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Abstract 

In spite of advances in technology, occurrence of Fire Outbreaks is growing at an 

increasing rate all over the world but particularly in developing countries like 

Ghana. It is thus worrying that not much work appears to have been done in 

Ghana regarding the formulation of statistical and other models for predicting 

Fire Outbreaks. Due to this, actuarial and insurance practitioners are unable to 

effectively help manage the risk of Fire Outbreaks. 

A Fire Outbreaks is a sudden occurrence of fire greater than would otherwise be 

expected at a particular time and place. Fire is a rare event often classified an 

’Extremal event’ and is characterized by relative rareness, huge impact, and 

statistical unexpectness. In this study, monthly time series data on Fire Outbreaks 

was obtained from Ghana’s Ashanti Regional Fire Service database and was 

modelled using both SARIMA model and exponentially distributed survival model 

for monthly prediction of fire occurrences and Fire Premium calculations 

respectively. The results revealed that ARIMA (4,1,1)(1,1,1)12 model was the best 

SARIMA model for the Fire Outbreaks. This model has the least AIC of 151.1116 

and BIC of 176.9176. Diagnostic checks of this model with the LjungBox test and 

ARCH-LM test revealed that the model is free from higher-order serial correlation 

and conditional heteroscedasticity respectively. Moreover, the fire premium 

calculation was based on the equivalence principle of calculating insurance 

premium approach based more on frequencies than on severity. A more complete 

risk portfolio model is suggested depending on the availability of data, which 

would capture both severity and frequency. 
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CHAPTER 1 

Introduction 

1.1 Background of the Study 

Policy makers and researchers have generally found that one major problem 

affecting the economy of developing countries is rampant fire occurrence and 

Ghana is not an exception in this respect. The current changes in ecosystem 

functioning and climate systems are having major impact on Fire Outbreaks 

conditions globally. A Fire Outbreak is a sudden occurrence of fire greater than 

would otherwise be expected at a particular time and place (investopedia). 

Through the centuries there has been such an intimate connection of fire with the 

cultural growth of humanity that whatever relates to the antiquity of fire is 

important in tracing the history of early progress and because all inventions make 

use of what has gone before, the stages, which lead up to the making of the first 

stoves, are necessary in writing of their history. Logically, of course, we may 

assume there was once a time when man had no fire, but very early he must have 

become acquainted with fire derived from natural sources, and made use of it; for 

no remains of man’s art show him without fire as his companion. Much later in 

the scheme of things he invented processes for making fire artificially. Many of 

the legends or myths relating to the origin of fire are vivid and dramatic, and while 

they vary in detail there appears to be a similarity in many of the episodes that 

form the fire origin story in all countries of the world. Fire is a good servant but a 

bad master as well. Fire is a rare event and is often classified as an ’Extremal 

event’ and is characterized by relative rareness, huge impact, and statistical 

unexpectness. Fire Outbreaks and disasters are caused by many factors, some of 

which can be blamed on humans and others beyond our control. The chief 

purveyors of fire outbreaks in Ghana are classified into seven main categories 

namely: Electrical, Domestic, Bush, Institutional, Commercial, Industrial and 
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Vehicular Fire Outbreaks. The name extremal event connotes an extreme case: 

that is the chance of occurrence is very low but the effect of which is highly severe. 

Fire tends to be in this category. The Fire Service of Ghana has been targeting a 

reduction in the number of Fire Outbreaks systematically on yearly basis and 

hope to achieve single digit in fire fatality rate by the year 2015 (Ghana News 

Agency, 2010). In order to efficiently achieve this objective, the Fire Service of 

Ghana needs an accurate estimate of Fire Outbreaks.In modelling the rare 

phenomena that lie outside the range of availably observations is a problem. 

Therefore it is very essential to rely on well-founded methodology and model an 

appropriate time series model to predict fire occurrence. 

1.2 Problem Statement 

The task of resolving the underlying risk of Fire Outbreaks in Ghana is still a big 

challenge to researchers and fire stakeholders because not much works appear 

to have been done in accessing the statistical model for predicting Fire Outbreaks. 

Due to this, actuarial and insurance practitioners are unable to effectively help 

manage the risk of Fire Outbreaks. However, the occurrences of Fire Outbreaks 

and cost of damages are of an increasing trend globally for the past decade. In 

Ghana, the researchers and policy makers have focused their attention on causes 

of Fire without paying attention to this important indicator of economic growth. 

Moreover, in Ghana, Fire Outbreaks did sustain a constant rise reflecting market 

conditions such as unexpected inflations on goods and services and statistics 

indicate that there has been about 1500 Fire Outbreaks recorded in Ghana for 

2013 alone, and this worrying figure is expected to rise if we fail to tackle this 

with urgency as a national crisis (Johnson, 2013). Also, according to the late 

president Mills, Ghana lost GH 360,027,775.75 to Fire Outbreaks in the year 

2011 (Ghana News Agency, 2011) which affected the country’s economic growth. 
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Another Research conducted by Fire Safe Europe shows that, US in 2008, the total 

cost of fire was estimated at $ 362 billion, or roughly 2.5% of US GDP. Economic 

loss (property damage) reported or unreported, direct or indirect represents only 

$ 20.1 billion of this total. Net costs of insurance coverage ($ 15.2 billion), fire 

department costs ($ 39.7 billion), costs of fire protection in new buildings ($ 62.7 

billion), other economic costs ($ 44.0 billion), monetary value of time donated by 

volunteer firefighters ($ 138 billion), and the estimated monetary equivalent of 

civilian and fire fighter deaths and injuries due to fire ($ 42.4 billion) are all larger 

components than property loss and these cases provide examples of extreme 

events. If important risk management organizations such as Ghana Fire Services 

cannot predict and capture the risks appropriately, their losses could be huge and 

therefore extremely increase behaviour of fire damages and the substantial 

impacts of these increments motivate us to carry out a research on modelling fire 

occurrence and provide insurance premium for the Fire Outbreaks. 

1.3 Justification of Study 

The huge impact of catastrophic events on our society is deep and long. 

Investigating the causes of such fire events and developing plans to protect 

against them should not be the only concern but also have to resolve the results 

of huge financial loss. For a country to not grow economically, the existence of 

Fire Outbreaks is a major contributing factor. This is because it causes both the 

individual and government to lose financially leading to a poor economic growth. 

The high spate of Fire Outbreaks in Ghana is said to have claimed 795 lives in total 

of 4577 reported cases of Fire Outbreaks recorded in the country between 

January December 2013. Furthermore, it was revealed that Brong-Ahafo region 

recorded the highest number of Fire Outbreaks with 378 fires, followed by 

Greater Accra region, 330, Ashanti region, 314, while Volta Region’s 46 was the 

lowest on record. Another study conducted by the Research, Monitoring and 
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Evaluation Unit of the National Fire Service revealed that the government spend 

GH 40,321,963 properties (www.graphicline.com). 

1.4 The Objective of Study 

Specifically, the project seeks to 

To investigate the monthly effects on the Fire Outbreaks 

To develop an appropriate time series model for predicting the Fire 

Outbreaks 

To determine probabilistic actuarial models (survival model) for computing 

premiums with respect to Fire Outbreaks. 

1.5 Significance of the Study 

The findings of this study could be used by fire stakeholders such as Ghana 

National Fire Service to efficiently manage and perfectly prediction fire number 

of fire in the future to prevent unforeseen governmental losses. Also help 

actuarial and insurance practitioners to calculate fire premiums that will help to 

sustain their insurance policies. In addition, this study could provide basis for 

further researches on fire in the fire industries. 

1.6 Structure of the Thesis 

The thesis is organized into five chapters. Chapter one contains the introduction 

of the research work. Chapter two comprises of literature review. Chapter three 

outlines the methodology employed in this research while chapter four presents 

the analysis and discussion of results. Chapter five is devoted to conclusion and 

recommendations. 

CHAPTER 2 
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Literature Review 

2.1 Introduction 

This chapter reviews empirical works done on Fire Outbreaks. The chapter is 

divided into eight main headings namely; History and Impact of Fire in Some Part 

of the World, Fire and Forest Change, Overview of Fire Outbreaks Situation in 

Ghana, empirical researches on fire, Generalized Linear Model, Review of Time 

Series Methods, Overview of Insurance and Premium and conclusion. 

2.2 History and Impact of Fire in Some Parts of the 

World 

Africa is mostly called ’fire continent’ (Trollope and Trollope, 2004) as a result of 

widespread anthropogenic fire (i.e fire associated with anthropogenic land use) 

that yearly burn the vegetation of savannah (Mbow et al., 2000; Reid et al., 2000; 

Laris, 2002; Danthu et al., 2003). In the savannah of Southern Africa, where 

anthropogenic fire are frequent (Shcoles and Archer, 1997), the hunter gathers in 

the Kalahari region used savannah burning from manipulating vegetation to 

attract the animals they hunt (Sheuyange, 2002). Fire is a widespread process in 

the earth system and plays a key role in ecosystem composition and distribution 

(Bond and Keeley, 2005). 

Also, Herakleitos famously observed that everything is change, and more 

specifically concluded that all things are an exchange for fire, and fire for all 

things. For him fire was a metaphor for dynamism. Fire changed matter. It moved: 

fast or slow, the world burned, and that burning accounted for Earth’s ceaseless 

motions. By the nineteenth century, modern science had demystified fire. Energy 

replaced fire as a universal medium, and scientists reconceptualized flame as 

form of oxidation, a subset of physical chemistry. But the notion of fire as a motive 
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power endured. Slow combustion in the form of respiration powered the living 

world. Fast combustion in the guise of flames transmuted landscapes. And 

internal combustion within mechanical chambers powered the industrial 

revolution (Pyne, 2014). 

Furthermore most fire outbreaks are attributed to careless handle of fire by 

human of which some can be blame on us and other beyond our controls. Some 

careless behavior that can cause fire outbreaks include: Irresponsible use of 

fireworks; fireworks should be aimed only at the skies. Aiming fireworks to any 

other direction can cause a fire disaster. Falling asleep whiles you are cooking, 

leaving rubbish and trees near your house. Careless use of candle and other naked 

flames; Avoid the use of candles for illumination as much as is possible. Use candle 

only for your religious rituals or romantic dinners and turn them off afterwards. 

Pouring kerosene into the kerosene tank of your kerosene lamp lit (thus may 

cause explosion that can ignite a fire). Faulty electrical wiring; in order to save 

cost, where thicker cables ought to be used, can cause heating, which can ignite 

the insulation and spark off a fire disaster. Ensure that certified electrical 

engineers are employed to supervise your house wiring.in addition, inspect the 

electrical wiring of your house and ensure that it is in good condition before 

packing in. 

Storage of fuel or other inflammable substance around the house or through the 

part were naked fire may pass and smoking near inflammable substances. In 

addition, ignorance can lead to fire outbreaks thus poor awareness of what fire is 

and how it can be prevented has resulted to a lot of fire occurrence; however 

being ignorance will also make you to ignore gadget that can save your property 

during a fire outbreak and also compromise with buying a fire insurance policy. 

Information about fire, how to prepare for fire disaster and to prevent fire 

disasters can be found in many books on fire. Fire requires fuel, oxygen and heat 

to burn. Elimination of any of these elements will extinguish any fire no matter 
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how intense it is. A good knowledge of fire will enable you to know the possible 

fire risk areas in your house. 

Moreover, arson also causes fire outbreaks. Arson is a malicious burning of 

property of another due to riot or strike and also accident do occur sometimes. 

When all necessary precautions have been taken accidents can still occur. This is 

often beyond your control. Electrical sparks can occur; lighting and more can 

cause fire outbreaks. Knowing the causes of fire empowers you to prevent it 

(Beatthefire, 2006). 

The establishment of India fire service in Bombay (1803), followed by Calcutta 

(1822) and Madras (1908) thus completed Advisory council under Ministry of 

Home Affairs recommended various aspects of uniform fire service development 

throughout the country. In 1997, Ministry of Home Affairs declared that a total 

1754 fire stations with 5149 fire appliances and 50730 fire professionals are 

functioning throughout India. However, these services are limited to unban and 

industries areas. Furthermore studies shows that major fire incidents in India are 

due to the explosion in the fireworks factory and homemade fireworks followed 

by residential fire and others. Each year, 450 to 470 people lives are lost in India 

to burn injuries caused by firecrackers and ironically, majority of them are 

children and women. The Loss Prevention Association of India Ltd (LPA) 

maintain that, thousands of cases relating to burn injuries go unreported. In 2002 

the LPA has advised the government to introduce a ban on sale of fireworks to 

children below 15 years (India Fire Service, 1997). 

Also, analysis of data showed that the total number of death due to fire in 2001, 

2002 and 2003 was 5787 and total property loss was estimated to Rs 1046 crore 

in India. The vast majority of all fire related mortality and morbidity in USA result 

from non-catastrophic fires which is the occurrence of fire in residential areas. 
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An analysis of yearly mortality data from 1978 through 1984 in USA shows that 

average 4897 persons died each year in residential fires. 

A similar analysis of data from 1979 through 1985 indicates that smokes 

inhalation accounted for two-third of deaths and burns accounted for one-thirds 

(United State Fire Administration, 1992). 

2.3 Fire and Forest Change 

Stand-maintenance vs Stand-Replacement Fire: Fires change in temperature, 

intensity, vegetative conditions, topography, duration and size, weather 

conditions and attempt to suppress the fire (Wenger, 1984). 

Considering these factors, fire effects on ecosystem can be viewed over 

continuum, ranging from small scale low intensity fires such as single lighting 

struck snag, to large scale high intensity fire such as those that burned a third of 

Yellowstone National Park in 1988. 

Fire effect are mostly characterized according to the effect the fire has on the 

ecosystem. Stand replacement fires are also called ’catastrophic’ fires ,which is 

characterized by moderate to high intensity fire activity that kills almost all 

vegetation within fire bounds. The dead vegetative substance left after the fire 

often creates a further fuel hazard resulting to increased fire danger in the future. 

Stand fire include low to adequate intensity fire activity which commonly burn 

slow to the ground and mainly affect shrubs, grasses, and small trees. This type of 

fire typically burn off accrue vegetation debris on the ground without killing 

larger trees and thus reduce the danger of future fires without causing major 

impact on the current vegetation component of the area (Wenger, 1984). 

Notwithstanding, Guyette et al. (2002) conducted a research on dynamics of 

anthropogenic fire regime. They noted that human interaction with fire and 
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vegetation occurs at many levels of human population density and cultural 

development, from subsistence cultures to highly technological societies. The 

dynamics of these relations with respect to wildland fire are often challenging to 

understand and identify at short temporal scales. Also dendrochronological fire 

histories from the Missouri Ozarks, coupled with human population data, offer a 

quantitative means of investigative historic from 1680 to 1990 changes in the 

anthropogenic fire regime. Furthermore an indication of percent of sites burned 

and fire intervals of anthropogenic fires are conditioned by the following four 

limiting factors: (a) anthropogenic ignition, (b) surface fuel production, (c) fuel 

fragmentation, and 

(d) cultural behaviour based on temporal analysis of fire scar dates over the last 

3 centuries. The following conclusions were made during an ignition-dependent 

stage (fewer than 0.64 humans/km2), the percent of sites burned is 

logarithmically related to human population (r2 = 0.67). During a fuel-limited 

stage, where population density exceeds a threshold of 0.64 humans/km2, the 

percent of sites burned is independent of population increases and is limited by 

fuel production. During a fuel-fragmentation stage, regional trade allows 

population densities to increase above 3.4 humans/km2, and the percent of sites 

burned becomes inversely related to population (r2 = 0.18) as decreases in fuel 

continuity limit the propagation of surface fires. During a culture-dependent 

stage, increases in the value of timber over forage greatly reduce the mean fire 

interval and the percent of sites burned. 

2.4 Overview of Fire outbreak Situation in Ghana 

The Ghana National Fire Service was established in 1963 by Act 219 with the 

primary objective of firefighting and extinguishment and to render humanitarian 

service. Subsequently, in 1997 Ghana National Fire Service Act (Act 537) was 

enacted to reestablish the National Fire Service with the objective of Preventing 
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and managing undesired fires and other related matters with an expanded 

mandate. 

There has been so many statistics on fire incidents in Ghana. Notably among 

them are Anaglatey (2013) reports that barely 14 days in 2013, Ghana 

witnessed 254 fire cases in the country. These fire cases include market fires 

which is a common issue that Ghanaian markets face. 

Again, according late president Mills, Ghana lost GH 360, 0277,775.75 to fire 

outbreaks which affected the economy of the county, therefore noted that 

bushfire were more frequent and urged Metropolitan, Municipal and District 

Assemblies and Traditional authorities to enforce bye laws to protect the 

environment (Ghana News Agency, 2011). 

Also, Dr. Albert Brown Gaizie, Chief Fire Officer of GNFS in January 2015 revealed 

a statistics on reduction of fire outbreak in the 2014. He compared a total of 3783 

cases of fire outbreaks recorded in 2014 as against 4171 cases recorded in 2013, 

representing a decrease of 388 cases. Furthermore, noted that on a Regional 

basis, the statistics showed that there were considerable declines in most of the 

regions. The Ashanti Region recorded 646 in 2014 as against 836 in 2013, Brong 

Ahafo registered 382 in 2014 compare with 553 in 2013, while 

Central Region recorded 320 cases in 2014 down from 405 in 2013. However, 

Greater Accra recorded the highest fire outbreaks with 857 in 2014 up from 547 

reported cases in 2013. He said the service had employed several measures such 

as market patrol teams, where personnel are deployed to all the markets to 

educate the traders and ensure fire safety as well as protect lives and property. 

He added that the service would establish a rapid deployment force to be the first 

response to any unforeseen fire outbreaks since some of the incidences requires 

rapid response and extrication. The following recommendations were made in 

order to combat fire incidence in Ghana by appealing to industries to employ the 
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services of fire safety officers to ensure safety on their premises at all time and 

enumerated inadequate water hydrants, unauthorised electrical connections, and 

inadequate number of fire station in newly developing communities as some of 

the challenges facing the Service and called for government support. 

Furthermore, the Ghana National Fire Service (2014) gave statistics on fire 

outbreaks and revealed that Accra tops the list with a total damage valued at 

GH 564,168,260, followed by Ashanti Region (ASHR) with GH 96,680, then Brong 

Ahafo Region (BAR) GH 80,621 while that of Volta Region (VR) stands at GH 

60,270. 

The Northern Region (NR) recorded GH 14,780 while Tema (TR) had GH 7,300. 

The cost of items which were salvaged was GH 7,070. Currently, there has been 

300 domestic fires, 71 bush fires, and 107 commercial fires all totaling 779. The 

number of persons who got injured are 256 while 48 died within January and 

February. It is estimated that the numbers of fire for March and April would 

increase as the country keeps recording rampant fire outbreaks. 

For the whole of 2013, the cost of damage from disasters across all the 10 regions 

of the country was GH 25,081,919.05. Accra recorded GH 19,940,469, 

BAR GH 2,476,204.00, Eastern Region GH 1,013,409.05, NR GH 44,090, TR 

GH 23,610, Upper East Region (UER) GH 850,411, and WR GH 733,726. 

Meanwhile, there was a total of 5489 fire outbreaks across the nation last year 

which injured 1,128 persons and caused 213 deaths. 

Table 2.1 gives the statistics on fire outbreak in Ghana and Ashanti in the year 

2011. 
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2.5 Empirical Researches on Fire 

Many researches have been carried out on Fire using different theorem and 

mathematical models. Hence, Hansen (1999) modelled a Risk-Based Fire 

Research Decision to support United States Coast Guard regulators’ 

determinations of the most appropriate fire safety areas for allocating research 

and development 

resources. 

The methodology consists of risk based analysis of past shipboard fire and ex- 
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plosion incidents to establish historical problem areas and trends. Moreover the 

following results were obtained as the top five areas for possible allocation of 

research and development resources are: egress of passengers and crew, 

development of international design and approval standards for fire protection 

systems, hazard analysis review of fire safety regulations, development of 

alternative design assessment methodology, and investigation of lagging 

requirements for fire protection. 

Furthermore Twum-Barima (2014) made a research on assessing the Awareness 

of Fire Insurance in the Informal Sector by considering a sample of 95 traders and 

found out most was found out that majority (50.52%) of the traders did not 

understand the concept of insurance by wrong perception about it but they were 

aware of the causes of fire outbreak and ranked electricity power fluctuations as 

the major cause. The Relevant recommendations have been made for these 

traders and policy makers to strategize in order to have better protection on the 

markets. 

Next, Dare et al. (2009) modelled on Incidents of fire outbreaks during fuel truck 

accidents in Oyo State. They argued that accident explosions have mechanical 

induced activities on the road, with potential costly damages to structures and 

nonstructural property exposed to them, and loss of lives. The objective was to 

determine the various causes of accidents and rollover fire outbreaks in fuel 

trucks in Oyo State, Nigeria in order to properly plan to avoid costly damages to 

structures and non-structural property exposed to them, and loss of lives. 

Using primary data collected from field and secondary data obtained from the 

Nigeria Police, Road Safety Commission and Fire Services Agency. The following 

findings were obtained: from about 358 transport accidents recorded in Nigeria 

between 1999 and 2002, only 33 were due to cars while the rest involved trucks 

and heavy-duty vehicles. The survey showed that about 32 per cent of truck 
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drivers are below 30 years and probably immature. Also 62 per cent of fuel truck 

tanks manufactured are of inferior quality and may thus have been aiding fire 

outbreaks when there is an accident. The study also showed that about 54 per 

cent of tank leakages that may lead to fire outbreak are due to operators’ 

carelessness. The research recommended that more education must be given to 

drivers and adequate legislation for tank manufacturers. 

Again, Ignas et al. modelled on an investigation of provisions of fire safety 

measures in buildings in Dar es salaam. They revealed that one of the major 

causes of damage of constructed facilities in particular buildings in Tanzania is 

fire. Recently, numerous cases of fire outbreaks have caused serious damage to 

buildings and other properties especially in Dar es Salaam. However, the research 

further revealed that fire damages can be significantly reduced if appropriate fire 

prevention and protection measures are taken into account during the design and 

construction stages of buildings. In this manuscript, therefore, observations and 

results of investigation carried out to determine the provisions of fire safety 

measures in the design and construction of buildings in Dar es Salaam are 

presented. It has been established that in some of the buildings investigated, fire 

safety measures have not been adequately provided and in case of fire outbreaks 

serious damages are likely to occur. 

In addition, Keane et al. (2013) also conducted a research on Fire Severity 

Mapping System for Real-Time Fire Management Applications and Long-Term 

Planning. Accurate, consistent, and timely fire severity maps are needed in all 

phases of fire management including planning, managing, and rehabilitating 

wildfires. The problem is that fire severity maps developed from satellite imagery 

are difficult to use for planning wildfire responses before a fire has actually 

happened and can’t be used for real-time wildfire management because of the 

timing of the imagery delivery. The objective of the research was to blend many 

fire severity mapping approaches that will help meet demands from fire and other 
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natural resource managers for accurate and rapid assessment of spatial fire 

severity given time, funding, and resource constraints. 

Also, China fire services in 2012 modelled Fire Risk Assessment of Residential 

Buildings Based on Fire Statistics from China by considering incidence of fire from 

1991 to 2001. From their analysis, it was noted that, the spatial, temporal and 

causal fire incident data for the last six years have been analysed to gain an 

understanding of fire characteristics and the elements affecting fire risks. It was 

found that the number of fires was observed to be higher during cold winter 

months, and fires were more frequent during the weekend. The number of fires 

was lower during night time, whereas the number of fire deaths between 

midnight and 4 a.m. was much higher than at other times of the day. Most fire 

incidents occurred in residential buildings. In economically developed East China, 

the fire situation is much more serious. Electrical failures and improperly fire use 

in daily life were major causes of fire incidents. Based on the statistical data from 

China’s fire services and the China Statistical Yearbook, the risk of occupant 

deaths and the risk of direct property loss are calculated to express the risk level 

in residential buildings. It was found that the risk of occupant deaths had a 

declining trend over the years. Statistics is considered a useful tool for learning 

from the actual events, and it helps decision makers develop proactive fire 

protection measures to reduce fatalities and financial losses caused by fires. 

In 2008, National Research Council Canada conducted a research in Fire risk 

evaluation and cost assessment model and presented building fire risk analysis 

model based on scenario clusters and its application in fire risk management of 

buildings. Building fire risk analysis is a process of understanding and 

characterizing the fire hazards, the unwanted outcomes that may result from the 

fire, and the probabilities of fire and unwanted outcomes occurring. Their 

determination was to evaluate and make a decision about the level of fire risk to 

determine whether to take appropriate risk management measures or not. 
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Therefore, building fire risk analysis serves as a basis for fire risk management. 

In the research, scenario clusters were constructed in the process of building fire 

risk analysis, and the number of deaths and directive property loss are selected 

as building fire risk indexes. Finally, the average fire risk of residential buildings 

was quantified in detail. With the types of detailed fire risk models developed 

here, fire risk management measures could be taken to improve the building fire 

safety grading and reduce fire risk levels and subsequent damage. 

Also Yung and Benichou (2002) studied how design fires can be used in Fire 

Hazard Analysis. Many countries have introduced, or are planning to introduce in 

the near future, performance and aim based codes by the use of engineering 

analysis of fire development and occupant evacuation the performance and aim 

based code were considered and the level of safety provided to the occupants in 

a building by a particular fire safety design were assessed Central to this 

performance based on the approach that was used for a suitable design fires that 

can characterize typical fire growth in a fire compartment. 

The research gave description of what features of design fires needed and how 

they can help analyse fire hazards to the occupants in a building as a result of 

smoke movement, untenable state in the stairs, and occupant response and 

evacuation. 

2.6 Generalized Linear Model 

The generalized linear model (GLM) is a flexible generalization of ordinary linear 

regression that allows for response variables that have error distribution models 

other than a normal distribution. 

The GLM generalizes linear regression by allowing the linear model to be related 

to the response variable via a link function and by allowing the magnitude of the 

variance of each measurement to be a function of its predicted value Generalized 
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linear models were formulated by John Nelder and Robert Wedderburn as a way 

of unifying various other statistical models, including linear regression, logistic 

regression and Poisson regression. They proposed an iteratively reweighted least 

squares method for maximum likelihood estimation of the model parameters 

(Wikipedia). 

Regression is from the Latin root ’re’ and ’gradus’ and littrally translate ’to go 

back’. The general meaning to return to an earlier or more general pattern, fits 

well with the application to mathematics and statistics. The fire use of word is 

usually credited to Sir Francis Galton in 19th century to describe a biology 

phenomenon (Wilson, 2011). 

The phenomenon was that the height of descendants of tall ancestors tends to 

regress down towards a normal average (this phenomenon is also known as 

regression towards the mean) (Mogul, 2004). For Galton, regression had only this 

biological meaning but his work was later extended by Udyny Yule and Karl 

Pearson to a more general statistical context. It is also known that the published 

by Legendre in 1805 and by Gauss in 1809. Legendre and Gauss both applied the 

method to the problem of determining from astronomical observations, orbit of 

bodies about the sun. Gauss published a further development on the theory of 

least square in 1821, including a version of the Gauss Markov Theorem. 

Furthermore, Albert et al. (2013) studied the year effect on the volume of 

Currency in Circulation in Ghana was studied. 

The New Year effect was seen in the Currency in Circulation as the first three 

months of Circulation. The months of January, February and 7.4309, 5.0307 and 

0.2112 percent respectively. The December effect was also seen in the volume of 

Currency in Circulation as the month of had the highest incremental effect of 

(18.6046 
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Also, Alexander (2014) researched in Modelling Apartment Prices with the 

Multiple Linear Regression Model andstudied factors that were of most statistical 

significance for the sales prices of apartments in the Stockholm City Centre. 

Factors considered during his study were area, balcony, construction year, 

elevator, fireplace, floor number, maisonette, monthly fee, penthouse and number 

of rooms. On the basis of this examination, a model for predicting prices of 

apartments is built. In order to evaluate how the factors influence the price, his 

research employed was the multiple linear regression model to analyze sales 

statistics and the mathematical method The result of the research stated that, it 

is possible to construct a model, from the factors analyzed, which can predict the 

prices of apartments in Stockholm City Centre with an explanation degree of 91% 

and a two million SEK confidence interval of 95%. Furthermore, a conclusion can 

be drawn that the model predicts lower priced apartments more accurately. In 

the case-study and literature review, the result indicates support for the 

hypothesis that proximity to public transport is positive for the price of an 

apartment. However, such a variable should be regarded with caution due to the 

purpose of the modelling, which differs between an individual application and a 

social economic application. 

Next, Bhattacharya and Joshi (2001) modelled the Currency in Circulation in India 

using regression model. They argued that the standard currency demand 

equation based on the theory of transactions and portfolio demand for money, 

and the univariate time series models used for modelling Currency in Circulation, 

only work well for low frequency data: their scopes are limited for high frequency 

series. They therefore proposed an alternative approach of modelling Currency 

in Circulation by incorporating day of the month effect. Their estimated equation 

behaved very well for the in and out of sample forecast. 
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Additionally, Bepari and Mollik (2009) employed a combined regression-time 

series model with dummy variable for months to study the monthly effect in 

stock returns of the Dhaka Stock Exchange (DSE). 

The results of their study confirmed the existence of seasonality in stock returns 

but do not support the ’tax-loss-selling’ hypothesis. Instead of ’July or January 

effect’ they found an ’April effect’ in the DSE. 

Moreover, Asante (2012) modelled on regression analysis on Fire Outbreaks in 

Assin North Municipality. The analysis sought to identify the five main cause of 

fire outbreaks (electrical, commercial, domestic, bush fire and institutional) and 

determine its effect on quarterly total number of Fire Outbreaks and develop 

implementation control and precaution system. The study was based on cases in 

Assin North Municipality Fire Outbreaks and covered ten years quarterly period 

from 2001 to 2010. 

During the analytical stages of the project, it was realized that the data obtained 

defined the assumption of the normal distribution. From the analysis, it was 

concluded that, the five variables: electrical, commercial, domestic, bush fire and 

institutional were the best predictors of the quarterly total number of fire 

outbreaks and recommended that there should be intense educational on fire 

outbreak country wide and also urge people that call the fire service helpline to 

fake fire outbreaks to stop in order for Ghana Fire Service to embark on their 

duties professionally and efficiently. 

2.7 Review of Time Series Methods 

2.7.1 Unit Root Tests 

Modelling time series data require the process of checking stationarity of the data. 

On the contrary, most time series data are found to be non-stationary. However, 

Fuller (1976) and Dickey and Fuller (1979) advocates tests (Dickey-Fuller (DF)) 
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test and Augmented Dickey-Fuller (ADF) test) in which a null hypothesis is a non-

stationary process with a unit root and an alternative hypothesis is a trend 

stationary process. 

Numerous methods have been developed for testing unit root. In 1982, Nelson 

and Plosser used the tests developed by Dickey and Fuller to test the economic 

indicators of the American economy. They established a fact that almost all 

economic time series such as the Gross National Product have unit root. 

Furthermore, Phillips and Perron (1988) weakened a strong assumption on the 

error term and extended the Dickey-Fuller test to a more general test (Philips- 

Perron (PP) test). However, the PP-test did not alter the result of Nelson and 

Plosser (1992), even using the same data as Nelson and Plosser (1992). In 1992, 

Kwiakowski et al. also made a vital contribution on unit root test . They developed 

a unit root test that reversed the null hypothesis and alternative hypothesis (KPSS 

test) and verified that only half of the economic time series had unit root using 

the same data set as Nelson and Plosser (1992). 

Furthermore, Christiano (1992) criticised Perron’s exogenous treatment of a 

structural change and devised a method with which structural changes with a 

drift term and a trend can be detected endogenously and proposed a test whose 

null hypothesis is a unit root process without a structural change and whose 

opposing hypothesis is a stationary process with a structural change. 

Again, another test whose null hypothesis is a unit root process without any 

change in a drift term and whose alternative hypothesis is trend stationary 

process with a structural break was proposed by Zivot and Andrews (1992). This 

proposed test can detect a time point of a structural change endogenously and its 

asymptotic distribution is constant regardless of the time points of structural 

changes. 

Dickey et al. (1984) following the methodology suggested by Dickey and Fuller 
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(1979) for the zero-frequency unit-root case, proposed the Dickey, Hasza and 

Fuller (DHF) test to test for seasonal unit root. The DHF test only allows for unit 

roots at all of the seasonal frequencies and has an alternative hypothesis which is 

considered rather restrictive, namely that, all the roots have the same modulus. 

Trying to overcome these drawbacks Hylleberg et al. (1990) propose a more 

general testing (HEGYs test) strategy that allows for unit roots at some (or even 

all) of the seasonal frequencies as well as the zero frequency. HEGY’s 

methodology allows testing for unit roots at some seasonal frequencies without 

maintaining that unit roots are present at all seasonal frequencies. 

Finally, Banerjee et al. (1992) proposed three kinds of unit root tests. Firstly, a 

recursive test that is extended on the basis of a structural stability test of Brown 

et al. (1975) which uses recursive residuals. Secondly, a rolling test that shifts a 

partial testing period successively among the whole sample period and thirdly a 

sequential test that conducts t-tests or Quandt likelihood ratio tests while shifting 

a time point of a structural change among the whole sample. 

2.7.2 Overview on Time Series Methods 

In the mid 1920s time series began to be treated in stochastic sense (Gottman, 

1981). Yule (1927) first came out with an Autoregressive (AR) model when 

working on wolfer’s sunspot data and in 1927 Slutzky also firstly developed a 

Moving Average (MA) model when studying a white-noise series. Box and Jenkins 

(1970) developed the Autoregressive Moving average (ARMA) model and gave a 

full account of the Integrated Autoregressive Moving average (ARIMA) model. 

Also, a theorem to estimate the AR (p) parameters by the least squares method 

was proved by Mann and Wald (1943). For simplicity, Quenouille (1947) 

presented a test for AR (p) models and far along extended to MA models. 
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Furthermore, Anderson (1971) developed a procedure to estimate the order of 

the AR model as well as the AR parameter. 

Moreover, a non-linear least squares technique procedure that resulted in 

developing technique of approximated likelihood solution for ARMA (p, q) models 

was developed by Box and Jenkins (1970). In addition, the parameter estimation 

for Moving Average model of order q and for Autoregressive Moving Average of 

order p and q models was developed by Newbold (1970). The Box-Pierce 

statistics was developed by Box and Pierce (1970) and modified by Ljung and Box 

(1978). 

Again, Akaike (1974) proposed an information criterion to assist in the selection 

of an ARIMA model and concluded that a model with the smallest Akaike 

Information Criterion (AIC) is the best model to have minimum forecast mean 

square 

errors. 

Also in 1978, Schwarz indicated that AIC was not consistent when probability 

approaches one, and proposed a Bayesian Information Criterion (BIC). 

Moreover, Harvey and Phillips (1979) developed an exact likelihood procedure to 

estimate parameters of an ARIMA model in State-Space form. The State-Space 

models are also called Structural Time Series (STS) models. Many researchers 

have pointed out the advantages of the State-Space form over the ARIMA models 

(Durbin and Koopman, 2001). A time series might be characterised with trend, 

seasonal cycle and calendar variations, together with the effects of explanatory 

variables and interventions. These components can be processed separately and 

for different purposes for a State-Space model. 

On contrary, the Box-Jenkins ARIMA model is a black-box model, which solely 

depends on the data without knowledge of the system structure that produces 
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the data. The second advantage is the recursive nature of the State-Space model 

that obviously allows change of the system overtime, while ARIMA models are 

homogenous through time, based on the stationary assumption. 

In 1982 Eagle came out with another important contribution in the area of time 

series analysis when he introduced the Autoregressive Conditional 

Heteroscedasticity (ARCH) model, to model changing volatility. The non-linear 

term is the variance of the disturbance. An extension of the ARCH model to the 

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model was 

made by Bollerslev (1986). 

Again, Weiss (1984) proposed an ARMA-ARCH model, in which an ARMA model 

is used to model mean behaviour and an ARCH model to model the residuals of 

the ARMA model. The quasi-maximum-likelihood method is used to estimate 

model parameters. 

Furthermore, Nasiru and Sarpong (2012) modelled the pattern of reserve money 

growth in Ghana of which the Currency in Circulation forms an integral part of it. 

Box-Jenkins methodology was used in their study and an appropriate seasonal 

ARIMA model for the reserve money growth was identified. Their result exhibited 

that there was a decrease in the pattern of the reserve money from September, 

2010 and a continuous surge from the middle of the year 2011 to December, 2012. 

They made recommendation that both government and policy holders should 

slow down the growth rate of the reserve money because this could lead to an 

increasing inflation thus high prices of commodities in the country. 

In addition, Nasiru (2013) researched on Modelling of Currency in Circulation in 

Ghana. The Currency in Circulation was monthly data obtained from the Bank of 

Ghana database and modelled using both SARIMA model and Regression model 

with ARIMA errors. The results revealed that ARIMA(0,1,1)(0,1,1)12 model was 

the best SARIMA model for the Currency in Circulation. This model has the least 
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AIC of -372.16, AICc of -371.97 and BIC of -363.53. Also, regression model with 

ARIMA (0, 0, 1) errors was identified as the best regression model with ARIMA 

errors. This model has an AIC of -417.39, AICc of -416.57 and BIC of -396.60. 

Diagnostic checks of both models with the Ljung-Box test and ARCHLM test 

revealed that both models are free from higher-order serial correlation and 

conditional heteroscedasticity respectively. A comparative analysis of the 

forecasting accuracy of these models with the Diebold-Mariano test revealed that 

there is no significant difference in the forecasting performance of the two 

models. The two models were therefore proposed for predicting Currency in 

Circulation in Ghana. However, the Currency in Circulation is volatile and subject 

to several unobservable developments in the economy. 

Therefore continuous monitoring of the forecasting performance of these models, 

review of market conditions and necessary adjustments are required to make the 

use of these models more realistic. 

Also, Cabrero et al. (2002) modelled the daily series of bank notes in circulation 

in the context of managing the European monetary system. Empirical models in 

that paper relied on two liquidity forecasting approaches; seasonal ARIMA 

method and Structural Time Series (STS). Cabrero et al. (2002) noted that the 

error in forecasting banknotes in circulation never exceeded one billion Euros in 

both models and they concluded that econometric models are able to explain an 

important part of the variation in the Currencies in Circulation. 

Furthermore, Lang et al. (2008) modelled the currency outside banks in Croatia 

using regression analysis. They fitted two regression equations to the series. They 

fitted a regression model based on the first difference of the series and a 

regression model with the residuals having an Autoregressive Integrated Moving 

Average (ARIMA) structure. They compared these models with the naive model 

which assumes no change in the level of currency in the future, as well as the staff 
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forecast created by the liquidity forecast division of the Croatia National Bank 

(Expert). Both models outperformed the naive model, due to strong seasonality 

of the series. Also, both statistical models slightly outperformed the Expert model 

in 2005. With the two models, the regression model gave the best short term 

forecasts up to five days ahead while the ARIMA model outperformed it at the 

long horizon. 

Also, Dheerasinghe (2006) modelled on an impact in Currency in Circulation by 

forecasting the Currency in Circulation based on daily, weekly and monthly data 

for the period 2000 to 2005 in Sri-Lanka. Dheerasinghe (2006) captured trend 

and seasonal effects by regressing on trend and seasonal dummies. Cyclical 

dynamics were captured by allowing for Autoregressive Moving Average (ARMA) 

effect in the regression disturbances. The forecast produced by all the three 

models accurately match the shape of the monthly, weekly and daily oscillations, 

and capture the trend, seasonal and cyclical effects. Post sample estimation errors 

of the models were small and remained less than one percent in all models. All 

the three models clearly identified both inter-month and intra-month variations 

of Currency in Circulation. The forecast based on the daily and monthly models 

performed very well, predicting similar results and were close to realised data 

when used within sample. 

Also, Liu (1980) studied the effect of holiday variation on the identification and 

estimation of ARIMA models. He suggested modifications of ARIMA models by 

including holiday information as deterministic input variable(s) and used the 

monthly highway traffic volume in Taiwan as a case study. 

Another contribution to the study of Currency in Circulation was made by 

Simwaka (2006). He studied the determinants of Currency in Circulation in 

Malawi using regression analysis. He first fitted a regression model using annual 
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data and then fitted a second model using monthly data in order to capture some 

seasonal factors affecting the Currency in Circulation. 

The model fitted with the monthly data captured seasonal variable such as the 

tobacco market season and Christmas effect on Currency in Circulation. Also, the 

effects of ATM cards and smart card were captured in this model. Simwaka (2006) 

also employed the Augmented Dickey-Fuller (ADF) test to test for the stationarity 

of all the series before fitting the regression model. The model estimated in this 

study followed the standard demand for money model that includes the 

traditional variables such as the real interest rates, Gross Domestic Product 

growth, inflation and a measure of financial deepening. Instead of using the 

nominal value of the Currency in Circulation as the dependent variable, the 

Currency in Circulation per money stock ratio was used. 

2.8 Overview of Insurance and Premium 

The history of insurance is probably as old as the story of human. The same 

instinct that prompts modern businessmen today to secure themselves against 

disaster and loss existed in primitive men also. They most at times sought to avert 

the evil consequences of flood and fire and loss of life, and eager to make some 

sort of sacrifice in order to achieve security(Scribed, 2011). 

Insurance is planned to meet the financial status of a company, individual and 

other entity in the case of unexpected losses. The agreement terms between an 

insured and the insurer create an insurance policy. In exchange for premium 

payments from the insured, the insurer agrees to pay the policyholder 

compensation upon the occurrence of a specific event (Gart, 1990). 

Insurance Premium is the sum of money that the insured will be paid to the 

insurer in the exchange of taking the risk from the insurer. The amount of money 

to be charged for a certain amount of insurance coverage can be a term insurance, 
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deferred insurance, and a whole life insurance. Insurance is a pooling of risks and 

based on the premise that whereas many people will pay premiums to the 

insurance company, probably only a few will make claims. Part of the payment of 

the many is used to pay compensation to the few who suffer losses (Troxel and 

Comick, 1983). 

Conceptually, insurance is a devise whereby many individuals facing the same 

risk form a pool into which each individual contributes premiums, and out of 

which the few who actually suffer unforeseen and unexpected losses are 

compensated. Moreover, Fire insurance is a specialized form of insurance beyond 

property insurance, and is designed to cover the cost of replacement, 

reconstruction or repair beyond what is covered by the property insurance 

policy. Policies cover damage to the building itself, and may also cover damage to 

nearby structures, personal property and expenses associated with not being able 

to live in or use the property if it is damaged (Investopedia). 

Yaohua et al. (2002) modeled on the Calculating Method of Insurance Premium of 

Residential Mortgage Loan and noted that residential mortgage loan insurance 

are developing very rapidly in current years. However, there are still some 

inevitable risks, how to calculate insurance rate has been a magnitude task for 

insurance companies. Based on discrimination between residential mortgage 

loan insurance and other insurances, the research analyzed an insurance 

structures of United States and found that insurance institute in USA can often 

establish its corresponding insurance structure (include insurance payment 

mode, number of insurance rate, disposal method when pre-payoff) according to 

client’s specific circs (such as sum of loan, term of loan, loan to value), so the 

controlling of risk of regional mortgage loan insurance is become easy, the rights 

and interests of insurance institute can be well protected. Moreover the research 

present a new calculating method that can calculate insurance premium in 

different insurance structures by using expected return equals the expected loss, 
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the excellence of this method was that we can calculate insurance premium in 

different circs if we have related parameters (such as default rate, pre-payoff 

rate); it’s shortcoming was that these parameters are not easy to get, and so we 

must often change insurance premium because these parameters often change 

along with time. 

Furthermore, Yu (2015) also modelled on Hierarchical Bayesian Modeling of 

Health Insurance Claims and the objective of the thesis was propose a statistical 

model for health insurance total claim amounts classified by age group, region of 

residence and time horizon of the insured population under Bayesian framework. 

This model can be used to predict future total claim amounts and thus to facilitate 

premium determination. The future is based on the past observed information 

and prior beliefs about the insured population, number of claims and amount of 

claims. The insured population growth is modelled by a generalized exponential 

growth model (GEGM), which takes into account the random effects in age region 

and time classifications. Based on the predicted values, the premiums are 

estimated using four premium principles and two risk measures. 

Again, Brisard (2014) modelled on Pricing of Car Insurance with Generalized 

Linear Models. The argument was that tarification is a difficult exercise since 

different explanatory variables are available and often a long history preceeds the 

analysis, therefore. He noted that when pricing premium the following factors 

must be considered; claim frequency, claim severity and Generalized linear 

models is very efficient to predict important ratios, like the claim frequency, claim 

severity and pure premium. 

2.9 Conclusion 

The chapter dealt with reviewing of literature that is relevant to the study. 

Reviewing of the literature has exposed us to the diverse techniques that 



 

33 

researchers have employed in modelling the Fire Outbreaks. However, among the 

diverse techniques reviewed the Seasonal Autoregressive Integrated Moving 

Average model was employed in this study to model the Fire Outbreaks because 

they were the techniques used frequently in literature.  
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CHAPTER 3 

Methodology 

3.1 Introduction 

This chapter deals with the data and statistical techniques that were employed in 

order to achieve the objectives of the study. The chapter is divided into eight main 

headings namely; data and source, regression analysis, Box and Jenkins time 

series methodology, unit root test, autoregressive integrated moving average 

model, model selection criteria, model diagnostics and modelling insurance 

premium. 

3.2 Data and Source 

In order to achieve the objectives of this study, secondary data on monthly fire 

outbreaks and was obtained from the Ashanti Regional Fire Station database. 

The data consists of monthly fire outbreaks from January, 1997 to August, 2014. 

The Computational Software employed to analyze the data were R, Minitab and 

Gretl. 

3.3 Regression Analysis 

The concept of regression analysis is to explain the variation in an outcome or 

response variable using one or more predictor variables. The end result of a 

regression analysis is often to generate a model that can be used to predict future 

values of the response variable given specified values of the predictor variables. 

When the model involves a single predictor variable, the model is referred to as 

simple linear regression model. The simple linear regression model is given by 

 Y = β0 + β1X + ε (3.1) 
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where Y is the response, X is the predictor variable, β0 and β1 are unknown 

parameters and ε is an error term. The model parameters, β0 and β1 have physical 

interpretation as the intercept and slope of straight line respectively. When the 

simple linear regression model is extended to include additional predictor 

variables say k predictors, then we have the multiple linear regression model. The 

multiple linear regression model is given by 

 Y = β0 + β1X1 + β2X2 + ··· + βkXk + ε (3.2) 

The parameters β0, β1, β2,···, βk in this model are called the partial regression 

coefficients because they convey information about the effect on Y of the 

predictor that they multiply given that all other predictors in the model do not 

change. In the theoretical model, many assumptions are made about the predictor 

variables and the error term. This model is said to be linear because it is a linear 

function of the unknown parameters; β0, β1, β2,···, βk. In the theoretical model, 

many assumptions are made about the predictor variables and the error term. 

When these assumptions are satisfied, the estimators are unbiased and have the 

minimum variance property. Some of these assumptions of the regression model 

are; 

i. εi is a random real variable. 

ii. The mean value of εi in any particular period is zero. 

iii. The variance of εi is constant in each period. iv. The 

variable εi has a normal distribution. 

v. The random term of different observations (εi, εj) are independent. 

vi. The predictor variables are not perfectly linearly correlated. 
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Least Square Estimation method of least square may be used to estimate the 

regression coefficients in the multiple regression model. 

Given 

yi = β0 + β1Xi1 + β2Xi2 + ··· + βkXik + εi 

This can also be simplified as 

k 

 yi = β0 + XβjXij + εi for i = 1,2,··· ,n 
j=1 

The least square function is 

 n n k 

L = Xε2i = X(yi − β0 − XβjXij)2 

 i=1 i=1 j=1 

Minimizing L with respect to β0, β1, β2,···, βk. The Least Square estimate of β0, β1, 

β2,···, βk must satisfy 

, for i = 1,2,··· ,k 

3.4 Trend Analysis 

Many financial and economic time series data exhibit trend. It is therefore 

imperative to investigate what the nature of the trend is. A trend is a slow, long-

run, evolution in the financial or economic variable (Dheerasinghe, 2006). Thus, 

the trend reflects the long-run growth or decline in the time series. The trend in 

a time series data may appear as a linear function of time, non-linear function of 

time or the trend may be characterised by a constant growth rate. If the trend in 

the time series is a linear function of time t, then 
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 Yt = β0 + β1t + ε (3.3) 

where Yt are the observations of the time series, t is a time dummy (t = 1,2,··· ,n− 1,n) 

and εt is a random error component. 

Sometimes, the series may exhibit a quadratic trend or the nature of the trend 

may be a polynomial of higher order say k. If the trend is quadratic, then 

 Yt = β0 + β1t + β2t2 + ε (3.4) 

For a polynomial of order k 

 Yt = β0 + β1t + β2t2 + ··· + βktk + ε (3.5) 

If the trend is characterised by a constant growth rate, then the equation is 

 Yt = βeβ1tεt (3.6) 

In logarithmic form 

 lnYt = lnβ0 + lnβ1t + lnεt (3.7) 

If the constant growth rate is quadratic, then 

 lnYt = lnβ0 + lnβ1t + lnβ2t2 + lnεt (3.8) 

The coefficients appearing in the equations (3.3) to (3.8) above are obtained by 

applying the principles of Ordinary Least Squares. 
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3.5 Box and Jenkins Time Series Methodology 

Box and Jenkins was named after the statisticians George Box and Gwilym Jenkins. 

Box and Jenkins Analysis refers to a systematic method of identifying, fitting, 

checking, and using integrated autoregressive, moving average (ARIMA) time 

series models. The method is appropriate for time series of medium to long 

length. The first stage is the identification of the appropriate ARIMA models 

through the study of the autocorrelation and partial autocorrelation functions. 

The next step is to estimates the parameters of the ARIMA model chosen. The 

third step is the diagnostic checking of the model. The Ljung Test, ARCH-LM Test 

and CUSUM Test are used for the model adequacy check. If the model is not 

adequate then the forecaster goes to stage one to identify an alternative model 

and it is tested for adequacy and if adequacy then the forecaster goes to the final 

stage of the process. The fourth step is where the analysis uses the model chosen 

to forecast and the process ends. 

The Figure in 3.1 below is the diagrammatic representation of Box -Jenkins pro- 

cess. 

3.6 Unit Root Test 

A very important aspect of time series analysis is to ensure that the data is weakly 

stationary. A weakly stationary time series is one whose first and second 

moments are invariant of time. That is, the expected value of the time series does 

not depend on time and the autocovariance function, cov(yt,yt+k) for any lag k is 

only a function of k and not time, that is γy(k) = cov(yt,yt+k). 

Many methods have been proposed for testing for stationarity of a time series 

data. These include both graphical and quantitative methods. The graphical 

approach includes observing the Autocorrelation function (ACF) plots. A strong 

and slow dying ACF will suggest deviation from stationarity. For the purpose of 

this study, in addition to the ACF, two quantitative techniques for testing 
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Figure 3.1: Box and Jenkins Process 

for unit root were employed. These are; the Augmented Dickey-Fuller test and 

Kwiatkowski-Phillips-Schmidt-Shin test. 

3.6.1 Augmented Dickey-Fuller (ADF) Test 

The ADF test proposed by Dickey and Fuller (1979) was an improvement of the 

Dickey-Fuller (DF) test. The test is based on the assumption that the series follows 

a random walk. Consider an autoregressive process of order one, AR(1), below 

 Yt = φYt−1 + εt (3.9) 

where εt denotes a serially uncorrelated white noise sequence with a mean of zero 

and constant variance. If φ = 1, equation (3.9) becomes a random walk model 
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without drift, which is known as a non-stationary process. The basic concept of 

the ADF test is to simply regress Yt on its lagged value Yt−1 and find out if the 

estimated φ is statistically equal to one or not. Equation (3.9) can be manipulated 

by subtracting Yt−1 from both sides to obtain 

 ∆Yt = δYt−1 + εt (3.10) 

where δ = φ − 1 and ∆Yt = Yt − Yt−1. In practice instead of estimation equation (3.9), 

we rather estimate equation (3.10) and test for the null hypothesis of δ = 0 against 

the alternative δ 6= 0. If δ = 0, then φ = 1, meaning that the series have a unit root. 

Under the null hypothesis δ = 0, the t-value of the estimated coefficient of Yt−1 does 

not have an asymptotic normal distribution (Erdogdu, 2007). 

The decision to reject the null hypothesis or not is based on the DF critical values 

of the τ-statistic. The DF test is based on the assumption that the error terms are 

uncorrelated. However, the errors of the DF test usually show evidence of serial 

correlation. In order to overcome this problem, the ADF test includes the lags of 

the first difference series in the regression equation to make the error term white 

noise and therefore the regression equation is presented in the following 

form 
p 

 ∆Yt = δYt−1 + Xγi∆Yt−1 + εt. (3.11) 
i=1 

To be more specific, the intercept may be included as well as time trend t, after 

which the model becomes 

p 

 ∆Yt = α + βt + δYt−1 + Xγi∆Yt−1 + εt. (3.12) 
i=1 
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where α is a constant, β the coefficient on time trend series,  is the 

sum of the lagged values of the dependent variable ∆Yt and p is the lag order of 

the autoregressive process. The parameter of interest in the ADF test is δ. For δ = 

0, the series contains unit root and hence non-stationary. The choice of the 

starting augmentation order depends on; data periodicity, significance of yi 

estimates and white noise residuals. After preliminary estimation, non-significant 

parameter augmentation can be dropped in order to enjoy more efficient 

estimates. The test statistic for the ADF test is given by 

 

where SE(δˆ) is the standard error of the least square estimate of δˆ. The null 

hypothesis is rejected if the test statistic is greater than the critical value. 

3.6.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

This is complementary test for investigating the order of integration of a series Yt 

and Yt is to test H0 : Yt ∼ I(0), thus the data generating process is stationary against 

the alternative H1 : Yt ∼ I(1) that it is non-stationary. Kwiatkowski et al. (1992) 

derived a test for this pair of hypotheses by assuming that there is no linear trend 

term therefore the point of departure is a data generating process of the form 

Yt = Xt + εt 

where Xt is a random walk and Xt = Xt−1 + vt, vt ∼ iid(0,σv2) and εt is a white noise 

sequence. In this context, the foregoing pair of hypotheses is equivalent to the 

pair; 

 

. 
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If H0 holds, Yt is composed of a constant and the stationary process εt. Kwiatkowski 

et al. (1992) proposed the following test statistic 

KPSS =  

where T is the number of observations,  with and ˆσ∞2 

is a Hac estimator of 

! 

That is, ˆσ∞2 is an estimator of the long-run variance of the process εt. If Yt is a 

stationary process, St is integrated of order one (I(1)) and the quantity in the 

denominator of the KPSS statistic is an estimator of its variance, which has a 

stochastic limit. The term in the denominator ensures that overall; the limiting 

distribution is free of unknown nuisance parameters. If, however, Yt is integrated 

of order one (I (1)), the numerator will grow without bounds, causing the statistic 

to become large for large sample sizes. The null hypothesis of stationarity is 

rejected for large values of KPSS. 

3.7 Autoregressive Integrated Moving Average 

(ARIMA) Model 

An ARIMA model is a concatenation of Autoregressive (AR) model which shows 

that there is a relationship between present and past values, a random value and 

a Moving Average (MA) model which shows that the present value has something 

to do with the past shocks. It is called integrated because the stationary 

Autoregressive Moving Average (ARMA) model that is fitted to the differenced 

data has to be integrated to provide a model for a non-stationary data. A time 
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series is said to be integrated if it has to be differenced d times to make it 

stationary and is denoted I (d). 

3.7.1 pth- Order Autoregressive (AR (p)) Model 

A time series variable follows an AR process if the current value depends on its 

past values. That is, the future of the series can be predicted using its past values. 

A general pth- order AR model denotes as AR (p) is given as 

 Yt = φ1Yt−1 + φ2Yt−2 + ... + φYt−p + εt (3.13) 

where εt is a white noise process and φi are constants, i = 1,2,...,p. Using the lag 

operator, the model can be written as 

 Φ(L)Yt = εt (3.14) 

where Φ(L) = 1 − Φ1L − Φ2L2 − ... − ΦpLp. 

The AR (p) time series {Yt} is stationary if the roots of the associated polynomial 

mp − φ1mp−1 − φ2mp−2 − ... − φp are less than one in absolute value. 

3.7.2 qth-Order Moving Average (MA (q)) Model 

A time series {Yt} is said to follow a Moving Average process if its current values 

depends on its past shocks. That is the forecast values of the series depends on 

the past errors. Thus, a Moving Average process of order q (MA (q)) is given as 

 Yt = εt − θ1εt−1 − ··· − θqεt−q (3.15) 
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where εt is white noise and θj are constants, j = 1,2,...,q. MA (q) process is always 

stationary regardless of values of the weights. In terms of the lag operator, the MA 

(q) process is 

Yt = (1 − θ1L − θ2L2 − ... − θqLq (3.16) 

 
= 

 
(3.17) 

 = Θ(L)εt (3.18) 

where Θ = (1  

3.7.3 Autoregressive Moving Average (ARMA) Model 

ARMA model is a concatenation of the AR and MA model of order p and q 

respectively. In general, an ARMA (p,q) model is given as 

 Yt = φ1Yt−1 + φ2Yt−2 + ... + φY t − p + ε − θ1εt−1 − ··· − θqεt−q (3.19) 

where φi and θj are parameters of the autoregressive and moving average 

components respectively, i = 1,2,··· ,p and j = 1,2,··· ,q. The stationarity of an ARMA 

process is related to the AR component in the model and can be checked through 

the roots of the associated polynomial. If all the roots are less than one in absolute 

value, then ARMA (p,q) is stationary. 

3.7.4 Seasonal ARIMA (SARIMA) Model 

The strong periodic patterns exhibited in a time series data is often referred to as 

seasonal behaviour in the time series and when this happens the ARIMA model 

becomes inefficient because it may not be able to capture the behaviour along the 

seasonal part of the series which result in wrong order selection for non-seasonal 

component. An extension of an ARIMA model is known SARIMA model which 
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capture both seasonal and non-seasonal behaviour. The SARIMA model denoted 

by ARIMA(p,d,q)(P,D,Q)s can be expressed using the lag operator as (Halim and 

Bisono, 2008); 

φ(L)Φ(Ls)(1 − L)d(1 − Ls)DYt = θ(L)Θ(Ls)εt 

φ(L) = 1 − φ1L − φ2L2 − ... − φpLp 

Φ(Ls) = 1 − Φ1Ls − Φ2L2s − ... − ΦP LPs θ(L) = 1 − 

θ1L − θ2L2 − ... − θqLq 

Θ(Ls) = 1 − Θ1Ls − Θ2L2s − ... − ΘQLQs 

where 

p,d,q are the orders of non-seasonal AR, differencing and MA respectively 

P,D,Q are the orders of seasonal AR, differencing and MA respectively Yt 

represent the time series data at period t, 

s represent the seasonal order, L 

represent the lag operator and 

εt represent white noise error at period t. 

3.8 Model Selection Criteria 

When fitting models, there is the tendency of two or more models competing and 

for that reason it is appropriate to use good model selection criteria to select the 

most adequate model. In this study, the Akaike Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC) were the measures of goodness of fit 



 

46 

that were employed to select the most adequate model. For a given data set, 

several competing models may be ranked according to their AIC, or BIC values 

with the one having the lowest information criterion value being the best. The 

information criterion attempts to find the model that best explains the data with 

a minimum of free parameters but also includes a penalty that is an increasing 

function of the number of estimated parameters. This penalty discourages over 

fitting (Aidoo, 2010). In the general case, the AIC, and BIC are given by; 

 

where 

k is the number of parameters in the statistical model, RSS is 

the residual sum of squares of the estimated model, 

n is the number of observations in the data, 

σe2 is the error variance. 

3.9 Model Diagnostics 

In order to use any developed model to draw any meaningful conclusion or make 

generalisation, it is important to diagnose the model to see whether there is 

concordance of the model with the real world observations. Thus, we employed 

the Ljung-Box, ARCH-LM and the CUSUM test in diagnosing the developed 

models. 
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3.9.1 Ljung-Box Test 

One of the major problems that a researcher is likely to encounter in fitting time 

series models is serial correlation. That is, temporal dependency between 

successive values of the model residuals. In this study, the Ljung-Box test 

proposed by Ljung and Box (1978) was used for testing the assumption that the 

residuals contain no serial correlation up to any order k. The test procedure is as 

follows; 

H0 : There is no serial correlation up to orderk H1 : 

There is serial correlation up to orderk. 

The test statistic is given by; 

 

where rk2 represent the residual autocorrelation at lag k, T is the number of 

residuals, m is the number of time lags included in the test. 

When the p-value associated with Qm is large, the model is considered adequate 

else the whole estimation process has to start again in order to get the most 

adequate model. 

3.9.2 ARCH-LM Test 

The issue of conditional heteroscedasticity is one of the key problems that a 

researcher is likely to encounter when fitting models. This happens when the 

variance of the residuals is not constant. To ensure that the fitted model is 

adequate, the assumption of constant variance must be achieved. The ARCHLM 

test proposed by Engle (1982) was used to test for the presence of conditional 

heteroscedasticity in the model residuals. The test procedure is as follows; 
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H0 : There is no heteroscedasticity in the model residuals H1 

: There is heteroscedasticity in the model residuals. 

The test statistic is 

LM = nR2 

where n is the number of observations and R2 is the coefficient of determination 

of the auxiliary residual regression. 

 

where et is the residual. The null hypothesis is rejected when the p-value is less 

than the level of significance and is concluded that there is heteroscedasticity. 

3.9.3 CUSUM Test 

Another important way to check a model is to investigate its stability overtime. 

The CUSUM test proposed by Brown et al. (1975) was used to test the stability of 

the models developed. The test statistic is given by; 

 CUSUM   

where ˆ  are the recursive residuals and ˆσu is the standard error of the 

regression fitted to all T sample points and τ = K + 1,··· ,T. If the CUSUM wanders 

off too far from the zero line, then there is evidence of structural instability of the 

underlying model. A test with a significance level of 5% is obtained by reject- 

ing stability if CUSUMτ crosses the lines  (Ploberger 

et al., 1989). This test is designed to detect a non-zero mean of the recursive 

residuals due to shift in the model parameters. 
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3.10 Modelling Insurance Premiums 

Insurance is a promise of compensation for specific potential future losses in 

exchange for a periodic payment (Rejda, 1992). In analysis of risk of catastrophic 

event an insurer uses the exponential distribution with mean µ as the distribution 

of the time until the event occurs. However, the third objective based on 

equivalence principle of a semi-continuous level month benefit premium for a 

unit fire insurance payable immediately fire occur at time ’t’ where x will be the 

month of inception into the fire policy. The following assumptions were made for 

the premium calculations; 

Let S1,S2,S3,... be the count of sequential arrival of fire outbreaks which we assume 

is Poisson distributed. The count differences X1,X2,X3,... correspond to inter-arrival 

duration and these are positive random variables defined in terms of the count 

arrivals by X1 = S1 and Xi = S1 −Si−1 for I > 1. These inter-arrival duration follows an 

exponential distribution. 

Moreover, total loss (Y ) by fire is given as 

 Y = S1 + S2 + ··· + SN (3.20) 

where 

N is a random variable and represent frequency of fire loss and 

Sk is the individual losses in the risk portfolio and represent severity. 

Therefore 

 Y = N · E[X/N] (3.21) 

Alternatively, 

Y = X1 + X2 + ··· + XT 
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where 

T represent frequency in the durational time and is continuously distributed, 

X represent severity in the duration T. 

Also, 

Y = T · E[X/T] (3.22a) 

 E[Y ] = E[T] · E(E[X/T]) (3.22b) 

 = E[T] · E[X] (3.22c) 

Equation (3.22c) is indicating the product of frequency and severity, 

where, by assumption, 

 is exponentially distributed) and 

E[X] is assumed to correspond to a uniform distribution (level benefit). 

Furthermore, let present value for GH 1 be denoted by V T . Therefore the Actuarial 

Present Value (APV) can be expressed as 

 ]

 (3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

Note that the model (3.23d) closely resembles temporary life insurance, where 

’age x’ correspond to inception month and θ is the average number of fire 
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outbreaks in a month and µ play the role of an instant force of mortality while µ = 

1θ is average time until fire occurs. 

Henceforth, because of the apparent resemblance, we shall use the corresponding 

notation of a temporary life insurance model in our fire premium calculation. 

The premium calculation was based on semi-continuous insurance model 

because premiums are paid monthly and benefits are received immediately fire 

occurs, by equivalence principle, premium for semi -continuous level 12-monthly 

benefit for a unit temporary fire insurance payable immediately fire occurs is 

denoted by equivalence principle, premium for semi -continuous level 12-

monthly benefit for a unit temporary fire insurance payable immediately fire 

occurs is denoted by; 

P(A¯1 ) and is such that 
x:12 

A¯x1:12 − P(A¯x1:12 )a¨x:12 = 0 

A¯1 

 ⇒ P(A¯x1:12 ) = a¨xx::1212 (3.24) 

where 

Z 12+x 
A¯1 = e−δtµe−µtdt (3.25a) x:12 x 

Z 12+x 

 = µ e−(δ+µ)tdt (3.25b) 
x 

Z 12+x 

 = µ e−(δ+µ)tdt (3.25c) 
x 
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1 − A¯1 

 a¨x:12 = x:12 (3.26) 

d 

i 

 δ(t) = ln(1 + ) (3.27) 

12 
i(1 + i)−1 

 d = (3.28) 

12 

 indicates the actuarial present value of a 12-month term 

insurance policy of fire benefit of 1 payable immediately after fire occurs. 

a¨x:12 is an annuity due per month for fire policy. δ(t) is the force of interest. 

However, for these insurance policies there would be no economic incentive for 

the insurance policyholder to pay premium for more than 12 months, since at that 

moment no additional future benefit is possible. 

3.11 Conclusion 

The chapter dealt with the statistical techniques employed in this study. It 

presented the techniques in a clear, precise and concise manner.  
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CHAPTER 4 

Analysis and Discussion of Results 

4.1 Introduction 

This chapter analyses, discusses and interprets the results obtained from the 

study. The chapter is organized into preliminary analysis, further analysis and 

discussion of results. 

4.2 Preliminary Analysis 

This section explains the descriptive statistics of the data on Fire Outbreaks in 

Ashanti Region of Ghana. The maximum (Max) and minimum (Min) values for the 

Fire Outbreaks for the entire period were 218 and 18 respectively as shown in 

Table 4.1. Also, the Fire Outbreaks for the entire period was positively skewed 

and leptokurtic in nature with the average and coefficient of variation (CV) being 

54.17 outbreaks and 52.95% respectively. 

Table 4.1: Descriptive Statistics for Fire Outbreak 

Variable Mean Min Max CV (%) Skewness Kurtosis 

Fire Outbreaks 54.17 18.00 218 52.95 2.03 6.37 

An exploration of the Fire Outbreaks for the various months indicates that, the 

highest average outbreak of Fire occurred in the month of January and the least 

average occurred in the month of September as shown in Table 4.2. In terms of 

the maximum and minimum fire occurrences, January and June had the highest 

and lowest values respectively. The month of January has the largest variability 

followed by April as shown by their coefficient of variations (CV) in Table 4.2. 

Again, it was observed that the occurrence of fire for each month were positively 

and negatively skewed and leptokurtic and platykurtic in nature. 

Table 4.2: Monthly descriptive statistics for Fire Outbreak 

Month Mean Min Max CV (%) Skewness Kurtosis 
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January 97.6 39.00 218.00 47.89 1.15 1.13 

February 92.44 53.00 150.00 30.02 0.52 -0.43 

March 68.11 38.00 99.00 25.57 0.00 -0.90 

April 49.28 22.00 79.00 37.25 0.35 -1.08 

May 42.78 21.00 61.00 30.00 -0.01 -1.45 

June 38.56 18.00 73.00 36.68 0.87 0.68 

July 38.44 21.00 62.00 30.51 0.66 0.10 

August 39.17 19.00 63.00 33.46 0.41 -0.74 

September 37.24 19.00 57.00 30.63 1.28 -0.67 

October 43.41 29.00 75.00 35.80 1.27 0.04 

November 44.71 28.00 69.00 29.87 0.59 -0.75 

December 56.41 25.00 85.00 29.45 0.11 -0.56 

The time series plot of the fire outbreak shows that the Fire Outbreak increase 

and decrease exponentially as shown in Figure 4.1. 

 

Figure 4.1: Time series plot of Fire Outbreak 

The residual seasonality is obviously shown in the residual correlogram of the fire 

model in Figure 4.2 and the Durbin-Watson (0.813031) suggests serial 

correlation in errors. The following spikes 12, 24, 36 and 48 were significant at 

the seasonal displayed in the residual sample autocorrelation function. The 

residual partial autocorrelation function also showed significant spikes only at 

seasonal lag 12. The estimated Ljung-Box statistic of 349.027 with a p-value = 
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0.000 at lag 12 rejects the white noise null hypothesis of the residuals of the fire 

model. 

 

Figure 4.2: Residual correlogram of the fire model 

For the purpose of analysing the monthly implication of changes of Fire Outbreak, 

the transformed Fire Outbreak was first differenced and regressed on the full set 

of periodic dummies. The intercept was not included in the model to avoid 

dummy variable trap. The result (Table 4.3) revealed that January, March, April, 

October and December had a significant monthly effects on the fire outbreaks 

whiles 

February, May, June, July, August, September and November were insignificant. 

The F-statistic of 9.651750 and p-value of 0.0000 indicates that the regression 

model was significant and Durbin-Watson statistic of 2.911460 means that there 

is no serial correlation of the first order in the model residuals. Also, the LjungBox 

statistic of 19.7813 with a p-value of 0.0713 provides evidence that the model 

residuals are white noise at the lag 12. 

As shown in Table 4.3, the model clearly indicates significant negative seasonality 

for the month of March and April and a positive significant seasonality for the 

month of January, October and December. 
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Table 4.3: Regression Parameters of the Transformed First Differenced Series 

Variable Coefficient Standard error T-statistic p-value 

January 0.54102 0.0737322 7.3377 0.00001* 

February 0.00320 0.0716548 0.0447 0.96440 

March -0.29607 0.0716548 -4.1320 0.00005* 

April -0.35925 0.0716548 -5.0136 0.00001* 

May -0.11887 0.0716548 -1.6589 0.09871 

June -0.11947 0.0716548 -1.6672 0.09704 

July 0.01537 0.0716548 0.2145 0.83039 

August 0.00766 0.0716548 0.1069 0.91499 

September -0.02860 0.0737322 -0.3878 0.69855 

October 0.14928 0.0737322 2.0246 0.04424* 

November 0.04012 0.0737322 0.5442 0.58693 

December 0.22883 0.0737322 3.1036 0.00219* 

NB: * Means statistically significant at the 5% level of significance 

Considering Table 4.3, their significance does not really matter because some of 

the estimated coefficients of the dummy variables are of an incremental month 

effects of each year. Hence, an approach of interpreting differential coefficients in 

semi-logarithmic was proposed by Halvorsen and Palmquist (1980) and the 

equation of the transformations of differential coefficients are to show 

differential effects in terms of change in percentage. The monthly effect for each 

is calculated with the aid of an exponential transformation and further multiplied 

by 100% to show percentage change as indicated in Table 4.4. The month of 

March, April, May, June, and September decreases the Outbreak of Fire by 

25.6268, 30.1801, 11.2076, 11.2606 and 2.8191 percent respectively. Similarly, 

the month of January, February, July, August, October, November and December 

increases the Outbreak of Fire by 71.7770, 0.3207, 1.5488, 0.7688, 16.0998, 

4.0939 and 

25.7135 percent respectively. 

Table 4.4: Monthly Effects on Fire Outbreak 

Month Coefficient Percent effect 

January 0.54102 71.7770 

February 0.00320 0.3207 

March -0.29607 -25.6268 
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April -0.35925 -30.1801 

May -0.11887 -11.2076 

June -0.11947 -11.2606 

July 0.01537 1.5488 

August 0.00766 0.7688 

September -0.02859 -2.8191 

October 0.14928 16.0998 

November 0.04012 4.0939 

December 0.22884 25.7135 

NB : Effect of January = (e0.541027 − 1) × 100% 

4.3 Further Analysis 

4.3.1 Fitting the SARIMA Model 

The coefficient of skewness and kurtosis of 2.03 and 6.37 respectively in the 

descriptive statistics in Table 4.1 revealed that there are large swings in the data 

indicating non-stationarity. Furthermore, seasonality and the non-stationarity of 

the series can be affirmed from the oscillation of the ACF plot and a very dominant 

significant spike at lag 1 and 12 of the PACF plot as shown in Figure 

4.2. 

A unit root test was performed to prove the proper ordering of differencing filter. 

By the method of KPSS test, we test the null hypothesis that the original series is 

stationary at the non-seasonal level. From the test results as indicated in Table 

4.5, since the calculated value is outside the critical region at the 5% level of 

significance, we reject the null hypothesis that the series is stationary. 

Table 4.5: KPSS test of Fire Outbreaks in level form 

 Test Test Statistic Critical value 

KPSS 1.12461 0.463 
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The results of ADF test are shown in Table 4.6 which confirm that there is 

existence of unit root under the condition where either a constant or constant 

with linear trend are included. 

Table 4.6: ADF test of Fire Outbreak in level form 

Test Constant Constant+Trend 

ADF Test Statistic P-value Test Statistic P-value 

 -1.0300 0.6131 -2.10498 0.5425 

The ACF plot in Figure 4.2 indicates that there is clearly evidence of seasonality 

in the series. Therefore, the series was transformed using logarithmic 

transformation in order to stabilise the variance. The transformed series was 

seasonal differenced and tested for stationarity. Both the KPSS and ADF test 

shown in Table 4.7 and Table 4.8 respectively revealed that the transformed 

seasonal differenced series was not stationary. 

Table 4.7: KPSS of Seasonal Differenced Fire Outbreak Test

 Test Statistic Critical value 

KPSS 0.03697 0.463 

Table 4.8: ADF test of seasonal differenced Fire Outbreak 

Test Constant Constant+Trend 

ADF Test Statistic P-value Test Statistic P-value 

 -3.8726 0.0260 -4.8635 0.0003 

The transformed seasonal differenced Fire Outbreak was again non-seasonal 

differenced. The KPSS test of the transformed seasonal and non-seasonal 

differenced Fire outbreak indicates that the series is now stationary at the 5% 

level of significance as shown in Table 4.9. 

Table 4.9: KPSS test of Seasonal and Non-Seasonal Differenced Series Test

 Test Statistic Critical value 

KPSS 0.0751 0.4630 

The ADF test in Table 4.10 affirms that the transformed seasonal and nonseasonal 

differenced Fire Outbreak is stationary. 

Table 4.10: ADF test of seasonal and non-seasonal differenced series 

 Test Constant Constant+Trend 
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ADF Test Statistic P-value Test Statistic P-value 

 -5.5696 0.0300 -5.5619 0.0028 

The stationarity of the series can also be confirmed from the time series plot of 

the transformed seasonal and non-seasonal differenced series. As shown in 

Figure 4.3, the series fluctuates about the zero line confirming stationarity in 

mean and variance of the series. 

 

Figure 4.3: Time series plot of first differenced series 

After the Fire Outbreak order of integration has been obtained, the order of the 

Autoregressive and Moving Average for both non-seasonal seasonal components 

was determined. This was obtained from the ACF and PACF plots based on the 

Box and Jenkins approach. From Figure 4.4, the ACF plot have significant spike at 

the non-seasonal lag 1 and seasonal lag 12, with significant spikes at other non-

seasonal lags. The PACF plot also has significant spikes at the non-seasonal lags 

1, 2, 3 and 4 seasonal lags 12 and 36. The PACF plot also has significant spike at 

other non-seasonal lags. We identified candidate models for the Fire Outbreak by 

using the lower significant lags of both the ACF and PACF and 

their respective seasonal lags. 
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Figure 4.4: Time series plot of first differenced series 

The Table 4.11 shows various candidate models identified and among these 

possible models presented in Table 4.11, ARIMA(4,1,1)(1,1,1)12 was chosen as the 

appropriate model that fit the data well because it has the minimum values of 

AIC and BIC compared to other models. 

 

 
*: Means best based on the selection criteria. 

The estimation of parameters of our derived model is obtained by using the 

method of maximum likelihood shown in Table 4.12.The ARIMA(4,1,1)(1,1,1)12 

model and can be expressed in terms of the lag operator as; 
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(1 − φ1L − φ2L2 − φ3L3 − φ4L4)(1 − 

Φ1Ls)(1 − L)(1 − Ls)ln(Fire) = (1 − θ1L)(1 − Θ1L)εt 

This implies 

(1 + 0.7172L + 0.4419L2 + 0.3441L3 + 0.2888L4)(1 + 

0.4268L12)(1 − L1)(1 − L12)In(Fire) = (1 + L)(1 + L)εt 

The observations of the p-values of the parameters of the model for both the non-

seasonal and seasonal and Autoregressive and Moving Average components are 

highly significant at the 5% level. The model appears to be the best model among 

the proposed models. 

When fitting data in time series analysis, the best model selection is directly 

related to whether residual analysis is performed well. One important 

assumptions of good ARIMA model is that, the residual must follow a white noise 

process which implies zero mean, constant variance and uncorrelated residual. 

From the diagnostic plot in Figure 4.5, the standardised residuals revealed that 

the residTable 4.12: Estimates of parameters for ARIMA(4,1,1)(1,1,1)12 

Variable Coefficient Standard error z-statistic p-value 

φ1 -0.717208 0.0715685 -10.0213 0.0000 

φ2 -0.441989 0.0843866 -5.2377 0.0000 

φ3 -0.344114 0.0842333 -4.0852 0.0000 

φ3 -0.288846 0.0719513 -4.0145 0.0000 

Φ1 -0.426847 0.0664899 -6.4197 0.0000 

θ1 -1.000000 0.0300209 -33.3101 0.0000 

Θ1 -1.000000 0.0566841 -17.6416 0.0000 

uals of the model have zero mean and constant variance. Also, the ACF of the 

residuals shows that the autocorrelation of the residuals are all zero which 

implies that they are uncorrelated. Finally, in the third panel, the Ljung-Box 

statistic indicates that there is no significant departure from white noise for the 
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residuals as the p-values of the test statistic clearly exceeds the 5% significance 

level for almost all lag orders. 

 

Figure 4.5: Diagnostic plot of ARIMA(4,1,1)(1,1,1)12 

To support the information depicted in Figure 4.6, the ARCH-LM test and t-test 

were employed to test for constant variance and zero mean assumption 

respectively. The ARCH-LM test result shown in Table 4.13, failed to reject the 

null hypothesis of no ARCH effect in the residuals of the selected model. Also, the 

t-test gave a test statistic of -1.3281 and a p-value of 0.1865 which is greater than 

the 5% significance level. Thus, we fail to reject the null hypothesis that the mean 

of the residuals is equal to zero. Hence, the selected model satisfies all the 

assumptions and it can be concluded that ARIMA(4,1,1)(1,1,1)12 model provides 

an adequate representation of the Fire Outbreak. 

Table 4.13: ARCH-LM test of residuals of ARIMA(4,1,1)(1,1,1)12 

Lag Test statistic Df p-value 

12 6.16432 12 0.907573 

24 17.5799 24 0.822901 

36 28.3637 36 0.813987 
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df: degrees of freedom 

The stability test of the model parameters was analyzed using the CUSUM test. 

The test observation was that, the cumulative residuals of the model fall within 

the 95% confidence band as shown in Figure 4.6. It can therefore be concluded 

that the parameters of the model are structurally stable. 

 

Figure 4.6: CUSUM plot of ARIMA(4,1,1)(1,1,1)12 

The graph below depict the forecast of fire outbreak from August 2014 to August 

2016. From the graph there is an indication of increase and decrease pattern in 

fire outbreaks. 
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Figure 4.7: Forecasting plot of ARIMA(4,1,1)(1,1,1)12 

4.4 Modelling Insurance Premiums 

Based on equivalence principle, the calculation of a fully continuous level annual 

benefit premium for a unit fire insurance payable immediately there is a fire is 

tabulated in Table 4.14. 

Table 4.14: Premium Calculation For Fire Policies 
Fire Categories x θ d δ A¯1 

x:12 
 a¨x:12  ) 

Domestic 0 26.14623 0.016666 0.020619 0.329132 32.5364 0.010116 
Industry 0 4.000000 0.016666 0.020619 0.887896 5.436927 0.163308 
Vehicular 0 7.089623 0.016666 0.020619 0.747091 12.26582 0.060908 
Institution 0 1.240566 0.016666 0.020619 0.975011 1.21194 0.804504 
Electrical 0 2.636792 0.016666 0.020619 0.940618 2.879965 0.326607 
Commercial 0 5.122642 0.016666 0.020619 0.836612 7.924148 0.105578 
Bush 0 5.688679 0.016666 0.020619 0.810247 9.202823 0.088043 
Other 0 0.026833 0.016666 0.020619 0.953084 2.275377 0.418869 

NB: x is the Inception Time and θ: Mean Time. 
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4.5 Discussion of Results 

The results for the study clearly indicate that the Fire Outbreak was asymmetric 

and more peaked in nature. This lack of symmetry can be attributed to the large 

swings in data set and increase in the number of occurrence of Fire in the Ashanti 

Region of country. The leptokurtic nature of the data set tells us about how 

volatile the Fire Occurrence is. Furthermore, the nature of the distribution of the 

data set shown that the Fire Outbreak is distributed closely around its mean 

value. 

An investigation of the residuals of the model revealed that there was seasonality 

in the residuals which was obvious in the plot of the correlogram (Figure 4.2). 

Since there was evidence of seasonality in the residuals, the logarithmic 

transformed Fire Outbreak was regressed on the periodic dummies. To provide 

better interpretation for the coefficient of the periodic dummies, Halvorsen and 

Palmquist (1980) approach of interpreting differential coefficients in 

semilogarithmic equations was adopted and ignoring the significance of the 

differential coefficients, the month of January, February, July, August , October, 

November and December increases the Outbreak of Fire by 71.7770, 0.3207, 

1.5488, 0.7688 ,16.0998, 4.0939 and 25.7135 percent respectively. The increase 

in the fire outbreaks in these months can be attributed to the bad weather 

conditions thus harmattan season. 

In addition, month of January and December showed higher increment 

(71.7770%) and (25.7135%) respectively than other months and can be 

attributed to the fact that many farmer start preparing their land for next season 

cultivation during that period. 

Again, during that period visibility become very poor (fog) resulting to fuel truck 

accident leading fire explosion also the reduction of electricity dam level leading 

electricity power fluctuation and so forth. 
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Relatively, the month of March, April, May, June, and September decreases the 

Outbreak of Fire by 25.6268, 30.1801, 11.2076, 11.2606 and 2.8191 percent 

respectively and this could be due to continuous rain fall during that time. 

The forecasting of the number of Fire Outbreak is important to fire stakeholders 

and management in Ghana. The forecasting models were developed to aid in the 

monthly prediction of the Fire Outbreak. 

The model was the ARIMA(4,1,1)(1,1,1)12 model. The monthly forecasting model 

ARIMA(4,1,1)(1,1,1)12 gives a non-seasonal autoregressive of order four (4), 

AR(4) which indicates that the future monthly fire outbreaks correlates with its 

fourth months. This as a result means that an increase or decrease in fire out 

outbreaks in the fourth month will result in increase or decrease fire outbreaks 

in the future and the differencing of order one , I(1) indicates the removal of linear 

tread in the data which makes it stationary. Also the non -moving average of order 

one, MA(1) indicates that the future monthly fire outbreaks errors depend on 

error term of its preview month. 

Furthermore, the seasonal autoregressive of order one, AR(1), indicates that the 

monthly future fire outbreaks correlates with its preview one year monthly fire 

incidence and the seasonal moving average of order one MA(1) also indicates that 

the forecasting values of fire outbreaks depend on it past one year errors. 

The diagnostic checks on this model proved that the model was adequate for 

predicting the monthly number of fire outbreaks in Ashanti of Ghana. Hence, it 

was concluded that the model is a good for forecasting fire outbreaks. A two years 

forecast with this model revealed that the number of fire outbreaks will continue 

to increase with time. 

This continues increase in the pattern of the number of fire outbreaks as evident 

from the forecast results could be a great danger to the economy of the country. 
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The results achieved for fire forecasting will help to estimate number of fire 

events which can be used in planning the fire activities in that region. 

Also, the insurance premium calculation of level monthly benefit premium for a 

semi-continuous 12 month fire insurance of GH 1.00 on an inception month were 

determined and the premium calculation follow the trend of the frequency, thus 

the one with higher frequency correspond to higher premiums and vice versa. 

4.6 Conclusion 

This chapter dealt with the analysis and discussion of results. It presented the 

major findings of the study in a clear, detailed, precise and concise manner. 

CHAPTER 5 

Conclusion and Recommendations 

5.1 Introduction 

This chapter presents the conclusion and recommendations of the study. The 

chapter is further divided into conclusion and recommendations. 

5.2 Conclusion 

In this research, the monthly fire outbreaks in Ghana from January, 1997 to 

August, 2014 was studied and before fitting model to the fire outbreaks, the 

monthly characteristics of the series were explored. The research has shown that 

fire outbreaks are growing at alternating increasing and decreasing rates. The fire 

outbreaks revealed perfect evidence of various monthly effects. The wet season 

was seen as the months of decrease in fire outbreaks whiles the harmattan period 

was indicated as the period of increase in fire outbreaks. The month of January 

had the highest percentage increment. 
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The model developed for forecasting the monthly number of fire outbreaks was 

adequate for representing the series as evident from all the model diagnostics 

used. Moreover, since fire outbreaks are subject to several unobservable factors 

in the country and volatile, sole dependence on this forecasting model to predict 

the fire outbreaks for the purpose of fire management by fire stakeholders such 

as Ghana National Fire Service and insurance may have some errors. 

Therefore continuous monitoring of the forecasting performance of this model is 

additionally required to make the use of these models more realistic. 

Furthermore the premium calculation for the corresponding fire policies will help 

the insurance companies to charge reasonable premium to their policyholders. 

5.3 Recommendations 

Following the outcome of this research work, the following recommendations 

were made. 

i. Much more education should be given to the public on the effect on 

dryseason against fire as indicated by the monthly percentage effects. 

ii. Stakeholders should use statistical models such as the formulated model 

forthe purpose of predicting, mitigating and insuring against Fire 

Outbreaks. 

iii. It is also recommended that further studies on the Fire premiums shouldbe 

carried out to consider mixed distribution to capture both high and low 

severity and frequency in order to cater for extreme losses of fire. 

iv. Also the assumption of uniform distribution should be replaced by a dif-

ferent distribution to capture the actual severity and the non-

homogeneous Poisson distribution could also be used capture frequency 

more realistically. 
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v. Further studies on computing fire premiums should include premium load-

ings to sustain the insurance policies. 
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Appendix A 

Table 5.1: Forecast Values for ARIMA (4,1,1)(1,1,1)12 

Year Month Forecast LCL UCL 

2014 September 3.892519 3.403343 4.381695 

2014 October 4.063589 3.563136 4.564042 

2014 November 4.025636 3.50969 4.541581 

2014 December 4.239689 3.715059 4.764318 

2015 January 4.762162 4.233711 5.290612 

2015 February 4.620319 4.075072 5.165566 

2015 March 4.386936 3.827369 4.946503 

2015 April 4.184895 3.610431 4.759359 

2015 May 3.977023 3.388798 4.565247 

2015 June 3.891001 3.291507 4.490495 

2015 July 3.877329 3.26619 4.488468 

2015 August 3.898621 3.276018 4.521223 

2015 September 3.88257 3.225933 4.539206 

2015 October 4.049236 3.377682 4.72079 

2015 November 4.042108 3.355405 4.728812 

2015 December 4.26286 3.562472 4.963247 

2016 January 4.784716 4.072043 5.49739 

2016 February 4.639297 3.91212 5.366473 

2016 March 4.403726 3.662587 5.144864 

2016 April 4.200748 3.445755 4.955741 

2016 May 3.991638 3.223152 4.760124 

2016 June 3.904607 3.12322 4.685994 

2016 July 3.893268 3.099099 4.687437 

2016 August 3.91479 3.108036 4.721544 

LCL=Lower Confidence Limit 

UCL= Upper Confidence Limit 

Table 5.2: Data on Fire Outbreak in Ashanti Region of Ghana 

Year Month No. Year Month No. 

1997 January 39 2006 January 49 

1997 February 83 2006 February 34 

1997 March 61 2006 March 45 

1997 April 22 2006 April 56 

1997 May 30 2006 May 70 

1997 June 23 2006 June 156 

1997 July 23 2006 July 64 

1997 August 29 2006 August 94 
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1997 September 34 2006 September 71 

1997 October 45 2006 October 60 

1997 November 99 2006 November 50 

1997 December 72 2006 December 38 

1998 January 83 2007 January 50 

1998 February 37 2007 February 43 

1998 March 37 2007 March 44 

1998 April 23 2007 April 49 

1998 May 21 2007 May 34 

1998 June 25 2007 June 45 

1998 July 25 2007 July 56 

1998 August 30 2007 August 70 

1998 September 40 2007 September 156 

1998 October 45 2007 October 64 

1998 November 81 2007 November 94 

1998 December 78 2007 December 71 

1999 January 48 2008 January 60 

1999 February 39 2008 February 50 

1999 March 28 2008 March 38 

1999 April 35 2008 April 50 

1999 May 31 2008 May 43 

1999 June 26 2008 June 44 

1999 July 19 2008 July 49 

1999 August 32 2008 August 60 

1999 September 39 2008 September 117 

1999 October 52 2008 October 104 

1999 November 51 2008 November 79 

1999 December 122 2008 December 59 

 
No. refers to the number of fire outbreaks 

Year Month No. Year Month No. 

2000 January 66 2009 January 61 

2000 February 26 2009 February 42 

2000 March 31 2009 March 44 

2000 April 28 2009 April 43 

2000 May 32 2009 May 40 

2000 June 28 2009 June 35 

2000 July 38 2009 July 53 

2000 August 81 2009 August 58 

2000 September 150 2009 September 121 

2000 October 49 2009 October 58 
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2000 November 32 2009 November 78 

2000 December 21 2009 December 54 

2001 January 18 2010 January 40 

2001 February 39 2010 February 42 

2001 March 19 2010 March 33 

2001 April 35 2010 April 42 

2001 May 29 2010 May 46 

2001 June 28 2010 June 42 

2001 July 25 2010 July 46 

2001 August 67 2010 August 59 

2001 September 100 2010 September 66 

2001 October 38 2010 October 100 

2001 November 40 2010 November 77 

2001 December 30 2010 December 56 

2002 January 32 2011 January 55 

2002 February 25 2011 February 40 

2002 March 30 2011 March 36 

2002 April 36 2011 April 25 

2002 May 39 2011 May 37 

2002 June 45 2011 June 40 

2002 July 70 2011 July 40 

2002 August 81 2011 August 57 

2002 September 60 2011 September 66 

2002 October 67 2011 October 80 

2002 November 32 2011 November 48 

2002 December 47 2011 December 55 

 
No. refers to the number of fire outbreaks 

Year Month No. Year Month No. 

2003 January 29 2012 January 59 

2003 February 33 2012 February 73 

2003 March 33 2012 March 50 

2003 April 34 2012 April 53 

2003 May 53 2012 May 57 

2003 June 55 2012 June 69 

2003 July 97 2012 July 69 

2003 August 65 2012 August 85 

2003 September 39 2012 September 165 

2003 October 36 2012 October 132 

2003 November 35 2012 November 83 

2003 December 48 2012 December 79 
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2004 January 39 2013 January 54 

2004 February 28 2013 February 58 

2004 March 35 2013 March 62 

2004 April 34 2013 April 63 

2004 May 42 2013 May 54 

2004 June 131 2013 June 75 

2004 July 87 2013 July 66 

2004 August 61 2013 August 74 

2004 September 56 2013 September 102 

2004 October 31 2013 October 75 

2004 November 26 2013 November 66 

2004 December 35 2013 December 80 

2005 January 37 2014 January 102 

2005 February 43 2014 February 92 

2005 March 34 2014 March 99 

2005 April 30 2014 April 76 

2005 May 40 2014 May 53 

2005 June 60 2014 June 40 

2005 July 53 2014 July 45 

2005 August 48 2014 August 48 

2005 September 35    

2005 October 43    

2005 November 40    

2005 December 37    

 
No. refers to the number of fire outbreaks 

Appendix B 

Model 1: OLS, using observations 1997:02-2014:08 (T = 211) 

Dependent variable: ld FIRE 

Coefficient Std. Error t-ratio p-value  

0.541027 0.0737322 7.3377 <0.00001 *** 

0.00320213 0.0716548 0.0447 0.9644  

-0.296074 0.0716548 -4.132 0.00005 *** 

-0.359251 0.0716548 -5.0136 <0.00001 *** 

-0.118869 0.0716548 -1.6589 0.09871 * 

-0.119466 0.0716548 -1.6672 0.09704 * 
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0.015369 0.0716548 0.2145 0.83039  

0.00765891 0.0716548 0.1069 0.91499  

-0.0285957 0.0737322 -0.3878 0.69855  

0.14928 0.0737322 2.0246 0.04424 ** 

0.0401232 0.0737322 0.5442 0.58693  

0.228835 0.0737322 3.1036 0.00219 *** 

 

Mean dependent var 0.000984 S.D. dependent var 0.372222 

Sum squared resid 18.39145 S.E. of regression 0.304005 

R-squared 0.967895 Adjusted R-squared 0.92954 

F(12, 199) 9.65175 P-value(F) 1.05E-14 

Log-likelihood -

41.97895 

Akaike criterion 107.9579 

Schwarz criterion 148.1802 Hannan-Quinn 124.2166 

Rho -

0.471278 

Durbin-Watson 2.91146 

 

Augmented Dickey-Fuller test for FIRE including 11 lags of (1-

L)FIRE (max was 12) sample size 200 unit-root null hypothesis: 

a = 1 test with constant model: (1-L)y = b0 + (a-1)*y(-1) + ... + e 

1st-order autocorrelation coeff. for e: 0.028 lagged 

differences: F(11, 187) = 9.940 [0.0000] estimated value of (a - 

1): -0.140007 test statistic: tau_c(1) = -1.34001 asymptotic p-

value 0.6131 

with constant and trend model: (1-L)y = b0 + b1*t + (a-1)*y(-

1) + ... + e 1st-order autocorrelation coeff. for e: 0.031 lagged 

differences: F(11, 186) = 9.197 [0.0000] estimated value of (a 

- 1): -0.378402 test statistic: tau_ct(1) = -2.10498 asymptotic 

p-value 0.5425 
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KPSS test for FIRE 

T = 212 

Lag truncation parameter = 12 

Test statistic = 1.12461 

 10% 5% 1% 

Critical values: 0.348 0.463 0.739 

KPSS test for FIRE (including trend) T = 212 

Lag truncation parameter = 12 

Test statistic = 0.0989846 

 10% 5% 1% 

Critical values: 0.120 0.148 0.217 

Augmented Dickey-Fuller test for l_FIRE including 11 lags of 

(1-L)l_FIRE (max was 12) sample size 200 

unit-root null hypothesis: a = 1 test with constant model: (1-L)y 

= b0 + (a-1)*y(-1) + ... + e 1st-order autocorrelation coeff. for 

e: 0.001 lagged differences: F(11, 187) = 11.492 [0.0000] 

estimated value of (a - 1): -0.0931113 test statistic: tau_c(1) 

= -1.19426 asymptotic p-value 0.6794 

with constant and trend model: (1-L)y = b0 + b1*t + (a-1)*y(-

1) + ... + e 1st-order autocorrelation coeff. for e: 0.004 lagged 

differences: F(11, 186) = 10.563 [0.0000] estimated value of 

(a - 1): -0.363488 test statistic: tau_ct(1) = -2.17759 

asymptotic p-value 0.5016 

KPSS test for l_FIRE 

T = 212 
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Lag truncation parameter = 12 

Test statistic = 1.32395 

 10% 5% 1% 

Critical values: 0.348 0.463 0.739 

KPSS test for l_FIRE (including trend) T = 212 

Lag truncation parameter = 12 

Test statistic = 0.0735701 

 10% 5% 1% 

Critical values: 0.120 0.148 0.217 

Augmented Dickey-Fuller test for sd_FIRE including 11 lags of 

(1-L)sd_FIRE (max was 12) sample size 188 unit-root null 

hypothesis: a = 1 test with constant model: (1-L)y = b0 + (a-

1)*y(-1) + ... + e 1st-order autocorrelation coeff. for e: 0.030 

lagged differences: F(11, 175) = 4.814 [0.0000] estimated value 

of (a - 1): -0.888171 test statistic: tau_c(1) = -5.64443 

asymptotic p-value 8.181e-007 

with constant and trend model: (1-L)y = b0 + b1*t + (a-1)*y(-

1) + ... + e 1st-order autocorrelation coeff. for e: 0.030 lagged 

differences: F(11, 174) = 4.812 [0.0000] estimated value of (a 

- 1): -0.900482 test statistic: tau_ct(1) = -5.64066 asymptotic 

p-value 8.113e-006 

KPSS test for sd_l_FIRE 

T = 200 

Lag truncation parameter = 12 

Test statistic = 0.0369742 
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 10% 5% 1% 

Critical values: 0.348 0.463 0.739 

KPSS test for sd_l_FIRE (including trend) 

T = 200 

Lag truncation parameter = 12 

Test statistic = 0.0376102 

 10% 5% 1% 

Critical values: 0.120 0.148 0.217 

Augmented Dickey-Fuller test for d_sd_l_FIRE including 13 lags 

of (1-L)d_sd_l_FIRE (max was 14) sample size 185 unit-root 

null hypothesis: a = 1 test with constant model: (1-L)y = b0 + 

(a-1)*y(-1) + ... + e 1st-order autocorrelation coeff. for e: 0.001 

lagged differences: F(13, 170) = 8.934 [0.0000] estimated value 

of (a - 1): -4.47152 test statistic: tau_c(1) = -6.18207 

asymptotic p-value 4.316e-008 

with constant and trend model: (1-L)y = b0 + b1*t + (a-1)*y(-

1) + ... + e 1st-order autocorrelation coeff. for e: 0.000 lagged 

differences: F(13, 169) = 8.904 [0.0000] estimated value of (a 

- 1): -4.48536 test statistic: tau_ct(1) = -6.18483 asymptotic 

p-value 4.037e-007 

KPSS test for d_sd_l_FIRE 

T = 199 

Lag truncation parameter = 12 

Test statistic = 0.0750892 

 10% 5% 1% 

Critical values: 0.348 0.463 0.739 
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KPSS test for d_sd_l_FIRE (including trend) 

T = 199 

Lag truncation parameter = 12 

Test statistic = 0.0594839 

 10% 5% 1% 

Critical values: 0.120 0.148 0.217 

Test for ARCH of order 12 

 coefficient std. error t-ratio p-value 

---------------------------------------------------------- 

alpha(0) 810.939 265.578 3.053 0.0026 *** 

alpha(1) 0.312597 0.0738240 4.234 3.71e-05 *** 

alpha(2) -0.156879 0.0765352 -2.050 0.0419 ** 

alpha(3) -0.0380928 0.0765058 -0.4979 0.6192  

alpha(4) -0.0505903 0.0764717 -0.6616 0.5091  

alpha(5) -0.0841647 0.0764906 -1.100 0.2727  

alpha(6) -0.0438402 0.0770755 -0.5688 0.5702  

alpha(7) -0.0667866 0.0770774 -0.8665 0.3874  

alpha(8) -0.0719334 0.0903429 -0.7962 0.4270  

alpha(9) -0.0288841 0.0922211 -0.3132 0.7545  

alpha(10) -0.187010 0.0930761 -2.009 0.0461 ** 

alpha(11) 0.212887 0.0916247 2.323 0.0213 ** 

alpha(12) 0.253125 0.0871367 2.905 0.0042 *** 

Null hypothesis: no ARCH effect is present Test statistic: LM = 59.618 

with p-value = P(Chi-square(12) > 59.618) = 2.64967e-008 

Test for ARCH of order 24 

 coefficient std. error t-ratio p-value 

------------------------------------------------------------ 

alpha(0) 1006.74 464.068 2.169 0.0316 ** 
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alpha(1) 0.216919  0.0777731 2.789 0.0060 *** 

alpha(2) -0.119526 0.0791435 -1.510 0.1331 

alpha(3) -0.0327984 0.0797876 -0.4111 0.6816 

alpha(4) -0.0360151 0.0798080 -0.4513 0.6524 

alpha(5) -0.0790299 0.0796963 -0.9916 0.3230 

alpha(6) -0.0454734 0.0805812 -0.5643 0.5734 

alpha(7) 0.0593084 0.0806095 -0.7357 0.4630 

alpha(8) 0.0629647 0.0943839 -0.6671 0.5057 

alpha(9) -0.0267819 0.0959880 -0.2790 0.7806 

alpha(10) -0.212222 0.0966716 -2.195 0.0297 ** 

alpha(11) 0.0795304 0.0981753 0.8101 0.4192 

alpha(12) 0.145293 0.0980641 1.482 0.1405 

alpha(13) -0.0932366 0.0985166 -0.9464 0.3455 

alpha(14) -0.0303339 0.0983231 -0.3085 0.7581 

alpha(15) -0.0868429 0.0971802 -0.8936 0.3730 

alpha(16) -0.0219194 0.0973498 -0.2252 0.8222 

alpha(17) -0.0639955 0.0972968 -0.6577 0.5117 

alpha(18) -0.0188265 0.0971096 -0.1939 0.8465 

alpha(19) -0.0293052 0.0972837 -0.3012 0.7637 

alpha(20) -0.0780540 0.0968678 -0.8058 0.4216 

alpha(21) 0.00719480 0.0970110 0.07416 0.9410 

alpha(22) -0.0167362 0.0971495 -0.1723 0.8635 alpha(23) 0.139944 0.0949380 

1.474 0.1426 alpha(24) 0.358203 0.0915388 3.913 0.0001 *** 

Null hypothesis: no ARCH effect is present Test statistic: LM = 76.9685 

with p-value = P(Chi-square(24) > 76.9685) = 1.83623e-007 

Test for ARCH of order 36 

 coefficient std. error t-ratio p-value 

------------------------------------------------------------ 
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alpha(0) 1054.86 613.544 1.719 0.0880 * 

alpha(1) 0.249814  0.0890188 2.806 0.0058 *** 

alpha(2) -0.137247 0.0916118 -1.498 0.1366 

alpha(3) -0.0151607 0.0924822 -0.1639 0.8700 

alpha(4) -0.0170267 0.0924846 -0.1841 0.8542 

alpha(5) -0.0924963 0.0922433 -1.003 0.3179 

alpha(6) -0.0353209 0.0937327 -0.3768 0.7069 

alpha(7) -0.0577305 0.0939388 -0.6146 0.5400 

alpha(8) -0.0578504 0.111799 -0.5174 0.6057 

alpha(9) 0.0123305 0.114004 0.1082 0.9140 

alpha(10) -0.233163 0.115147 -2.025 0.0450 ** 

alpha(11) 0.102895 0.115982 0.8872 0.3767 

alpha(12) 0.152815 0.112325 1.360 0.1761 

alpha(13) -0.108477 0.109828 -0.9877 0.3252 

alpha(14) -0.0258925 0.107450 -0.2410 0.8100 

alpha(15) -0.0909741 0.107151 -0.8490 0.3975 

alpha(16) -0.00437819 0.107343 -0.04079 0.9675 

alpha(17) -0.0778539 0.106966 -0.7278 0.4681 

alpha(18) -0.0287818 0.107265 -0.2683 0.7889 

alpha(19) -0.0183035 0.107397 -0.1704 0.8649 

alpha(20) -0.0828906 0.107243 -0.7729 0.4410 

alpha(21) 0.0175625 0.107412 0.1635 0.8704 

alpha(22) -0.0328345 0.107459 -0.3056 0.7604 

alpha(23) 0.160596 0.107417 1.495 0.1374 

alpha(24) 0.318716 0.107782 2.957 0.0037 *** 

alpha(25) -0.0218595 0.110997 -0.1969 0.8442 

alpha(26) 0.0338632 0.110208 0.3073 0.7591 

alpha(27) -0.0545995 0.108752 -0.5021 0.6165 

alpha(28) -0.0381561 0.108987 -0.3501 0.7268 

alpha(29) 0.0553926 0.109347 0.5066 0.6133 
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alpha(30) -0.0451674 0.109256 -0.4134 0.6800 

alpha(31) 0.0457762 0.112082 0.4084 0.6837 

alpha(32) -0.0970395 0.112348 -0.8637 0.3894 

alpha(33) 0.0212053 0.113516 0.1868 0.8521 

alpha(34) -0.00479776 0.113615 -0.04223 0.9664 

alpha(35) -0.0719980 0.109872 0.6553 0.5135 

alpha(36) 0.0351599 0.105978 0.3318 0.7406 

Null hypothesis: no ARCH effect is present Test statistic: LM = 72.357 

with p-value = P(Chi-square(36) > 72.357) = 0.000308527 


