβ,v(h) and log fθ(y|v), are used for 

model selection and for testing different aspects of models. 

In GLMs, the Wedderburn (1974) quasi-likelihood equations provide estimators 

for, β given an arbitrary variance function V (µ). However, quasi-likelihood does 

not provide estimates of dispersion parameters. Nelder and Pregibon (1987) 

developed an extended quasi-likelihood Q defined 

  (3.202) 

where 

 

is the deviance component. Extended quasi-likelihood provides the Wedderburn 

(1974) quasi-likelihood equations ∂Q/∂β = 0 for β and also estimating equations 

∂Q/∂φ = 0 for φ. Nelder and Lee (1992) showed by numerical studies that 

the extended quasi-likelihood dispersion estimator performs well in finite 

samples and may even on occasion be better than the ML estimator. Let the 

extended 



 

179 

quasi-h-likelihood 

 hE = Q + l(α;v) (3.203) 

For any variance function V (µ0), the estimating equations ∂hE/∂β = 0 and 

∂hE/∂v = 0 can be solved by the score equations and we call solutions βˆ and ˆv the 

(maximum) quasi-h-likelihood estimators; this is an extension of Wedderburn’s 

(1974) quasi-likelihood equations to HGLMs. With the adjustment (3.183), the 

quasi- MAHPL equations ∂hA/∂θ = 0 with θ = α or θ = φ give the corresponding 

equations for dispersion parameters. It would be interesting to develop a 

quasilikelihood for l(α;v), in particular a quasi-conjugate distribution for the 

power variance function family V (µ0) = µ0γ. When l(α;v) is the normal likelihood, 

the score equations (3.178) for the quasi-h-likelihood estimators depend only on 

the first two moments of y|v and v, as Schall (1991) and Breslow and Clayton 

(1993) noted. This allows the class of HGLMs to be extended to models defined 

only by the first two moments of y|v and v. 

3.13.3 Asymptotic Properties of Maximum h-likelihood Estimate 

A crucial condition for the asymptotic properties of MHLEs discussed in Section 3 

to hold is that D∗−1 = OP (n−1). When this is so, our results in Section 3 can be easily 

modified to give the asymptotic properties of the MHLEs for an HGLM with more 

than one extra random component. For D∗−1 = OP (n−1) to be true, we require that 

the total number of random effects t remains fixed, which is not always realistic. 

As the sample size n increases t may often increase as well. We now drop the 

assumption of a fixed t. 

In normal-normal models, the properties of MHLEs for β and v hold for fixed 

sample size n. We showed in earlier sections that for some conjugate HGLMs with 

one random component the fixed effect estimators are the same as the marginal 
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likelihood estimators and the random effect estimates are the best unbiased 

predictors on some scale of random effects. On a model-by-model basis, some 

other properties of MHLEs can be shown. In GLMMs, the MHLEs for β and v are 

the same as theirs. So the procedures developed here may be reliable and useful 

as an approximate inference even in the worst situations. 

Chapter 4 

Results and Discussion 

4.1 Preliminary (Exploratory) Analysis 

In all, data from 800 Maize and Soybean farmer based organizations (FBOs) were 

gathered by means of a structured questionnaire. This was later cleaned to 790 

distinct observations. The FBOs were randomly selected through a multi-stage 

random procedure. 

Fixed effect variables measured include; crop type (Maize or Soybean), Financial 

Credit (Acquired or Not), Training (Acquired or Not), Study tour (Acquired or 

Not), Demonstrative Practicals (Acquired or Not), Networking Events (Acquired 

or Not), Post-harvest Equipment (Acquired or Not), Number of farmers in the FBO 

and Plot size cultivated. These fixed factors constitute the physical factors that 

contributes to crop yield. Other factors such as rainfall, climate change, fertilizer 

use, soil nature, etc. are not considered to be physical factors to crop yield. Beside 

these 9 fixed effects, 36 two-way interaction terms are also generated as fixed 

interaction terms. This brings the total number of fixed covariates to 45. 

Dependent variable measured is Total Crop Yield. The regions and the particular 

communities are treated as Random variables. 

The target population consists of mainly Maize and Soybeans Farmer based 

organizations in selected communities in the three Northern regions of Ghana. 
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Northern Region = 7 communities Upper East Region = 3 communities Upper 

West Region = 3 communities FBO’s interviewed = 800 with 10 missing data 

Hence total FBO’s used = 790 

Firstly, the raw data is plotted and the patterns of Crop yield against some selected 

covariates are observed. Figure 4.1 presents the observed scatter-plot of the crop 

yield against Plot size, Figure 4.2 presents the observed scatter-plot of the crop 

yield against number of Farmers, Figure 4.3 presents the observed scatter-plot of 

the crop yield against Regions while Figure 4.4 presents the observed scatter-plot 

of the crop yield against the 13 communities. From Figure 

 

Figure 4.1: Scatter-plot of Crop yield against Plot size 

4.1, crop yield is strongly related to plot size positively. Also from Figure 4.2, crop 

yield appears to be strongly related to No. of farmers positively. 
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Figure 4.2: Scatter-plot of Crop yield against No. of farmers 

The community as well as regional outlook of the crop yield is found in appendix 

A. 

4.2 Penalized variable selection 

4.2.1 Simulation studies 

In this section, the researcher first investigate the performance of the HL method 

through simulated data, and compare HL methods to existing methods including 

the LASSO and SCAD. For each method the researcher selects optimal tuning 

parameters that maximize the log-likelihood obtained from an independent 

validation dataset of size n/2, where n is the size of the training set. The number 
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of covariates (p) and fixed coefficients (q) in two simulation were varied. In one 

simulation we use n = 200 while in the other n = 100. 

For the simulation, the study considered the following GLM: 

 y/x ∼ N(µ(X0β),2) (4.1) 

with linear link function µ(X0β) = X0β where the linear predictor 

consist of p covariates. To generate covariate x0jks, we first generate 

random variables x0jks independently from the standard normal distribution. Then 

zk0 s are simulated with a multivariate normal distribution. The covariate x0jks are 

generated from 

√ xkj = (zk + εkj)/ 2 k = 1,...,pk
 (4.2) 

where z = (z1,...,zk)0 ∼ N(0,P) with covariance structure Pkl = cov(zk,zl) = 0.5|k−l| and 

εkj ∼ N(0,Ip) that of independent of z. The true non-zero coefficients are 

βkj = c/j, j = 1,...,qk, k 6= A 

where qk is the number of non-zero coefficients in the kth group, and A is the set 

of the non-null groups. A group is said to be non-null if at least one coefficient in 

the group is estimated to be non-zero. The constant c is chosen so that the signal-

to-noise ratio is equal to 5 in the linear model. 

For each model setting the study considered one dimensionality level only, the 

one with p < n. So, overall we have 4 simulation scenarios, where each is replicated 

100 times with sample size n = 200 and n = 100. The cross validation errors which 

are defined as Equation 3.13 based on independent test sample of size N = 5000 
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forms the basis for performance comparison. The results are shown in table 

below. 
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For variable selection quality, cross validation errors for the three methods are 

compared and the method with the smallest cv errors is preferred. The HL 

estimator performs better generally than the other methods for prediction 

accuracy as evident by its smallest cross validated errors comparative to the other 

methods. 

4.2.2 Real Data Analysis (Crop yield data) 

We analyse the crop yield datasets: The Crop yield data consists of a numeric 

response variable, the 2013 main season yield measured in kilograms, and 9 

covariates obtained from 790 farmer based organizations in the three northern 

regions of Ghana. The researcher dropped a covariate which has too many 

missing values and exclude 10 observations (FBO’s) due to missing values. The 

dataset has 7 categorical covariates crop type (Maize or Soybean), Financial 

Credit (Acquired or Not), Training (Acquired or Not), Study tour (Acquired or 

Not), Demonstrative Practical (Acquired or Not), Networking Events (Acquired or 

Not), Post harvest Equipment (Acquired or Not)) and 2 continuous variables, 

including the so called plot size in acres and number of farmers. Beside these 9 

fixed effects, 36 two-way interaction terms are also generated as fixed interaction 

terms. This brings the total number of fixed covariates to 45. To allow possible 

non-linear effects, a third-degree polynomial is used for each continuous 

covariate, and dummy variables are used for categorical variables. 

The results are obtained by 100 random partitions of the data set split into 

training (70 percent) and test sets (30 percent). For each random partition, the 

tuning parameters are selected by the 10-fold cross validation within the training 

set, and the prediction errors are computed on the test set. Table 4.3 presents 

averages of cross validated errors, the number of significant variables and 

number of insignificant variables. 
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The HL estimator performs better than the other methods for prediction accuracy 

as evident by its smallest cross validated errors comparative to the other 

methods. 

Table 4.2: Standardized Penalized Coefficients of Crop Yield Data 
Selected Variables LASSO SCAD H-L 

Crop -1.39 -2.38 -0.74 

Credit   1.23 

Training 0.82 1.91 2.29 

Study Tour 
Demo. Practical 

3.65 5.14 5.04 
Networking Events   0.69 

Post harvest Equipment -5.56 -7.21 -7.21 

No. of farmers 0.29  1.88 

plot size 11.53 12.42 12.83 

Crop*Credit -1.72 -2.41 -2.74 

Crop*Training   -0.67 

Crop*Study Tour 0.86 1.47 1.53 

Crop*Demo. Practical -1.68 -2.76 -2.63 

Crop*Networking Events 
Crop*Post-harvest Equipment 

2.74 4.60 4.50 
Crop*No. of farmers -0.96  -2.11 

Crop*plot size 
Credit*Training 
Credit*Study Tour 

-0.963 -1.14 -1.23 
Credit*Demo. Practical 0.20   

Credit*Networking Events 0.89 1.37 1.34 

Credit*Post-harvest Equipment 
Credit*No. of farmers 

-0.74 
 

-1.5 
Credit*plot size 2.80 2.30 2.86 

Training*Study Tour 0.81 0.62 0.11 

Training*Demo. Practical -1.10 -1.41 -1.33 

Training*Networking Events -0.06  -0.69 

Training*Post-harvest Equipment 0.32  0.48 

Training*No. of farmers -1.91 -3.11 -1.97 

Training*plot size -0.53  -0.82 
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Study Tour*Demo. Practical 0.14  0.13 

Study Tour*Networking Events 
Study Tour*Post-harvest Equipment 

-1.38 -1.27 -1.22 
Study Tour*No. of farmers 0.46 0.02 1.08 

Study Tour*plot size -0.14  -0.74 

Demo. Practical*Networking Events -0.29  -0.46 

Demo. Practical*Post-harvest Equipment 1.65 1.68 1.69 

Demo. Practical*No. of farmers 
Demo. Practical*plot size 

-3.53 -3.89 -3.58 
Networking Events*Post-harvest Equipment 
Networking Events*No. of farmers 
Networking Events*plot size 

-1.04 -2.04 -2.09 
Post-harvest Equipment*No. of farmers   -0.38 

Post-harvest Equipment*plot size 4.43 4.59 5.06 

No. of farmers*plot size   -0.67 

Table 4.3: Performance of Penalized methods on Crop Yield Data 

Method LASSO SCAD H-L 

No. of Significant Variables 

Selected 

31 21 35 

No. of Variables Ignored 14 24 10 

Cross validated Errors 24.097 24.043 23.543 

4.3 Crop yield models for fixed covariates 

4.3.1 Generalized Linear Models 

The same crop yield data set, consisting of 790 units with nine (7) categorical 

explanatory variables Credit, Crop, Training, Tour, Practical, Networking, 

Equipment, representing our support services (factors) and two (2) continuous 

variables No. of farmers, Plot size and a response Crop Yield was used. From the 

original analysis below, The researcher fitted a Gaussian GLM with linear 

predictors; Credit 1 + Crop 2 + Training 1+ Tour 1+ Practical 1+ Networking 1+ 

Equipment 1+ No. of farmers + Plot size, dropping Credit 1, Tour 1, Practical 1, 

Networking 1 and Equipment 1 after t-tests (Approximated to Z due to large 

sample size) on individual parameters. Before using the distributional results for 

inference, it is always necessary to check that the model meets its assumptions 
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well enough that the results are likely to be valid. Figure 4.3 shows the 

modelchecking plots for this model. 

From Figure 4.3, the diagnostic plots have only few satisfactory features. The 

running mean in the plot of residuals against fitted values shows some form of 

marked increasing trend, and the plots of absolute residuals has a relatively 

unstable slop. The normal plots shows no discrepancy but with few trade-off. In 

addition, the histogram of residuals is almost symmetric to the left. These are not 

so good indications of an appropriate model. 

Figure 4.3: Diagnostic plots of Gaussian GLM for crop yield 
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However this thesis seeks to present the very best of models. The defects present 

in the histogram suggests that something can be done to improve the model. We 

sort to remove any likely defects by moving to a GLM with gamma errors and a 

log link. The additive model is still satisfactory, with linear predictors Credit 

1 + Crop 2 + Training 1 + Tour 1 + Practical 1 + Networking 1 + Equipment 

1 + No. of farmers + Plot size, dropping Credit 1, Tour 1, Practical 1, and 

Networking 1 after t-tests on individual parameters. 

The model-checking plots are appreciably better than for the normal Gaussian 

model and more improved. The resulting plots are shown in Figure 4.4. 
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Figure 4.4: Diagnostic plots of Gamma GLM for crop yield 

Here in the Gamma GLM, the running means in the plot of residuals against fitted 

values shows no form of marked trend, and the plots of absolute residuals has a 

relatively stable slop compared to the Gaussian GLM. The normal plots shows no 

discrepancy but with few trade-off far better than the Gaussian GLM. However, 

the histogram of residuals is almost skewed to the left. Even though these are not 

so good indications of an appropriate model, it indicates an improvement in the 

earlier Gaussian GLM. The approach in this analysis has been to include as much 
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variation in the model as possible, as distinct from down weighting individual 

yields to make an unsuitable model fit. 

4.3.2 Model Interpretation 

Once a model has been selected and checked, we then have to examine and 

interpret its estimated coefficients. For complex models such as we have here, it 

cannot be less easy to interpret, especially with factor variables when identified 

ability constraints are needed. This can look intimidating, although in fact the 

parameter names are pretty helpful here. They basically tell us the circumstance 

under which the coefficient of a factor were added to the model. Table 4.4 

presents the estimates of the individual covariates and model selection criteria.  
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In the Gaussian model for example if Crop type is 2 (soy bean) for some response 

measurement, then we include the (Crop) 2 term in the model (which just 

amounts to adding -3489.1 to the linear predictor in this case, since (Crop) 2 is a 

factor). If (Crop) 2 and (Training) 1 are in the model for some response 

measurement, then terms (Crop) 2, (Training) 1 and their interaction (Crop) 2: 

(Training) 1 are included, and so on. To make things completely clear, however, 

one can also look at the model matrix (and original data frame). The final 

Gaussian GLM for crop yield is given as 

η = µ = β0 − β(Crop2) − β(Training1) − β(farmers) + β(Plotsize) 

mean(Y ield) = 5869.6 − 3489.1(soybean) − 2598.0(Training1) 

 −236.6(farmers) + 577.2(plotsize) (4.3) 

For a unit change in no. of farmers and plot sized, the predicted Yield of a soy bean 

growing FBO who received training support would therefore be given as 

mean(Y ield) = 5869.6 − 3489.1 − 2598.0 − 236.6(1) + 577.2(1) 

mean(Y ield) = 123(kg) 

of soy bean in a typical main season per FBO in the three regions. 

Similarly, for a unit change in no. of farmers and plot sized, the predicted Yield of 

a maize growing FBO who received training support would be given as 

mean(Y ield) = 5869.6 − 3489.1(0) − 2598.0(1) − 236.6(1) + 577.2(1) 

mean(Y ield) = 3,612.2(kg) 
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of maize in a typical main season per FBO in the three regions. Notice that there 

are now important differences between the two models. It is observed that 

(Equipment) 1 is statistically significant in the gamma GLM, but not in the 

Gaussian normal model. Some of the coefficients are quite different. The final 

Gamma GLM for crop yield is given as 

mean(Y ield) = exp(8.917414−0.193212(soybean)−0.134143(Train1)−0.108639(Equipt1) 

−0.006341(farmers)+0.032139(plot)) 
(4.4) 

4.3.3 Joint-Generalized Linear Models 

The analysis in this section (as detailed in the methodology), supposes that we 

have two interlinked models for the mean and dispersion based on the observed 

data y and the deviance d. In other words, the algorithm for fitting these models 

can be reduced to the fitting of two-dimensional set of generalized linear models; 

one dimension being mean and the other being dispersion, so that no special code 

is needed for the estimation of dispersion components. The dispersion model is a 

GLM with a gamma variance function. 

Here, the dispersion parameters are no longer constant, as we know from the 

usual Generalized Linear Models, but can vary with the mean parameters. The 

deviance components d∗ become the responses for the dispersion GLM. Then the 

reciprocals of the fitted values from the dispersion GLM provide prior weights of 

the next iteration for the mean GLM. 

This formulation implies that, the models-checking techniques derived for 

generalized linear models (McCullagh and Nelder, 1989, chapter 12), can be 
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carried over to this wider class. Figures 4.5 and 4.6 represents the diagnostic plots 

for the Gaussian and Gamma joint-GLM’s respectively. 

 

Figure 4.5: Diagnostic plots of Gaussian Joint-GLM for crop yield 

From Figure 4.5 the diagnostic plots have several excellent features compared to 

the Gaussian ordinary GLM diagnostic plots in Figure 4.3. The running mean in 

the plot of residuals against fitted values shows no form of marked trend at all, 

and the plot of absolute residuals has a very stable slope, indicating that the 

variance is constant and satisfies the independence assumption, that the right link 



 

200 

function was specified and also indicates no missing dependency. The normal plot 

also shows no discrepancy. In addition, the histogram of residuals is almost 

symmetric. These are very good indications of an appropriate model and an 

excellent improvement over the counterpart Gaussian GLM in Figure 4.3. 

The gamma joint GLM diagnostic plots of Figure 4.6 as below, also shows an 

incredible performs over the first gamma GLM of Figure 4.4. 

 

Figure 4.6: Diagnostic plots of Gamma Joint-GLM for crop yield 
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The model-checking plots are appreciably similar to the normal Gaussian joint 

GLM and both demonstrate an excellent improvement of their GLM’s. The 

resulting plots are shown in Figure 4.4. 

4.3.4 Model Interpretation 

Table 4.5 represents the model parameter estimates for both the Gaussian and 

the Gamma joint-GLM’s. Log(µ) or µ on the table represents the mean model 

whereas log(φ) represents the dispersion model. The final mean model for the 

Gaussian joint-GLM does not include access to Training, Study tour and 

demonstrative practicals where as the dispersion model excludes Post harvest 

equipments and number of farmers. In the final mean model for the Gamma joint-

GLM, access to Credit, Networking events and number of farmers excluded where 

as the dispersion model excludes Crop type, Study tour and number of farmers. 

Apart from plot size and networking events which increase the mean crop yield 

in the Gaussian model, we observe that all other support services rather tends to 

reduce crop yield. In a similar scenario, only study tour and plot size increases 

crop yield significantly from the Gamma mean model. 
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4.3.5 Joint-Generalized Linear Models for Quality Improvement 

Table 4.6 below reveals that the initial Gaussian GLM even though was 

satisfactory mean model, modelling both mean and dispersion (Joint-GLM) 

improves the quality of the same Gaussian distributed model significantly. 

Table 4.6: Model criteria for Gaussian GLM and Gaussian Joint-GLM 

Selection 

Criterion 
Gaussian Joint-GLM Gaussian GLM 

-2ML(-2 h) 15894.87 16422.00 

-2RL(-2pbeta(h)) 15772.61 16468.00 

cAIC 15914.87 16442.00 

Even though similar can be said of the Gamma GLM and Joint-GLM as evident in 

Table 4.7, we observe but for the conditional AIC, all the other two selection 

criteria confirms that modelling both mean and dispersion (Joint-GLM) improves 

model quality. 

Table 4.7: Model criteria for Gamma GLM and Gamma Joint-GLM 

Selection 

Criterion 
Gaussian Joint-GLM Gaussian GLM 

-2ML(-2 h) 15984.99 16104.67 

-2RL(-2pbeta(h)) 16045.60 16151.25 

cAIC 16124.67 15914.87 

Detailed model estimates for GLM and Joint-GLM are in appendix A 

4.4 Crop yield models for fixed and random co- 

variates 

4.4.1 Hierarchical Generalized Linear Models (HGLM 1) 

In an unpublished technical report, Pierce and Sands (Oregon State University, 

1975) introduced generalized linear mixed models (GLMMs), where the linear 

predictor of a GLM is allowed to have, in addition to the usual fixed effects, one or 

more random components with assumed normal distributions. Although the 

normal distribution is convenient for specifying correlations among the random 
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effects, the use of other distributions for the random effects greatly enriches the 

class of models. Lee and Nelder (1996) extended GLMMs to hierarchical GLMs 

(HGLMs), referred to in this thesis as HGLM 1, in which the distribution of random 

components are extended to conjugates of arbitrary distributions from the GLM 

family. Figure 4.7 and 4.8 represent diagnostic plots for the Gaussian and Gamma 

HGLM’s respectively. 

 

Figure 4.7: Diagnostic plots of Gaussian HGLM 1 for crop yield 
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The Gaussian diagnostic plots have some unsatisfactory features although not a 

worse case scenario. The normal plot shows some discrepancy. The running 

means in the plot of residuals against fitted values shows a form of outward trend. 

In addition, the histogram of residuals is almost symmetric. These may indicate 

an unsatisfactory and inappropriate model. The researcher therefore tried to 

remove any likely defects by moving to a HGLM with gamma errors and a log link. 

The model-checking plots does not appear appreciably better than for the 

Gaussian model. The resulting plots are shown in Figure 4.8 
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Figure 4.8: Diagnostic plots of Gamma HGLM 1 for crop yield 

4.4.2 Model Interpretation 

Table 4.8 represents the model parameter estimates for both the Gaussian and 

the Gamma HGLM’s. Log(µ) or µ on the table represents the mean model. 

Considering the random effects of Regions and the specific farming communities, 

the final mean model for the Gaussian HGLM does not include access to credit, 

Study tour, demonstrative practicals, Networking events and post-harvest 

equipments. In the counterpart model for the Gamma HGLM, only number of 

farmers and the cultivated plot size were significant contributors to crop yield 

when the random effects of Regions and the specific farming communities are 

considered in the model.  
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4.4.3 Hierarchical Generalized Linear Models (HGLM 2) 

HGLM 2 is an extension of the above discussed Hierarchical Generalised model 

(HGLM 1). In section 4.3.3 of this chapter, we introduce and demonstrate a useful 

alternative to modelling isolated discrepancies as being caused by variation in the 

dispersion, and to seek covariates that may account for them with the help of the 

techniques of joint modelling of mean and dispersion (Lee and Nelder, 2010). 

With the success stories of the HGLM (Lee and Nelder, 2010), there was the need 

to extend the HGLM to enable models with structured dispersion as used in the 

analysis data from quality improvement experiments (Nelder and Lee, 1991, 

1998). 

HGLM 2 therefore comprises of a fixed effects model from a known distribution, a 

random effects model allowed to follow conjugates of arbitrary distributions from 

the GLM family and a dispersion model as described in section 4.3.3. Figures 4.9 

and 4.10 represents the diagnostic plots for the Gaussian and Gamma H-GLM’s 

(2) respectively. 
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Figure 4.9: Diagnostic plots of Gaussian HGLM 2 for crop yield 

From Figure 4.9 the diagnostic plots have several excellent features compared to 

the Gaussian HGLM (1) diagnostic plots in Figure 4.7. The gamma HGLM 2 

diagnostic plots of Figure 4.10 also shows an incredible performs over the first 

gamma HGLM 1 of Figure 4.8. In addition, the histogram of residuals is highly 

symmetric. These are very good indications of an appropriate model. However 

this thesis seeks to present the very best of models hence the very minor defects 
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present in the histogram may suggest something can be done to improve the 

model. 

 

Figure 4.10: Diagnostic plots of Gamma HGLM 2 for crop yield 

4.4.4 Model Interpretation 

Table 4.9 represents the model parameter estimates for both the Gaussian and 

the Gamma HGLM 2. Log(µ) or µ on the table represents the mean model whereas 

log(φ) represents the dispersion model. The final mean model for the 
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Gaussian HGLM 2 does not include access to Credit, networking events as well as 

post-harvest equipments where as the dispersion model excludes only number of 

farmers, suggesting that this variable does not introduce any form of discrepancy. 

In the final mean model for the Gamma HGLM 2, demonstrative practicals, 

Networking events and post harvest equipments are excluded where as the 

dispersion model includes access to credit, training and post harvest equipments, 

excluding the rest of the variables.  
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From the dispersion model in Table 4.9, it is observed that, in relying on the 

Gaussian mean model for crop yield, we record a dispersion of 15.323. However 

we also observe that the contribution of some of the covariates in the dispersion 

model to this dispersion value increases it while others tend to decrease it. Once 

a covariate which accounts for the discrepancies can be found, we get a 

modelbased solution which can be checked in the future. 

In the Gaussian model for example, covariates such as access to credit, Training, 

study tour, demonstrative practicals, post harvest equipments and plot size 

increases the dispersion significantly and should be carefully dealt with or 

checked once we aim at reducing the discrepancies between the data and the 

fitted values produced by the crop yield model. 

Also in the Gamma HGLM 2 dispersion model, covariates such as access to credit, 

Training, and Post harvest equipments tends to increases the dispersion 

significantly and should be carefully dealt with or checked once we aim at 

reducing the discrepancies between the data and the fitted values produced by 

the crop yield model. 

By model fitness criteria, the Gamma HGLM 2 performed far better than the Gaussian 

distributed HGLM 2 by both the AIC (−2ML(−2h)), BIC (−2RL(−2pbeta(h)) as well as the 

cAIC as evident in the last row of Table 4.9 

4.4.5 Hierarchical Generalized Linear Models for Quality 

Improvement 

The study again seeks to strongly recommend that, if we really aim at controlling 

significantly, the effects of structured dispersions, even in the presence of 

correlated random errors, the techniques of HGLM 2 as a means of improving the 

quality should be the number one option. This the researcher has demonstrated 
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using the crop yield data with two random effects resulting from the regional and 

community variations in this thesis. Table 4.10 below reveals that the initial 

Gaussian HGLM even though was satisfactory mixed model (HGLM 1), modelling 

both mean and dispersion (HGLM 2) improves the quality of the same Gaussian 

distributed model significantly. 

Table 4.10: Model criteria for Gaussian HGLM 1 and Gaussian HGLM 2 

Selection 

Criterion 
Gaussian HGLM 1 Gaussian HGLM 2 

-2ML(-2 h) 16421.56 15982.81 

-2RL(-2pbeta(h)) 16288.60 15858.20 

cAIC 16441.60 16002.80 

Similar can be said of the Gamma HGLM 1 and HGLM 2 as evident in Table 4.11 

below confirming the fact that HGLM 2 improves model quality of mixed models 

with structured dispersions and significantly reduces the large standard errors 

resulting from the correlated random effects. 

Table 4.11: Model criteria for Gamma HGLM 1 and Gamma HGLM 2 

Selection Criterion Gamma HGLM 1 Gamma HGLM 2 

-2ML(-2 h) 15678.71 15509.20 

-2RL(-2pbeta(h)) 15729.01 15564.50 

cAIC 15649.61 15477.20 

4.5 Discussion 

4.5.1 Variable selection 

In section 4.2, the study sort to select significant variables among many potential 

ones to be included in a model via penalized methods. The researcher have 

compare the sparsity and number of significant crop yield variables selected by 

the three penalized methods; LASSO, SCAD, and H-likelihood all through 

simulation studies and by the real data (See Table 4.1 and 4.2). All these methods 

have common advantages over the classical selection procedures; they are 

computationally simpler, the derived sparse estimators are stable, and they 
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facilitate higher prediction accuracies. The study have shown how to select 

important variables in general semi-parametric models through those penalized 

methods. The study have demonstrated via numerical studies and data analysis 

that the proposed procedure with H-Likelihood performs best followed by SCAD, 

with LASSO coming last (See Table 4.1 and Table 4.3). 

Basically, all these penalized methods of variable selection were developed in the 

wake of the two fundamental limitations traditional variable selection 

procedures; First, when the number of predictors p is large, it is computationally 

infeasible to perform subset selection. Second, subset selection is extremely 

variable because of its inherent discreteness (Breiman, 1996; Fan and Li,2001). 

To overcome these difficulties, several other penalties have been proposed. The 

L2-penalty yields a ridge regression estimation, but it does not perform variable 

selection. With the L1- penalty, specifically, the PLS estimator becomes the least 

absolute shrinkage and selection operator (LASSO), which thresholds predictors 

with small estimated coefficients (Tibshirani, 1996). 

LASSO is a popular technique for simultaneous estimation and variable selection, 

ensuring high prediction accuracy, and enabling the discovery of relevant 

predictive variables. Donoho and Johnstone (1994) selected significant wavelet 

bases by thresholding based on an L1 penalty. 

LASSO has been criticized on the grounds that a single tuning parameter λ is used 

for both variable selection and shrinkage. It typically ends up selecting a model 

with too many variables to prevent over shrinkage of the regression coefficients 

(Radchenko and James, 2008); otherwise, regression coefficients of selected 

variables are often over-shrunken. This assertion is highly confirmed by the 

results of this in Table 4.2. 
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To overcome this problem, Fan and Li (2001) proposed the smoothly clipped 

absolute deviation (SCAD) penalty for oracle variable selection. More recently, 

Zou (2006) showed that LASSO does not satisfy Fan and Li’s (2001) oracle 

property, and proposed the adaptive LASSO. Based on the findings of this study, 

we also propose the H-likelihood approach by Lee and Nelder (2009), as the best 

in crop yield variable selection and we do so on the basis that, compared to other 

forms of penalized methods ie. LASSO and SCAD, the H-likelihood approach (Lee 

and Nelder 2009) facilitates higher prediction accuracy since it has least 

estimated penalized cross validated errors (see table 4.3) 

An additional advantage of this method is that it can be easily implemented by a 

slight modification to the existing h-likelihood estimation procedure. Thus our 

method can be straightforwardly applied to variable selection in practical 

random-effect models such as generalized linear mixed models or HGLMs (Lee et 

al., 2006), etc. 

4.5.2 Crop yield models for fixed covariates 

Generalized linear models (GLMs) of Nelder and Wedderburn (1972) are a 

standard tool for analyzing data in various types of responses, continuous 

quantities, counts, proportions and positive quantities. However, GLMs allow the 

regression (or fixed effect) model only for the mean of independent responses. 

Model checking in the case of ordinary linear models is based on examination of 

the model residuals, which contain all the information in the data, not explained 

by the systematic part of the model. Examination of residuals is also the chief 

means for model checking in the case of GLMs, but in this case the standardization 

of residuals is both necessary and a little more difficult. 

For GLMs the main reason for not simply examining the raw residuals, is the 

difficulty of checking the validity of the assumed mean variance relationship from 

the raw residuals. However if raw residuals are plotted against fitted values it 
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takes an extraordinary ability to judge whether the residual variability is 

increasing in proportion to the mean, as opposed to, say, the square root or square 

of the mean. For this reason it is usual to standardize GLM residuals, in such a way 

that, if the model assumptions are correct, the standardized residuals should have 

approximately equal variance, and behave, as far as possible, like residuals from 

an ordinary linear model. Once we have standardized residuals we plot them to 

try and find evidence that the model assumptions are not met. 

The main useful plots are: Standardized residuals against fitted values. A trend in 

the mean of the residuals violates the independence assumption and often implies 

that something is wrong with the model from the mean of the response perhaps 

a missing dependence, or the wrong link function. A trend in the variability of the 

residuals is diagnostic of a problem with the assumed mean variance relationship 

- i.e. with the assumed response distribution. Standardized residuals against all 

potential predictor variables (selected or omitted from the model). Trends in the 

mean of the residuals can be very useful for pinpointing missing dependencies of 

the mean response on the predictors. 

Normal QQ plots can be useful for highlighting problems with the distributional 

assumptions, in cases where the response distribution can be well approximated 

by a normal distribution (with appropriate non-constant variance). For example 

Poisson residuals for a response with a fairly high mean fall into this category. 

Plots of standardized residuals against leverage are useful for highlighting single 

points that have a very high influence on the model fitting. Leverage is a measure 

of how influential a data point could be, based on the distance of its predictor 

variables from the predictors of other data. We also used the histogram of 

residuals. If the distributional assumption is right it shows symmetry provided 

the deviance residual is the best normalizing transformation. In GLMs responses 

are independent, so that these model-checking plots assume that residuals are 
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almost independent. Care will be necessary when we extend these residuals to 

correlated errors in later techniques employed in this thesis. 

From Figure 4.3 the diagnostic plots have several satisfactory features although 

not the best. The running mean in the plot of residuals against fitted values shows 

no form of marked trend, and the plot of absolute residuals has a relatively stable 

slope, indicating that the variance is constant and satisfies the independence 

assumption, that the right link function was specified and also indicates no 

missing dependency. The normal plot shows no discrepancy. These are very good 

indications of an appropriate model. However this thesis seeks to present the very 

best of models hence the very minor defects present in the histogram may suggest 

something can be done to improve the model. 

We sort to remove any likely defects by moving to a GLM with gamma errors and 

a log link. The model-checking plots (See Figure 4.4)are appreciably better than 

for the normal Gaussian model and more improved. 

These two models (Gaussian and gamma GLM) are not nested and have different 

distributions for the response, which makes direct comparison problematic. The 

AIC criterion, which is minus twice the maximized likelihood plus twice the 

number of parameters, has often been used as a way to choose between models. 

Smaller values are preferred (See Table 4.4). However, when computing a 

likelihood, it is common practice to discard parts that are not functions of the 

parameters. 

This has no consequence when models with same distribution for the response 

are compared since the parts discarded will be equal. For responses with different 

distributions, it is essential that all parts of the likelihood be retained. The large 

difference in AIC for these two models indicate that this precaution was not taken. 

Nevertheless, we note that the null deviance for both models is almost the same 

while the residual deviance is smaller for the gamma GLM. This improvement 
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relative to the null indicates that the gamma GLM should be preferred here. Note 

that purely numerical comparisons such as this are risky and that some attention 

to residual diagnostics, scientific context and interpretation is necessary. 

Statistics from the Gaussian and gamma GLM are given in Table 4.4. Because the 

gamma model is not a standard linear model the researcher used the AIC for 

model comparison, and Table 4.4 strongly indicates the improvement in fit from 

the gamma GLM over the normal Gaussian models. Referring back to the 

summary, it seems that when there is a unit change in no. of farmers and the FBO 

grew soy beans and received Training, the yield is lower than you would expect 

from those growing Maize, for each unit change in plot size (although all the factor 

coefficients are significantly different from 0). The coefficients gives the expected 

increase in Crop yield when one unit in the plot size (referring back to the 

summary, plot size seem to lead to a significant increase in Crop yield, on their 

own). 

4.5.3 Joint-Generalized Linear Models for Quality Improvement 

Nelder and Lee (1991) defined joint GLMs (JGLMs), which allow regression 

models for both the mean and dispersion. See Aitkin (1987) and Smyth (1989) for 

earlier treatment of models of this type. The dispersion model for both 

distributions are of very useful importance in determining the actual variable that 

are accounting for the discrepancies that may exist between observed crop yield 

and the estimated crop yield. Discrepancies between the data and the fitted values 

produced by the model fall into two main classes, isolated or systematic. 

Systematic discrepancies in the fit of a model imply that the model is deficient 

rather than the data. There is a variety of types of systematic discrepancy, some 

of which may mimic the effects of others. For this reason it is hard, perhaps 

impossible, to give a foolproof set of rules for identifying the different types. This 

type even though important in statistical modelling, the technique of Joint GLM 
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demonstrated in this dissertation seeks to correct the possible presence of an 

isolated discrepancy. 

Isolated discrepancies appear when a few observations only have large residuals. 

Such residuals can occur if the observations are simply wrong, for instance where 

129 has been recorded as 192. Such errors are understandable if data are hand 

recorded, but even automatically recorded data are not immune. Robust methods 

were introduced partly to cope with the possibility of such errors; for a 

description of robust regression in a likelihood context see, e.g. Pawitan (2001, 

Chapters 6 and 14). Observations with large residuals are systematically down 

weighted so that the more extreme the value the smaller the weight it gets. Total 

rejection of extreme observations (outliers) can be regarded as a special case of 

robust methods. Robust methods are data driven, and to that extent they may not 

indicate any causes of the discrepancies. 

A useful alternative is to seek to model isolated discrepancies as being caused by 

variation in the dispersion, and to seek covariates that may account for them. This 

techniques of joint modelling of mean and dispersion (Lee and Nelder, 2010) is 

what we have proposed and demonstrated by this study. 

Figures 4.5 and 4.6 represents the diagnostic plots for the Gaussian and Gamma 

joint-GLM’s respectively. From Figure 4.5 the diagnostic plots have several 

excellent features compared to the Gaussian ordinary GLM diagnostic plots in 

Figure 

4.3. The plot of absolute residuals has a very stable slope, indicating that the 

variance is constant and satisfies the independence assumption, that the right link 

function was specified and also indicates no missing dependency. The normal plot 

also shows no discrepancy. In addition, the histogram of residuals is almost 

symmetric. These are very good indications of an appropriate model and an 
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excellent improvement over the counterpart Gaussian GLM in Figure 4.3. The 

gamma joint GLM diagnostic plots of Figure 4.6 as, also shows an incredible 

performs over the first gamma GLM of Figure 4.4. The model-checking plots are 

appreciably similar to the normal Gaussian joint GLM and both demonstrate an 

excellent improvement of their GLM’s. 

From the dispersion model in Table 4.5, it is observed that, in relying on the 

Gaussian mean model for crop yield, the study recorded a dispersion of 14.916. 

However we also observe that the contribution of some of the covariates in the 

dispersion model to this dispersion value increases it while others tend to 

decrease it. Once a covariate which accounts for the discrepancies can be found, 

we get a model-based solution which can be checked in the future. 

In the Gaussian model for example, covariates such as access to credit, Training, 

study tour, demonstrative practicals and plot size increases the dispersion 

significantly and should be carefully dealt with or checked once we aim at 

reducing the discrepancies between the data and the fitted values produced by 

the crop yield model. Also in the Gamma Joint-GLM dispersion model, covariates 

such as access to credit, Training, demonstrative practicals, Post harvest 

equipments and plot size increases the dispersion significantly and should be 

carefully dealt with or checked once we aim at reducing the discrepancies 

between the data and the fitted values produced by the crop yield model. 

In the model fitness criteria, the Gaussian Joint-GLM performed far better than the 

Gamma distributed Joint-GLM by both the AIC, BIC as well as the cAIC as evident 

in the last row of Table 4.5 

JGLMs have been broadly used for the analysis of quality-improvement 

experiments (Lee and Nelder, 1998). The study also seeks to strongly recommend 

this techniques of joint modelling of mean and dispersion as a means of improving 
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the quality of all forms of models that fall under the general class of generalized 

linear model and its extensions. This the researcher have demonstrated using the 

crop yield data in this thesis. Table 4.6 reveals that the initial Gaussian GLM even 

though was satisfactory mean model, modelling both mean and dispersion (Joint-

GLM) improves the quality of the same Gaussian distributed model significantly. 

Similar can be said of the Gamma GLM and Joint GLM as evident in Table 4.7. 

4.5.4 Crop yield models for fixed and random covariates 

GLMs are extended to generalized linear mixed models (GLMMs), in which the 

linear predictor of a GLM is allowed to have, in addition to the usual fixed effects, 

random effects following a normal distribution (Breslow and Clayton, 1993; 

Molenberghs and Verbeke, 2005). 

The Gaussian HGLM 1 diagnostic plots (See Figure 4.7) have some satisfactory 

features although not the best. The running mean in the plot of residuals against 

fitted values shows no form of marked trend, even though the plot of absolute 

residuals has a relatively unstable slope. This does not indicate that the variance 

is not constant and may not satisfies the independence assumption strictly. It 

rather suggest the presence of some correlated random effect in the fitted model 

as expected. The histogram of residuals is almost symmetric. These are 

satisfactory indications of an appropriate model. Similar is said of the Gamma 

distributed model in Figure 4.8. 

In both models however (See Table 4.8), plot size cultivated remains the only 

positive significant contributor to crop yield. High standard errors are observed 

in the HGLM 1 compared to the GLM and the JGLM and this is due to the presence 

of correlated random errors resulting from the inclusion of the two random 

effects; Regions and Communities. 
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4.5.5 Hierarchical Generalized Linear Models for Quality 

Improvement 

Although the normal distribution is convenient for specifying correlations among 

the random effects, the use of other distributions for the random effects greatly 

enriches the class of models. Lee and Nelder (1996) introduced hierarchical 

generalized linear models (HGLMs), in which the distribution of random effects 

can be any conjugate distribution for the GLM family of distributions. Dispersion 

parameters of the random components and the residual variance 

(overdispersion) can be further modelled as regression models with random 

effects. 

In the statistical literature unobservables appear with various names such as 

random effects, latent processes, factor, missing data, unobserved future 

observations, potential outcomes etc. Handling of such unobservables is the key 

to new extended likelihood inferences. Lee and Nelder (1996, 2006) and Lee et al. 

(2006) have shown how to model and make inferences using the h-likelihood. 

Inferences about unobservables can be made without resorting to an empirical 

Bayes framework (Lee and Nelder, 2010). A single algorithm, iterative weighted 

least squares, can be used throughout all new models and requires neither prior 

distributions of parameters nor multi-dimensional quadrature. 

From Figure 4.9 the diagnostic plots have several excellent features compared to 

the Gaussian HGLM (1) diagnostic plots in Figure 4.7. The running mean in the 

plot of residuals against fitted values shows no form of marked trend at all, and 

the plot of absolute residuals has an almost stable slope, indicating that the 

variance is constant and satisfies the independence assumption, that the right link 

function was specified and also indicates no missing dependency. The normal plot 

also shows no discrepancy. In addition, the histogram of residuals is almost 

symmetric. These are very good indications of an appropriate model and an 
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excellent improvement over the counterpart Gaussian HGLM (1) in Figure 4.7. 

The gamma HGLM 2 diagnostic plots of Figure 4.10 also shows an incredible 

performs over the first gamma HGLM 1 of Figure 4.8. 

HGLMs consist of the three objects, namely the data, fixed unknown constants 

(parameters) and unobserved random variables (unobservables). Traditional 

Bayesian models consist of the two objects, the data and unobservables, while 

frequentist’s (or Fisher’s) models consist of the data and parameters. By allowing all 

three objects in the statistical modelling it is possible to describe various features in 

the data, for example, within-subject correlation in longitudinal studies, smooth 

spatial and temporal trends, function fittings, and factor analysis, heteroskedasticity, 

heavy-tailed distributions, robust modellings and sparse variable selections. 

Table 4.10 reveals that the initial Gaussian HGLM 1 even though was satisfactory 

mixed model (HGLM 1), modelling both mean and dispersion (HGLM 2) improves 

the quality of the same Gaussian distributed model significantly. Similar can be 

said of the Gamma HGLM 1 and HGLM 2 as evident in Table 4.11 confirming the 

fact that HGLM 2 improves model quality of mixed models with structured 

dispersions and significantly reduces the large standard errors resulting from the 

correlated random effects. 

In summary, HGLMs provide a rich class of hierarchical models, giving many 

inferential tools for testing and checking models, and are especially helpful for the 

analysis of data from multi-centre field trials. Inferences about both 

populationaverage and subject-specific responses can be effectively drawn from 

a common 

HGLM.  
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Chapter 5 

Conclusions 

5.1 Introduction 

This study proceeded on two paths; to select significant variables among many 

potential ones to be included in a model via penalized methods and to also 

propose and demonstrate the excellent performance of higher levels and very 

recent extensions of the Generalized Linear Models (GLM); Joint Generalized 

Linear Models (JGLM) and Hierarchical Generalized Linear Models (HGLM) in the 

global quest to developing Statistical Models with highest model accuracy. 

The researcher sought to propose the H-Likelihood method of penalized variable 

selection as well as the unified JGLM and HGLM with gamma fixed and mixed 

effects as best methods useful for variable selection and modelling crop yield in 

the three Northern regions of Ghana respectively. After the highly rigorous 

processes and data analysis, the study concludes on the following 

5.2 Conclusion 

1. H-Likelihood method of penalized variable selection is the best method so 

far existing. It does both selection of significant variables and estimation of 

their coefficients simultaneously with the least penalize cross-validated 

errors compared to the SCAD and the LASSO 

2. In modelling the effects of fixed physical support services given to farmer 

based organizations on the crop yield, the GLM with assumed fixed 

dispersion is highly not recommended. The study concludes that the initial 

GLM even though was a satisfactory mean model, modelling both mean and 

dispersion (Joint-GLM) improves the quality of the models significantly. 
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3. Also in the case of modelling both fixed and random effects, the HGLM 2 

which has the ability of specifying different suitable fixed effects model from 

a known distribution, a random effects model allowed to follow conjugates 

of arbitrary distributions from the GLM family and a dispersion model is 

highly recommended. This study concludes that the GLMM and HGLM 1 are 

still highly satisfactory statistical models but the HGLM 2 performs far 

better, gives a more fitting models and improves the quality of the models 

significantly. 

5.3 Recommendation 

The researcher strongly recommend this technique of joint modelling of mean 

and dispersion as a means of improving the quality of all forms of models that fall 

under the general class of generalized linear model and its extensions. 

The study strongly recommend the h-likelihood method of variable selection 

The researcher strongly recommend the unified JGLM and HGLM with gamma 

fixed and mixed effects as best methods useful for modelling crop yield in the 

three Northern regions of Ghana. 

The study finally recommend that a deliberate effort be put into strengthening the 

Agricultural support systems as a form of strategy for increasing crop production 

in Northern Ghana. Access to credit, training, access to post harvest equipments, 

access to demonstrative practicals and access to large plot size are the physical 

support services highly recommended by this study. 

5.4 Areas of Further Research 

The crop yield model considered in this study suggest that some physical support 

services; Access to credit facility, Training, Study tour, Demonstrative practical, 
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Networking events and Post harvest Equipments, plays an important role in 

determining crop yields even though their individual and interaction effects on 

yield is not uniform across farmer base organizations. The researcher admit that 

but for the unavailability of data, as frequently the case in many parts of our 

world, extensive input data on farm management practices, soil condition, climate 

and other non-physical contributors to yield would have enriched our models. 

The study therefore suggest further research that would consider these. 

Even though some work have started already in the HGLM laboratory at the Seoul 

National University - South Korea in this regard, the researcher suggest that other 

researchers consider extending the HGLM 2 to include the introduction of random 

effects in the structured dispersion model as a means of further improving the 

performance of the powerful HGLM 2. As at the completion of this dissertation, 

work on the fitting algorithm of such extension and the Rprogramming codes 

were at various stages of completion. 

The method of JGLM and HGLM have not been applied in many areas of applied 

statistics despite its extraordinary ability of quality improvement. Researchers in 

the areas of financial modelling and medical and epidemiology should consider 

this methodology since it has the ability to model the volatility characteristic of 

data used in those areas. 
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APPENDIX B  

  

  

MODEL OUTPUTS FOR THE INTERACTION OF PHYSICAL CROP YIELD 

VARIABLES  
  

        

  

MODEL 1: GAMMA/LOG GLM FOR FIXED AND INTERACTION TERMS  

  

  

  

 Residuals vs Fitted |Residuals| vs Fitted 

 

 0 50000 150000 0 50000 150000 

 mu mu 

 

 Theoretical Quantiles StudentResidual 

  

  
Fig. B1: Diagnostic plot of Gamma/log GLM for fixed and interaction       

    variables  
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Table B1: Gamma/log GLM Model Estimates for fixed and interaction   

 variables  

  
Distribution of Main Response:    
                         "Gamma"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Log"   

                                        Estimate Std. Error t-value  

(Intercept)                                 8.3121825  1.876e-01 44.2989  
as.factor(credit)1                          0.0762167  1.542e-01  0.4943  
as.factor(crop)2                          -0.1535437  1.550e-01 -0.9909  
as.factor(training)1                       -0.1427779  1.912e-01 -0.7467  
as.factor(tour)1                            0.2576577  1.603e-01  1.6070  
as.factor(practicals)1                      0.0256751  1.399e-01  0.1835  
as.factor(networking)1                      0.2019217  1.674e-01  1.2065  
as.factor(equipments)1                     -0.6577843  1.592e-01 -4.1317  
farmers                                     0.0401614  1.142e-02  3.5168  
plotsize                                    0.0446011  5.105e-03  8.7362  
as.factor(credit)1:as.factor(crop)2        -0.2177506  9.934e-02 -2.1919  
as.factor(credit)1:as.fa(training)1        -0.0394719  1.111e-01 -0.3552  
as.factor(credit)1:as.factor(tour)1        -0.1575116  9.102e-02 -1.7305  
as.factor(credit)1:as.f(practicals)1       -0.0293802  8.923e-02 -0.3293  
as.factor(credit)1:as.fac(networking)1         0.1266971  1.113e-01  1.1379 

as.factor(credit)1:as.fac(equipments)1       -0.0990281  1.033e-01 -0.9586 

as.factor(credit)1:farmers                   -0.0082942  7.711e-03 -1.0756 

as.factor(credit)1:plotsize                    0.0067039  3.076e-03  2.1794 

as.factor(crop)2:as.factor(training)1        -0.2910814  1.368e-01 -2.1281 

as.factor(crop)2:as.factor(tour)1              0.4197053  1.010e-01  4.1545 

as.factor(crop)2:as.factor(practicals)1       -0.2230622  8.425e-02 -2.6477 

as.factor(crop)2:as.factor(networking)1       -0.1465465  1.155e-01 -1.2692 

as.factor(crop)2:as.factor(equipments)1        0.4806153  1.092e-01  4.4014 

as.factor(crop)2:farmers                      -0.0093817  7.531e-03 -1.2458 

as.factor(crop)2:plotsize                      0.0039852  3.521e-03  1.1319 

as.factor(training)1:as.factor(tour)1          0.2653301  1.202e-01  2.2077 

as.factor(training)1:as.factor(practicals)1    0.0380419  1.014e-01  0.3753 

as.factor(training)1:as.factor(networking)1    0.1111546  1.189e-01  0.9348 

as.factor(training)1:as.factor(equipments)1    0.1816572  1.148e-01  1.5825 

as.factor(training)1:farmers                   0.0062735  8.686e-03  0.7223 

as.factor(training)1:plotsize                 -0.0041749  3.744e-03 -1.1151 

as.factor(tour)1:as.factor(practicals)1       -0.1565937  8.845e-02 -1.7704 

as.factor(tour)1:as.factor(networking)1       -0.1372623  1.148e-01 -1.1959 

as.factor(tour)1:as.factor(equipments)1       -0.3683106  9.104e-02 -4.0455 

as.factor(tour)1:farmers                      -0.0083159  7.477e-03 -1.1122 

as.factor(tour)1:plotsize                      0.0030447  3.483e-03  0.8740 

as.factor(practicals)1:as.factor(networking)1 -0.0685746  8.985e-02 -0.7632 

as.factor(practicals)1:as.factor(equipments)1  0.2109174  8.841e-02  2.3856 

as.factor(practicals)1:farmers                -0.0091309  7.275e-03 -1.2552 

as.factor(practicals)1:plotsize                0.0078753  3.499e-03  2.2507 

as.factor(networking)1:as.factor(equipments)1 -0.0209805  1.143e-01 -0.1835 

as.factor(networking)1:farmers                 0.0094410  8.082e-03  1.1681 

as.factor(networking)1:plotsize               -0.0151176  3.921e-03 -3.8558 

as.factor(equipments)1:farmers                -0.0062294  8.096e-03 -0.7695 
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as.factor(equipments)1:plotsize                0.0163462  3.665e-03  4.4598 

farmers:plotsize                              -0.0008217  9.544e-05 -8.6096   
  

  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ 1  
<Environment: 0x078bfe88>  

  
[1] "Log"  
            Estimate Std. Error  
(Intercept)   -1.296    0.07181  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                            [, 1]  
-2ML (-2 h)          :  15829.43 

-2RL (-2 p_beta (h)) :  16029.60 

cAIC                 :  15921.43  
  
[1] "========== Degrees of freedom and Deviance =========="                 

[, 1]  
DF:           46.0000  
Deviance:    203.6405  
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MODEL 2: GAUSSIAN/IDENTITY GLM FOR FIXED AND INTERACTION TERMS  

  

  

  

 Residuals vs Fitted |Residuals| vs Fitted 

 

 0 20000 60000 0 20000 60000 

 mu mu 



 

277  
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Fig. B2: Diagnostic plot of Gaussian/identity GLM for fixed and         

    interaction variables  

  
Table B2: Gaussian/identity GLM Model Estimates for fixed and    

 interaction variables  

  
Distribution of Main Response:    
                      "Gaussian"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Identity"  
                                               Estimate Std. Error   t-value 

(Intercept)                                    -464.486   2704.702 -0.171733 

as.factor(credit)1                            -1973.942   2222.746 -0.888065 

as.factor(crop)2                              -1814.873   2233.609 -0.812529 

as.factor(training)1                           5723.936   2756.172  2.076771 

as.factor(tour)1                               2019.600   2311.106  0.873867 

as.factor(practicals)1                         4978.451   2016.703  2.468609 

as.factor(networking)1                         3436.551   2412.497  1.424479 

as.factor(equipments)1                        -9591.122   2294.860 -4.179393 

farmers                                          46.998    164.612  0.285506 

plotsize                                        730.686     73.590  9.929129 

as.factor(credit)1:as.factor(crop)2           -3810.396   1431.996 -2.660898 

as.factor(credit)1:as.factor(training)1        -101.773   1601.859 -0.063534 

as.factor(credit)1:as.factor(tour)1           -2228.289   1312.031 -1.698352 

as.factor(credit)1:as.factor(practicals)1        -1.380   1286.238 -0.001073 

as.factor(credit)1:as.factor(networking)1      1931.501   1604.926  1.203483 

as.factor(credit)1:as.factor(equipments)1       597.436   1489.017  0.401229 

as.factor(credit)1:farmers                       29.382    111.152  0.264344 

as.factor(credit)1:plotsize                      96.774     44.338  2.182611 

as.factor(crop)2:as.factor(training)1         -2156.874   1971.635 -1.093952 



 

278  

  

as.factor(crop)2:as.factor(tour)1              3579.936   1456.196  2.458416 

as.factor(crop)2:as.factor(practicals)1       -2585.391   1214.395 -2.128953 

as.factor(crop)2:as.factor(networking)1       -2524.078   1664.286 -1.516613 

as.factor(crop)2:as.factor(equipments)1        7047.614   1573.997  4.477527 

as.factor(crop)2:farmers                         43.693    108.549  0.402514 

as.factor(crop)2:plotsize                       -69.281     50.749 -1.365177 

as.factor(training)1:as.factor(tour)1          1769.046   1732.353  1.021181 

as.factor(training)1:as.factor(practicals)1    -999.052   1460.912 -0.683855 

as.factor(training)1:as.factor(networking)1    -831.800   1714.065 -0.485279 

as.factor(training)1:as.factor(equipments)1    1281.474   1654.687  0.774451 

as.factor(training)1:farmers                   -206.354    125.199 -1.648206 

as.factor(training)1:plotsize                   -98.115     53.965 -1.818127 

as.factor(tour)1:as.factor(practicals)1       -1377.250   1274.979 -1.080213 

as.factor(tour)1:as.factor(networking)1       -1347.443   1654.502 -0.814410 

as.factor(tour)1:as.factor(equipments)1       -2721.810   1312.324 -2.074038 

as.factor(tour)1:farmers                        101.801    107.775  0.944576 

as.factor(tour)1:plotsize                       -26.667     50.213 -0.531086 

as.factor(practicals)1:as.factor(networking)1 -1071.089   1295.150 -0.827000 

as.factor(practicals)1:as.factor(equipments)1  2879.793   1274.442  2.259651 

as.factor(practicals)1:farmers                  -37.806    104.858 -0.360539 

as.factor(practicals)1:plotsize                -102.482     50.436 -2.031914 

as.factor(networking)1:as.factor(equipments)1  -333.591   1648.128 -0.202406 

as.factor(networking)1:farmers                   76.142    116.499  0.653580 

as.factor(networking)1:plotsize                -127.856     56.516 -2.262307 

as.factor(equipments)1:farmers                 -121.517    116.695 -1.041318 

as.factor(equipments)1:plotsize                 215.595     52.832  4.080769 

farmers:plotsize                                 -3.061      1.376 -2.225056   
  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ 1  
<Environment: 0x08ed8c04>  

  
[1] "Log"  
            Estimate Std. Error  
(Intercept)    17.67    0.09766  

  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                            [, 1]  
-2ML (-2 h)          :  16154.00 -2RL 

(-2 p_beta (h)) :  16354.17 cAIC                 

:  16246.00  

  
[1] "========== Degrees of freedom and Deviance =========="  
                  [, 1]  
DF :                46  
Deviance : 35065815280  
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MODEL 3: GAMMA/LOG JOINT-GLM FOR FIXED AND INTERACTION TERMS  

  

    

  

Residuals vs Fitted |Residuals| vs Fitted 
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Fig. B3: Diagnostic plot of Gamma/log Joint-GLM for fixed and             

interaction variables  
Table B3: Gamma/log Joint-GLM Model Estimates for fixed and     

 interaction variables  

  
Distribution of Main Response:    
                         "Gamma"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Log"  
                                                Estimate Std. Error   t-value 

(Intercept)                                    8.3652974  1.183e-01  70.72794 

as.factor(credit)1                            -0.0403679  1.062e-01  -0.37999 

as.factor(crop)2                              -0.2846343  1.015e-01  -2.80332 

as.factor(training)1                          -0.1676278  1.401e-01  -1.19672 

as.factor(tour)1                               0.2374078  1.177e-01   2.01788 

as.factor(practicals)1                         0.0012257  9.760e-02   0.01256 

as.factor(networking)1                        -0.0212389  1.089e-01  -0.19504 

as.factor(equipments)1                        -0.5073023  1.095e-01  -4.63309 

farmers                                        0.0412105  7.547e-03   5.46042 

plotsize                                       0.0469243  3.794e-03  12.36684 

as.factor(credit)1:as.factor(crop)2           -0.1562764  7.362e-02  -2.12284 

as.factor(credit)1:as.factor(training)1       -0.0019077  7.654e-02  -0.02492 

as.factor(credit)1:as.factor(tour)1           -0.2031009  6.892e-02  -2.94703 

as.factor(credit)1:as.factor(practicals)1     -0.0757990  6.866e-02  -1.10393 

as.factor(credit)1:as.factor(networking)1      0.1295895  8.060e-02   1.60778 

as.factor(credit)1:as.factor(equipments)1      0.0286055  7.248e-02   0.39468 

as.factor(credit)1:farmers                    -0.0006676  5.505e-03  -0.12128 

as.factor(credit)1:plotsize                    0.0035738  2.480e-03   1.44094 

as.factor(crop)2:as.factor(training)1         -0.3666257  8.519e-02  -4.30384 

as.factor(crop)2:as.factor(tour)1              0.4684116  7.914e-02   5.91894 

as.factor(crop)2:as.factor(practicals)1       -0.1677092  6.613e-02  -2.53597 

as.factor(crop)2:as.factor(networking)1        0.0317786  8.734e-02   0.36384 

as.factor(crop)2:as.factor(equipments)1        0.4042558  7.504e-02   5.38689 

as.factor(crop)2:farmers                      -0.0080272  5.604e-03  -1.43247 

as.factor(crop)2:plotsize                      0.0028877  2.588e-03   1.11563 

as.factor(training)1:as.factor(tour)1          0.2456222  8.057e-02   3.04841 

as.factor(training)1:as.factor(practicals)1   -0.0297179  7.146e-02  -0.41585 

as.factor(training)1:as.factor(networking)1    0.1164308  1.019e-01   1.14302 

as.factor(training)1:as.factor(equipments)1    0.2693948  7.583e-02   3.55278 

as.factor(training)1:farmers                   0.0122279  5.773e-03   2.11805 

as.factor(training)1:plotsize                 -0.0084444  2.644e-03  -3.19324 

as.factor(tour)1:as.factor(practicals)1       -0.0887473  7.088e-02  -1.25205 

as.factor(tour)1:as.factor(networking)1       -0.0770664  9.877e-02  -0.78030 

as.factor(tour)1:as.factor(equipments)1       -0.4271944  6.796e-02  -6.28568 

as.factor(tour)1:farmers                      -0.0223318  5.894e-03  -3.78903 

as.factor(tour)1:plotsize                      0.0111725  2.871e-03   3.89180 

as.factor(practicals)1:as.factor(networking)1 -0.0683870  6.954e-02  -0.98335 

as.factor(practicals)1:as.factor(equipments)1  0.2017236  6.077e-02   3.31949 

as.factor(practicals)1:farmers                -0.0037174  5.162e-03  -0.72014 

as.factor(practicals)1:plotsize                0.0051250  2.574e-03   1.99126 

as.factor(networking)1:as.factor(equipments)1 -0.0038870  8.399e-02  -0.04628 

as.factor(networking)1:farmers                 0.0071381  5.901e-03   1.20962 
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as.factor(networking)1:plotsize               -0.0080811  3.165e-03  -2.55320 

as.factor(equipments)1:farmers                -0.0108459  5.172e-03  -2.09695 

as.factor(equipments)1:plotsize                0.0118724  2.493e-03   4.76209 

farmers:plotsize                              -0.0008875  8.162e-05 -10.87372  
  

  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ as.factor(credit) + as.factor(crop) + as.factor(training) +      

as.factor(tour) + as.factor(practicals) + as.factor(networking) +      

as.factor(equipments) + farmers + plotsize  

  
[1] "Log"  
                       Estimate Std. Error 

(Intercept)            -3.05148   0.297486 

as.factor(credit)1      0.58928   0.177384 

as.factor(crop)2       -0.19228   0.166473 

as.factor(training)1    1.37900   0.192221 

as.factor(tour)1        0.44639   0.171572 

as.factor(practicals)1  0.49830   0.161891 

as.factor(networking)1 -0.87691   0.179945 

as.factor(equipments)1  0.31264   0.173748 farmers                

-0.01345   0.013715 plotsize                

0.01246   0.006289  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                            [, 1]  
-2ML (-2 h)          :  15611.09 -2RL 

(-2 p_beta (h)) :  15901.23 cAIC                 

:  15703.09  

  
[1] "========== Degrees of freedom and Deviance =========="  
               [, 1]  
DF :        46.0000  
Deviance : 210.2769  
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MODEL 4:  GAUSSIAN/IDENTITY JOINT-GLM FOR FIXED AND INTERACTION     

 TERMS  

  

  

Residuals vs Fitted |Residuals| vs Fitted 
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Fig. B4: Diagnostic plot of Gaussian/identity Joint-GLM for fixed        

    and interaction variables  
Table B4: Gaussian/identity Joint-GLM Model Estimates for fixed and   

 interaction variables  

  
Distribution of Main Response:    
                      "Gaussian"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Identity"  
                                               Estimate Std. Error  t-value 

(Intercept)                                      88.320    1309.60  0.06744 

as.factor(credit)1                            -3059.074    1221.60 -2.50416 

as.factor(crop)2                               -610.509    1089.41 -0.56040 

as.factor(training)1                           4028.669    1314.47  3.06485 

as.factor(tour)1                               3380.635    1314.21  2.57237 

as.factor(practicals)1                         -162.951     978.22 -0.16658 

as.factor(networking)1                        -1392.572    1110.37 -1.25415 

as.factor(equipments)1                        -5761.840    1106.06 -5.20935 

farmers                                         107.367      94.63  1.13457 

plotsize                                        788.652      62.16 12.68781 

as.factor(credit)1:as.factor(crop)2           -1957.325     678.57 -2.88448 

as.factor(credit)1:as.factor(training)1       -1337.102     775.74 -1.72364 

as.factor(credit)1:as.factor(tour)1           -1223.396     665.96 -1.83703 

as.factor(credit)1:as.factor(practicals)1       375.036     643.22  0.58306 

as.factor(credit)1:as.factor(networking)1      2109.845     836.23  2.52303 

as.factor(credit)1:as.factor(equipments)1      -205.507     702.97 -0.29234 

as.factor(credit)1:farmers                       71.952      63.60  1.13124 

as.factor(credit)1:plotsize                     122.302      40.33  3.03240 

as.factor(crop)2:as.factor(training)1         -2897.284     840.67 -3.44638 

as.factor(crop)2:as.factor(tour)1              2569.429     706.46  3.63705 

as.factor(crop)2:as.factor(practicals)1       -2002.489     634.38 -3.15660 

as.factor(crop)2:as.factor(networking)1        1382.154     833.69  1.65787 

as.factor(crop)2:as.factor(equipments)1        5436.169     742.78  7.31868 

as.factor(crop)2:farmers                        -68.656      63.86 -1.07502 

as.factor(crop)2:plotsize                      -139.635      40.15 -3.47760 

-4 -2 0 2 4 6 
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as.factor(training)1:as.factor(tour)1           648.014     818.63  0.79158 

as.factor(training)1:as.factor(practicals)1    -265.074     632.50 -0.41909 

as.factor(training)1:as.factor(networking)1     773.718     984.23  0.78612 

as.factor(training)1:as.factor(equipments)1    3127.124     680.91  4.59254 

as.factor(training)1:farmers                      2.468      64.65  0.03817 

as.factor(training)1:plotsize                  -246.898      39.85 -6.19644 

as.factor(tour)1:as.factor(practicals)1        -501.699     640.39 -0.78343 

as.factor(tour)1:as.factor(networking)1         726.961    1025.52  0.70887 

as.factor(tour)1:as.factor(equipments)1       -3935.135     630.59 -6.24038 

as.factor(tour)1:farmers                       -176.020      66.99 -2.62746 

as.factor(tour)1:plotsize                        46.099      41.33  1.11526 

as.factor(practicals)1:as.factor(networking)1  -794.011     645.17 -1.23070 

as.factor(practicals)1:as.factor(equipments)1  2363.379     542.38  4.35739 

as.factor(practicals)1:farmers                   50.879      55.10  0.92332 

as.factor(practicals)1:plotsize                  -8.583      38.12 -0.22517 

as.factor(networking)1:as.factor(equipments)1  -161.822     840.24 -0.19259 

as.factor(networking)1:farmers                  -14.359      73.80 -0.19457 

as.factor(networking)1:plotsize                  -4.756      53.35 -0.08915 

as.factor(equipments)1:farmers                    7.918      60.40  0.13110 

as.factor(equipments)1:plotsize                   7.684      38.90  0.19752 

farmers:plotsize                                 -4.191       1.58 -2.65252    
[1] "Estimates from the model (phi)"  

  
Phi ~ as.factor(credit) + as.factor(crop) + as.factor(training) +      

as.factor(tour) + as.factor(practicals) + as.factor(networking) +      

as.factor(equipments) + farmers + plotsize  

  
[1] "Log"  
                       Estimate Std. Error 

(Intercept)            14.14330   0.272956 

as.factor(credit)1      0.83998   0.162991 

as.factor(crop)2       -0.59405   0.153182 

as.factor(training)1    0.89055   0.175940 

as.factor(tour)1        0.72271   0.157700 

as.factor(practicals)1  0.33184   0.149172 

as.factor(networking)1 -1.05164   0.165567 

as.factor(equipments)1  0.20134   0.159770 farmers                

-0.01298   0.012421 plotsize                

0.07781   0.005654  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                            [, 1]  
-2ML (-2 h)          :  15496.28 -2RL 

(-2 p_beta (h)) :  14938.90 cAIC                 

:  15588.28  

  
[1] "========== Degrees of freedom and Deviance =========="  
                  [, 1]  
DF :                46  
Deviance : 40447333610  
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MODEL 5:  HGLM 1- FIXED = GAMMA/LOG, RANDOM = INVERSE GAMMA /     

 GAUSSIAN (FOR FIXED AND INTERACTION TERMS)  

  

  

  

Residuals vs Fitted |Residuals| vs 

Fitted 
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Fig. B5: Diagnostic plot of Gamma/log HGLM - 1 for fixed and          

    interaction variables  
Table B5: Gamma/log HGLM - 1 Model Estimates for fixed and           

interaction variables  

  

  
Distribution of Main Response:    
                         "Gamma"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Log"  
                                                Estimate Std. Error  t-value 

(Intercept)                                    8.0818420  4.988e-01 16.20204 

as.factor(credit)1                            -0.0195318  1.445e-01 -0.13520 

as.factor(crop)2                              -0.2402774  2.200e-01 -1.09195 

as.factor(training)1                          -0.0676464  1.763e-01 -0.38363 

as.factor(tour)1                               0.0676873  1.526e-01  0.44345 

as.factor(practicals)1                        -0.0728067  1.305e-01 -0.55782 

as.factor(networking)1                         0.0512852  1.570e-01  0.32658 

as.factor(equipments)1                        -0.0428338  1.636e-01 -0.26182 

farmers                                        0.0316660  1.089e-02  2.90721 

plotsize                                       0.0428802  4.928e-03  8.70053 

as.factor(credit)1:as.factor(crop)2           -0.0667589  1.002e-01 -0.66598 

as.factor(credit)1:as.factor(training)1       -0.0035933  1.071e-01 -0.03354 

as.factor(credit)1:as.factor(tour)1           -0.0814992  8.730e-02 -0.93356 

as.factor(credit)1:as.factor(practicals)1     -0.0575887  8.510e-02 -0.67669 

as.factor(credit)1:as.factor(networking)1      0.0879100  1.081e-01  0.81311 

as.factor(credit)1:as.factor(equipments)1      0.1185892  1.002e-01  1.18390 

as.factor(credit)1:farmers                    -0.0056792  7.232e-03 -0.78530 

as.factor(credit)1:plotsize                    0.0040425  2.919e-03  1.38498 

as.factor(crop)2:as.factor(training)1         -0.0120610  1.512e-01 -0.07979 

as.factor(crop)2:as.factor(tour)1              0.0575049  1.044e-01  0.55057 

as.factor(crop)2:as.factor(practicals)1       -0.0266839  8.549e-02 -0.31213 
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as.factor(crop)2:as.factor(networking)1        0.0142990  1.276e-01  0.11209 

as.factor(crop)2:as.factor(equipments)1        0.1090789  1.254e-01  0.86998 

as.factor(crop)2:farmers                       0.0016016  7.208e-03  0.22220 

as.factor(crop)2:plotsize                      0.0035752  3.444e-03  1.03823 

as.factor(training)1:as.factor(tour)1          0.0858928  1.119e-01  0.76787 

as.factor(training)1:as.factor(practicals)1    0.0532793  1.013e-01  0.52579 

as.factor(training)1:as.factor(networking)1   -0.0146498  1.143e-01 -0.12817 

as.factor(training)1:as.factor(equipments)1    0.0050763  1.096e-01  0.04633 

as.factor(training)1:farmers                   0.0083454  8.026e-03  1.03986 

as.factor(training)1:plotsize                 -0.0029158  3.450e-03 -0.84524 

as.factor(tour)1:as.factor(practicals)1       -0.0497602  8.313e-02 -0.59860 

as.factor(tour)1:as.factor(networking)1       -0.0694726  1.077e-01 -0.64505 

as.factor(tour)1:as.factor(equipments)1       -0.1268631  8.889e-02 -1.42722 

as.factor(tour)1:farmers                       0.0033291  7.182e-03  0.46351 

as.factor(tour)1:plotsize                     -0.0004609  3.288e-03 -0.14017 

as.factor(practicals)1:as.factor(networking)1  0.0782523  8.928e-02  0.87648 

as.factor(practicals)1:as.factor(equipments)1 -0.0172940  8.657e-02 -0.19978 

as.factor(practicals)1:farmers                 0.0015523  6.946e-03  0.22347 

as.factor(practicals)1:plotsize                0.0006440  3.388e-03  0.19010 

as.factor(networking)1:as.factor(equipments)1 -0.1476357  1.109e-01 -1.33075 

as.factor(networking)1:farmers                 0.0047054  7.500e-03  0.62739 

as.factor(networking)1:plotsize               -0.0061620  3.703e-03 -1.66421 

as.factor(equipments)1:farmers                -0.0095119  7.586e-03 -1.25386 

as.factor(equipments)1:plotsize                0.0091950  3.450e-03  2.66526 

farmers:plotsize                              -0.0007433  9.169e-05 -8.10724  
  
[1] "Estimates for logarithm of lambda=var(u_mu)"  

  
[1] "Gaussian"      "Inverse-gamma"  
  
          Estimate Std. Error  
Region      -5.372     0.8563  
Community   -2.292     0.3922  

  

  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ 1  
<Environment: 0x127d48fc>  

  
[1] "Log"  
            Estimate Std. Error  
(Intercept)   -1.669    0.08536  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                                      [, 1]  
-2ML (-2 p_v(mu) (h))          :  15639.85 -2RL 

(-2 p_beta(mu),v(mu) (h)) :  15897.72 cAIC                           

:  15684.67  

  
[1] "========== Degrees of freedom and Deviance =========="  
                [, 1]  
DF :        58.18551  
Deviance : 148.66743  
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[1] "========== Random effect =========="  
          [,1]  
1 -0.12193473  
2 -0.07712488  
3 -0.04361149  
1 -0.56131518  
2 0.68579641  
3 -0.24641596  
4 0.35889849  
5 -0.34983726  
6 0.23289621  
7 0.13190898  
8 -0.12178861  
9 -0.32456099  
10 -0.13173636  
11 0.04228939  
12 -0.03104321  
13 0.07223699  

  

  

            

            

  

  

  

  
MODEL 6:  HGLM 1- FIXED = GAUSSIAN/IDENTITY, RANDOM =         

 GAUSSIAN/GAMMA (FOR FIXED AND INTERACTION TERMS)  

  

          

  

  

Residuals vs Fitted |Residuals| vs 
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Fig. B6: Diagnostic plot of Gaussian/Identity HGLM - 1 for fixed        

    and interaction variables  
Table B6: Gaussian/Identity HGLM - 1 Model Estimates for fixed and        

interaction variables  

  

  

  
Distribution of Main Response:    
                      "Gaussian"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Identity"  
                                               Estimate Std. Error   t-value 

(Intercept)                                    -464.484   2626.439 -0.176849 

as.factor(credit)1                            -1973.943   2158.429 -0.914528 

as.factor(crop)2                              -1814.873   2168.978 -0.836741 

as.factor(training)1                           5723.936   2676.419  2.138654 

as.factor(tour)1                               2019.598   2244.232  0.899906 

as.factor(practicals)1                         4978.451   1958.347  2.542169 

as.factor(networking)1                         3436.549   2342.689  1.466925 

as.factor(equipments)1                        -9591.120   2228.456 -4.303930 

farmers                                          46.998    159.849  0.294013 

plotsize                                        730.686     71.461 10.224999 

as.factor(credit)1:as.factor(crop)2           -3810.395   1390.560 -2.740187 

as.factor(credit)1:as.factor(training)1        -101.774   1555.508 -0.065428 

as.factor(credit)1:as.factor(tour)1           -2228.289   1274.066 -1.748959 

as.factor(credit)1:as.factor(practicals)1        -1.380   1249.019 -0.001105 

as.factor(credit)1:as.factor(networking)1      1931.502   1558.486  1.239345 

as.factor(credit)1:as.factor(equipments)1       597.437   1445.931  0.413185 
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as.factor(credit)1:farmers                       29.382    107.935  0.272221 

as.factor(credit)1:plotsize                      96.774     43.055  2.247649 

as.factor(crop)2:as.factor(training)1         -2156.874   1914.584 -1.126549 

as.factor(crop)2:as.factor(tour)1              3579.934   1414.060  2.531671 

as.factor(crop)2:as.factor(practicals)1       -2585.389   1179.256 -2.192390 

as.factor(crop)2:as.factor(networking)1       -2524.077   1616.129 -1.561805 

as.factor(crop)2:as.factor(equipments)1        7047.614   1528.452  4.610949 

as.factor(crop)2:farmers                         43.693    105.408  0.414509 

as.factor(crop)2:plotsize                       -69.281     49.281 -1.405857 

as.factor(training)1:as.factor(tour)1          1769.045   1682.226  1.051610 

as.factor(training)1:as.factor(practicals)1    -999.053   1418.639 -0.704233 

as.factor(training)1:as.factor(networking)1    -831.801   1664.467 -0.499740 

as.factor(training)1:as.factor(equipments)1    1281.473   1606.807  0.797528 

as.factor(training)1:farmers                   -206.354    121.577 -1.697319 

as.factor(training)1:plotsize                   -98.115     52.403 -1.872304 

as.factor(tour)1:as.factor(practicals)1       -1377.249   1238.087 -1.112401 

as.factor(tour)1:as.factor(networking)1       -1347.443   1606.627 -0.838678 

as.factor(tour)1:as.factor(equipments)1       -2721.810   1274.351 -2.135840 

as.factor(tour)1:farmers                        101.802    104.656  0.972724 

as.factor(tour)1:plotsize                       -26.667     48.760 -0.546912 

as.factor(practicals)1:as.factor(networking)1 -1071.089   1257.674 -0.851642 

as.factor(practicals)1:as.factor(equipments)1  2879.792   1237.564  2.326983 

as.factor(practicals)1:farmers                  -37.806    101.824 -0.371282 

as.factor(practicals)1:plotsize                -102.482     48.977 -2.092462 

as.factor(networking)1:as.factor(equipments)1  -333.591   1600.438 -0.208438 

as.factor(networking)1:farmers                   76.142    113.128  0.673055 

as.factor(networking)1:plotsize                -127.856     54.881 -2.329718 

as.factor(equipments)1:farmers                 -121.517    113.319 -1.072348 

as.factor(equipments)1:plotsize                 215.595     51.303  4.202368 

farmers:plotsize                                 -3.061      1.336 -2.291359  
  
[1] "Estimates for logarithm of lambda=var(u_mu)"  

  
[1] "Gaussian" "gamma"    

   
          Estimate Std. Error  
Region      -14.29     0.8563  
Community   -12.22     0.3922  

  

  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ 1  
<Environment: 0x11b9e730>  

  
[1] "Log"  
            Estimate Std. Error  
(Intercept)    17.61    0.09319  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                                      [, 1]  
-2ML (-2 p_v(mu) (h))          :  16152.61 -2RL 

(-2 p_beta(mu),v(mu) (h)) :  15542.73 cAIC                           

:  16244.61  
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[1] "========== Degrees of freedom and Deviance =========="  
                  [, 1]  
DF :                46  
Deviance : 35065802655  

  

  

  
[1] "========== Random effect =========="  
            [, 1]  
1 1.557672e-03  
2 4.853383e-04  
3 -2.043001e-03  
1 -1.850068e-03  
2 5.973378e-03  
3 -2.565638e-03  
4 1.972833e-03  
5 -2.780214e-03  
6 1.288779e-03  
7 6.105267e-04  
8 -1.723845e-03  
9 -9.159768e-06  
10 1.767677e-04  
11 -1.249963e-04  
12 -1.307343e-03  
13 3.389884e-04  

  

  

          

  

            

            

  

          
MODEL 7: HGLM 2- FIXED = GAMMA/LOG, RANDOM = GAUSSIAN/INVERSE            

GAMMA PHI = GAMMA/LOG (FOR FIXED AND INTERACTION TERMS)  

  

  

          

  

  

Residuals vs Fitted |Residuals| vs 

Fitted 
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Fig. B7: Diagnostic plot of Gamma/log HGLM - 2 for fixed and          

    interaction variables  
Table B7: Gamma/log HGLM - 2 Model Estimates for fixed and           

interaction variables  

  

  
Distribution of Main Response:    
                         "Gamma"   
[1] "Estimates from the model (mu)" Yield 

~ ...  

  
[1] "Log"  
                                                Estimate Std. Error  t-value 

(Intercept)                                    7.9451883  4.815e-01 16.50064 

-6 -4 -2 0 2 4 
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as.factor(credit)1                            -0.0464855  1.133e-01 -0.41037 

as.factor(crop)2                              -0.0907664  1.711e-01 -0.53037 

as.factor(training)1                          -0.0441746  1.461e-01 -0.30244 

as.factor(tour)1                               0.0845560  1.209e-01  0.69911 

as.factor(practicals)1                        -0.1076213  1.028e-01 -1.04697 

as.factor(networking)1                         0.0418318  1.239e-01  0.33760 

as.factor(equipments)1                         0.0470808  1.251e-01  0.37624 

farmers                                        0.0364664  8.511e-03  4.28472 

plotsize                                       0.0430731  3.940e-03 10.93345 

as.factor(credit)1:as.factor(crop)2           -0.0439735  7.905e-02 -0.55627 

as.factor(credit)1:as.factor(training)1        0.0029998  7.971e-02  0.03763 

as.factor(credit)1:as.factor(tour)1           -0.0987920  7.077e-02 -1.39600 

as.factor(credit)1:as.factor(practicals)1     -0.0572158  6.912e-02 -0.82781 

as.factor(credit)1:as.factor(networking)1      0.0238834  8.681e-02  0.27511 

as.factor(credit)1:as.factor(equipments)1      0.1349423  7.693e-02  1.75405 

as.factor(credit)1:farmers                    -0.0003012  5.690e-03 -0.05294 

as.factor(credit)1:plotsize                    0.0030714  2.390e-03  1.28500 

as.factor(crop)2:as.factor(training)1         -0.0224889  1.052e-01 -0.21385 

as.factor(crop)2:as.factor(tour)1              0.0735747  8.663e-02  0.84929 

as.factor(crop)2:as.factor(practicals)1       -0.0115648  7.046e-02 -0.16412 

as.factor(crop)2:as.factor(networking)1       -0.0293129  1.057e-01 -0.27730 

as.factor(crop)2:as.factor(equipments)1        0.0595358  9.784e-02  0.60848 

as.factor(crop)2:farmers                      -0.0022693  5.986e-03 -0.37912 

as.factor(crop)2:plotsize                      0.0032342  2.678e-03  1.20761 

as.factor(training)1:as.factor(tour)1          0.0981488  8.048e-02  1.21948 

as.factor(training)1:as.factor(practicals)1    0.0430968  8.309e-02  0.51867 

as.factor(training)1:as.factor(networking)1    0.0176581  1.007e-01  0.17532 

as.factor(training)1:as.factor(equipments)1   -0.0182289  8.565e-02 -0.21284 

as.factor(training)1:farmers                   0.0105546  5.934e-03  1.77865 

as.factor(training)1:plotsize                 -0.0049157  2.579e-03 -1.90599 

as.factor(tour)1:as.factor(practicals)1       -0.0396537  6.892e-02 -0.57539 

as.factor(tour)1:as.factor(networking)1       -0.0665327  9.975e-02 -0.66700 

as.factor(tour)1:as.factor(equipments)1       -0.1343733  7.164e-02 -1.87562 

as.factor(tour)1:farmers                      -0.0041991  6.095e-03 -0.68896 

as.factor(tour)1:plotsize                      0.0028956  2.711e-03  1.06798 

as.factor(practicals)1:as.factor(networking)1  0.0415297  7.535e-02  0.55118 

as.factor(practicals)1:as.factor(equipments)1  0.0062195  6.751e-02  0.09212 

as.factor(practicals)1:farmers                 0.0018413  5.513e-03  0.33397 

as.factor(practicals)1:plotsize                0.0018499  2.600e-03  0.71163 

as.factor(networking)1:as.factor(equipments)1 -0.1210462  9.274e-02 -1.30520 

as.factor(networking)1:farmers                 0.0035345  6.465e-03  0.54673 

as.factor(networking)1:plotsize               -0.0032418  3.238e-03 -1.00118 

as.factor(equipments)1:farmers                -0.0112985  5.641e-03 -2.00299 

as.factor(equipments)1:plotsize                0.0078423  2.546e-03  3.08067 

farmers:plotsize                              -0.0007924  8.076e-05 -9.81200   
  

  
[1] "Estimates for logarithm of lambda=var(u_mu)"  

  
[1] "Gaussian"      "inverse-gamma"  

  
          Estimate Std. Error  
Region      -5.265     0.8563  
Community   -2.254     0.3922  
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[1] "Estimates from the model (phi)"  

  
Phi ~ as.factor(credit) + as.factor(crop) + as.factor(training) +      

as.factor(tour) + as.factor(practicals) + as.factor(networking) +      

as.factor(equipments) + farmers + plotsize  

  
[1] "Log"  
                        Estimate Std. Error 

(Intercept)            -2.824893   0.338732 

as.factor(credit)1      0.536420   0.203271 

as.factor(crop)2       -0.090648   0.192497 

as.factor(training)1    1.082872   0.217828 

as.factor(tour)1       -0.021638   0.197526 

as.factor(practicals)1  0.362818   0.187087 

as.factor(networking)1 -0.861374   0.206733 

as.factor(equipments)1 -0.025111   0.199204 farmers                 

0.011444   0.015589 plotsize                

0.002609   0.007138  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                                      [, 1]  
-2ML (-2 p_v(mu) (h))          :  15470.24 -2RL 

(-2 p_beta(mu),v(mu) (h)) :  15748.33 cAIC                           

:  15511.58  

  
[1] "========== Degrees of freedom and Deviance =========="  
                [, 1]  
DF :        58.24963  
Deviance : 149.05148  

  
[1] "========== Random effect =========="  
          [, 1]  
1 -0.11636385  
2 -0.09348388  
3 -0.05251477  
1 -0.61419772  
2 0.69989334  
3 -0.20205947  
4 0.33460102  
5 -0.33184174  
6 0.23431035  
7 0.14477254  
8 -0.13254941  
9 -0.32487451  
10 -0.16650890  
11 0.03983901  
12 -0.02345832  
13 0.07971131  
MODEL 8: HGLM 2- FIXED = GAUSSIAN/IDENTITY, RANDOM =          

GAUSSIAN/GAMMA PHI = GAMMA/LOG (FOR FIXED AND INTERACTION TERMS)  
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 mu mu 

 

 Theoretical Quantiles StudentResidual 

  

  
Fig. B8: Diagnostic plot of Gaussian/identity HGLM - 2 for fixed                  

    and interaction variables  
Table B8: Gaussian/identity HGLM - 2 Model Estimates for fixed and   

 interaction variables  

  

  
Distribution of Main Response:    
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                      "Gaussian"   
[1] "Estimates from the model (mu)"  
Yield ~   

  
[1] "Identity"  
                                               Estimate Std. Error t-value 

(Intercept)                                    -448.923   1563.276 -0.2872 

as.factor(credit)1                            -2682.593   1433.944 -1.8708 

as.factor(crop)2                                205.035   1311.649  0.1563 

as.factor(training)1                           4484.912   1529.043  2.9331 

as.factor(tour)1                               3453.206   1498.904  2.3038 

as.factor(practicals)1                          360.348   1194.162  0.3018 

as.factor(networking)1                         -803.287   1348.171 -0.5958 

as.factor(equipments)1                        -6475.975   1320.711 -4.9034 

farmers                                         114.747    109.144  1.0513 

plotsize                                        778.413     65.776 11.8343 

as.factor(credit)1:as.factor(crop)2           -2223.702    816.884 -2.7222 

as.factor(credit)1:as.factor(training)1       -1243.696    936.654 -1.3278 

as.factor(credit)1:as.factor(tour)1           -1370.824    788.516 -1.7385 

as.factor(credit)1:as.factor(practicals)1       430.557    757.639  0.5683 

as.factor(credit)1:as.factor(networking)1      2202.608    982.068  2.2428 

as.factor(credit)1:as.factor(equipments)1      -268.842    826.234 -0.3254 

as.factor(credit)1:farmers                       57.348     75.406  0.7605 

as.factor(credit)1:plotsize                     116.143     43.251  2.6853 

as.factor(crop)2:as.factor(training)1         -3066.524   1028.328 -2.9820 

as.factor(crop)2:as.factor(tour)1              2653.181    847.337  3.1312 

as.factor(crop)2:as.factor(practicals)1       -2509.624    748.793 -3.3516 

as.factor(crop)2:as.factor(networking)1        1253.758    999.522  1.2544 

as.factor(crop)2:as.factor(equipments)1        5539.311    885.561  6.2551 

as.factor(crop)2:farmers                        -88.466     76.279 -1.1598 

as.factor(crop)2:plotsize                      -144.693     43.694 -3.3115 

as.factor(training)1:as.factor(tour)1           558.955    985.860  0.5670 

as.factor(training)1:as.factor(practicals)1    -266.119    774.868 -0.3434 

as.factor(training)1:as.factor(networking)1     383.991   1113.331  0.3449 

as.factor(training)1:as.factor(equipments)1    3019.865    836.578  3.6098 

as.factor(training)1:farmers                    -38.035     77.643 -0.4899 

as.factor(training)1:plotsize                  -213.346     44.625 -4.7808 

as.factor(tour)1:as.factor(practicals)1        -641.078    754.920 -0.8492 

as.factor(tour)1:as.factor(networking)1         634.957   1170.920  0.5423 

as.factor(tour)1:as.factor(equipments)1       -3704.458    739.663 -5.0083 

as.factor(tour)1:farmers                       -169.609     77.535 -2.1875 

as.factor(tour)1:plotsize                        46.505     43.904  1.0592 

as.factor(practicals)1:as.factor(networking)1  -708.796    776.805 -0.9125 

as.factor(practicals)1:as.factor(equipments)1  2477.449    657.066  3.7705 

as.factor(practicals)1:farmers                   62.067     67.045  0.9258 

as.factor(practicals)1:plotsize                 -25.163     42.625 -0.5903 

as.factor(networking)1:as.factor(equipments)1  -232.489    988.817 -0.2351 

as.factor(networking)1:farmers                  -18.990     84.619 -0.2244 

as.factor(networking)1:plotsize                 -24.096     56.182 -0.4289 

as.factor(equipments)1:farmers                    8.558     71.105  0.1203 

as.factor(equipments)1:plotsize                  36.957     42.875  0.8620 

farmers:plotsize                                 -3.357      1.667 -2.0139  

  
[1] "Estimates for logarithm of lambda=var(u_mu)"  
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[1] "Gaussian" "gamma"   

    
          Estimate Std. Error  
Region      -11.37     0.8563  
Community   -11.57     0.3922  

  

  
[1] "Estimates from the model (phi)"  

  
Phi ~ as.factor(credit) + as.factor(crop) + as.factor(training) +      

as.factor(tour) + as.factor(practicals) + as.factor(networking) +      

as.factor(equipments) + farmers + plotsize  

  
[1] "Log"  
                        Estimate Std. Error 

(Intercept)            14.825507    0.24043 

as.factor(credit)1      0.722429    0.14429 

as.factor(crop)2       -0.506487    0.13661 

as.factor(training)1    0.558480    0.15462 

as.factor(tour)1        0.528527    0.14021 

as.factor(practicals)1  0.316325    0.13277 

as.factor(networking)1 -0.794790    0.14672 

as.factor(equipments)1  0.279803    0.14141 farmers                

-0.003393    0.01106 plotsize                

0.057569    0.00507  

  
[1] "========== Likelihood Function Values and Condition AIC =========="  
                                      [, 1]  
-2ML (-2 p_v(mu) (h))          :  15654.07 -2RL 

(-2 p_beta(mu),v(mu) (h)) :  15081.15 cAIC                           

:  15746.07  

  
[1] "========== Degrees of freedom and Deviance =========="  
                   [, 1]  
DF :       4.600001e+01  
Deviance : 3.506580e+10  

  

  
[1] "========== Random effect =========="  
            [, 1]  
1 2.740153e-03  
2 5.808270e-03  
3 -7.457529e-03  
1 -1.589856e-03  
2 6.303971e-03  
3 -1.973962e-03  
4 5.004118e-03  
5 -2.779775e-03  
6 3.580008e-03  
7 -2.264001e-03  
8 -4.672704e-03  
9 6.661968e-05  
10 6.742703e-04  
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11 9.742384e-04  
12 -1.102135e-03  
13 -1.129898e-03  


