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ABSTRACT 

Most of the insurance contracts in Ghana contains the right to early termination and 

are also path-depend, due to the presence of path-dependence derivatives and the 

right to early termination of the contract, can make valuation of Life insurance 

contract in Ghana come with complexities. These complexities are aggravated with 

introduction of the new parameter (S). Termination of life insurance contract in Ghana 

among other factors may come as a result of many factors that policyholders face. 

This study seeks to modify the Black-Scholes partial differential equation by 

incorporating risk of being multimorbid, and investigate the suitability of using some 

existing numerical methods (CrankNicolson and Hopscotch) to value life insurance 

contract. Further comparison between the two methods were done to select an 

efficient method for the modified model. In line with these objectives, simulations for 

time of an individual to be multimorbid were performed and the survival for risk of 

multimorbidity computed. This study revealed that, the modified model is stable, 

consistent and hence suitable to solve. In the numerical analysis of the option 

valuation using the original Black-Scholes model, Crank-Nicolson method converges 

faster than Hopscotch method. On the other hand, numerical analysis of the option 

valuation using the Black-Scholes model with the incorporated multi-morbid survival 

rate, Hopscotch method converges faster than Crank-Nicolson method. Further, it is 

observed that, the Hopscotch method converges much faster and give higher values 

as the step sizes are increased for Black-Scholes partial differential equation of the life 

insurance contract in Ghana embedded with surrender option. Hence, making the 

Hopscotch method favour policyholders who might want to surrender in order to 

receive the surrender value (payoffs). 
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CHAPTER 1 

INTRODUCTION 

1.1 How Insurance Started 

Way back, insurance started in order to provide some sort of help for traders 

especially, during the periods 5000 BC and 4500 in China and Babylon respectively. 

Life Insurance dates back to ancient Rome; where ‘burial clubs’ absorb funeral 

expenses and helped survivors of members with cash Henncock 

(2007). 

Life insurance served as a way of providing family security, synchronized with the 

growth of wealthy families during the industrial revolution in England. As a result of 

rapid economic growth brought in by industrial revolution, traders and manufacturers 

in England became wealthy and influential and standard of living was high, which of 

course their families would have found it difficult to continue with that standard of 

living at the event of their death, unless they provided special financial security for 

their families and loved ones. To such people, they saw life assurance as an alternative 

and a better way of providing for family’s financial security Sha (2011). 

Among the first Life Insurance companies of London (the society for the Assurance of 

Widows and Orphans) and that of the United States of America (Corporative for the 

Relief of the poor and Distressed Presbyterian Minister and for the Poor and 

Distressed Widows and children of Presbyterian Ministers’) were founded in 1699 and 

1775 respectively Sha (2011). 

1.2 How Insurance Operates 

Operations of insurance, involve individuals or business establishments who make 

cash payments periodically known as premium into a common scheme, from where 

policyholders get their compensations from in an event of loss based on advanced 
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agreements made under which type of loss and of range of coverage. This explains 

that, there is an agreement between ‘two people’, where one (insured) pays some 

amount of money to the other (insurance company) who promises to help the one 

making the contributions with some future help in case of any loss that the 

contributor might face, which could have had higher financial consequences without 

insurance. 

Generally, risk is the main term in insurance - the likelihood that both the premium 

payer and the insurance company affected by the event occurring and the end results 

such events come along with are uncertain. In addition, the risks in an event could 

involve far more factors than simply the possibility of happenings of such events. 

Therefore, for a fair arrangement for the parties involved premiums collected should 

appropriately reflect the risk. That is, all aspects of insured risk must be actuarially 

evaluated and calculated well, considering the kind of event, extent of benefits, 

nature ( characteristics) of the insured and size (number) of individuals or entities 

simultaneously under similar risk Gladwell (2005). 

The idea of “shared risk” between policyholders and the insurers is of great 

significance because it is the basis under which the ideas of solidarity is established. 

Indeed, sustenance of solidarity in insurance would be impossible if each policyholder 

(participants) in the insurance pool does not take it as a duty in the prevention and 

mitigation of risks as possible as they can. 

1.2.1 Types of Insurance Companies 

Insurance companies can be grouped as follows: 

General Insurance Companies: In this type of insurance company, they provide all 

kinds of insurance apart from life insurance. 

Life Insurance Companies: Insurance companies that deals in life insurance, pension 

products and annuities are referred to as life insurance companies. 
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1.2.2 Types of Insurance 

The list of types of insurance are more than what one can list in this work, and it is 

important therefore to choose from the list of insurance policies that best suit an 

individual’s circumstances. 

Some types of insurance are; Health insurance, the Disability insurance, Renter’s 

insurance, Auto-mobile insurance, Liability insurance, Life insurance and so on. 

According to Financial Consumer Agency of Canada FCAC (2011), insurance is said to 

be a way of reducing one’s potential financial loss or hardship in case of unexpected 

event. It helps cover the cost of unforeseen events such as theft, illness or property 

damage to a policyholder. Furthermore, insurance can provide one’s spouse, relatives 

and children with a financial payment upon their death. 

1.2.3 Life Insurance 

The number one purpose of Life Insurance is to guard oneself against any kind of loss 

of income, as a result of permanent disability or death. Life insurance is also used for 

retirement planning and as well as insulating. This is a type of insurance you may pay 

for, but only spouses, children or generally beneficiaries benefit from it. That is, except 

in some cases where the reason for taking this type of policy is to provide for loved 

ones, children and families at the time of one’s death. 

Life Insurance Companies put into the market different types of insurance policies to 

meet an individual’s needs as one’s personal circumstances could not remain the 

same as time goes on. Below is a brief discussion of the three kinds of life insurance 

in Ghana; 

Term Life or temporary Insurance: 

Provides some sort of protection for people for a defined period; generally ten, 

twenty, twenty five or thirty years. Should the policyholder happens to die, the 

company pays cash benefits to beneficiary of the deceased during the policy period 

(term). 



 

4 

Whole Life Insurance: 

This provides protection to the insured for his or her whole life and beneficiaries are 

supposed to benefit from such contract when the policyholder dies. 

Universal Life Insurance: 

Whole life insurance with more flexibility; This type of contract allows the insured to 

maintain his or her policy and have the opportunity to make changes regarding the 

death benefits or amount paid at regular intervals (premium). 

1.3 Financial Derivatives 

Pricing of newly created products in the financial institutions is a challenge in recent 

years. The use and application of financial mathematics has taken to the exploiting of 

better and advanced mathematical methodologies like, partial differential equations 

and stochastic equations among others to enable researchers handle these challenges 

in the financial institutions. In this work, pricing of surrender option (contract) is 

considered. 

A financial derivative, derives its value from an underlying assets; financial derivatives 

depend on some characteristics exhibited by the underlying asset or assets. There 

should be obligations and rights that exist between the writer of the security and 

policyholder, so that there could be a way to pay or deliver future compensation 

(cash) depending on the nature and circumstance of an unexpected event in the 

future. We can describe the value (future value) of derivative as a stochastic process 

because of its uncertainty. Stocks, interest rates and foreign currencies are among the 

groups of underlying assets and Swaps, options, forwards and futures constitute the 

main types of derivatives. 
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1.4 Options 

Let’s consider this scenario; A Samsung company called you this morning with an offer 

that in four months’ time you will have an option to purchase the company’s shares 

from them at a price of 35 Ghana cedis per share (based on an agreement between 

you and the company today). 

The main point is you are now having the option to buy this company’s shares. Few 

months (four moths) from today, you can find out if the market price would favour 

you or not when you decide to exercise the right (option). (In an ideal case, you would 

like to exercise the right if the market price were more than 35 cedis, which you could 

re-sell for an immediate profit.) This kind of deal has no downside for you because, 

four months from now you either make some profit or walk away with no loss. The 

company on the other side, have no potential of making gains and has an unlimited 

potential of losing. To compensate, you should be made to pay a certain amount in 

advance to enter into such an option contract. 

This is an European call described above. Shares from Samsung are an example of an 

asset; a financial quantity with a defined current value but an unknown future value. 

With this scenario created and introducing some notations can help one with the 

discussions on the two basic kinds of options Davis (2005). Basically, holder of an 

option automatically possess a right to buy or sell at or before validity period of the 

option is elapsed. It is a right and not an obligation for the holder to exercise this right. 

An option could be described exercised when the holder of the asset decides to 

purchase/hand over the stocks that are related to the option at a certain price. In all 

cases, the writer of the option cannot be ignored as a party to such a contract Hull 

(2003). 
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1.5 The Two Basic Kinds of Options 

There are two option types, these are the American-styled and the Europeanstyled 

options. 

American-Styled Option 

An American call or put options allows holder (who has the right) to purchase (sell) 

the actual asset that is related to the option up at any time t, before T, for a certain V 

price (strike price). We denote this type of option by l(p). The pay-off of the American 

styled (call) at T is given: 

l = maximum(St − V,0). 

Pay-off of the American styled put is: 

(1.1) 

R = maximum(V − ST ,0). (1.2) 

European styled Option 

An European option provides the holder a right to sell or buy for example, stock which 

has an initial stock price S, at a defined future time T and for a certain price V . We 

denote this option price by l(p). The pay-off of an European call at maturity is: 

L = maximum(ST − V,0). 

to calculate the value of the European put: 

(1.3) 

R = maximum(V − ST ,0). (1.4) 

The link between European call and put options (put-call parity), denoted as: 

 L + V e−rt = R + S (1.5) 

Note r represents risk-less rate in equation (1.5) and S denotes initial price of the 

stock. 
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1.5.1 Surrender Option 

Surrender option (an American-styled put) allows the policyholder to sell back the 

contract to the original seller (the issuer) and receive a compensation value. In an 

attempt to fairly value such an option, as well as a best assessment of compensation 

values are of crucial topics in trying to have the best way to manage a life Insurance 

contract, both on the solvency and on the competitiveness side. My major aim of this 

research is to address the surrender value of a co-morbidity persons who might want 

to surrender at any time (based on the number of factors which includes; the inability 

to pay for treatment, severity of chronic diseases that can not be cured) whiles the 

policyholder is still alive. 

In detail, this work considers the single premium, using the Black-Scholes formula and 

the Crank-Nicolson and Hopscotch methods to determine the surrender value; where 

i will introduce another parameter in Black-Scholes formula as being the likelyhood of 

developing multimorbid condition. This will lead to a recursive algorithm that will 

enable me do easy computing of fair pay-off (surrender value) of a contract of 

someone with the possibility of being multimorbid. 

Life Insurance Policies Embedded with Options 

Over the years, undertakings of insurance have actually developed many ways of 

attributing more flexibility to life insurance policies as a purpose. These are options 

that are to enable the insured to make rightful choices related to his credit against the 

insurer, that could have an impact on both the time to policy maturity and benefits of 

such a contract (that has potential to change the contract.) For some years 

undertakings of insurance ignored options that is embedded in their policies, that 

could give holder the right to sell back the insurance contract to the insurance 

company, but has given the insured some lack of interest in these options. Twenty 

years back, situations were worse off as a result of financial markets turmoil, most 

policyholders had begun to sell back the options embedded in their contracts more 
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often and in an opportunistic way. In fact, insurance companies had to pay benefits 

which values were more than premiums taken from their policyholders. Hence, the 

need for important attention to insurance product design so that, to determine the 

clear-cut value for all kinds of benefits, insurance companies will be aware of what 

they offered to policyholders. In addition, to have a proper contract pricing, the 

insurer has to take into account ‘dynamic policyholders’ behaviour’, where ‘dynamic’ 

talks of the policyholders’ ability to react to external factors (usually economic 

factors), and thus to exercise embedded options in order to maximise profits. Some 

kinds of options that are embedded in life insurance contracts are: annuity and 

lumpsum conversion option, surrender option, resumption option among others Ali 

(2013). 

Liabilities of Life Insurance 

A correct assessment of period and convexity of insurance liabilities and equity 

measures still remains critical as they continue to be the basic parts of any correct 

asset-liability management approaches. In order for people to understand and explain 

the hidden difficulty that are usually encountered by the insurer, then there is a need 

for all to have a detailed and if possible significant and true concept of risk associated 

with how insurance operates Ali (2013). 

According to Anders and Peter (2002), people or entities who have gone into contract 

with an insurance company are first to get claims on the assets of the company, where 

as people holding equity have limited liability; guarantees of rates of interest are the 

basic components of LICs; based on the principle of contribution (if a risk is insured 

by multiple companies, and one company has paid out some benefit or claims, that 

company is entitled to collect proportionate coverage from other companies) are also 

in position to have right of claim to an equitable share of any excess assets of any 

investment. 
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According to Eric (1995), risk-taking initially does occur on the liability side of the 

balance sheet. Underwriters are those who issue insurance policies which are 

transformed into liability, due to the time lag between premium inflow and indemnity 

outflow, mostly the reserves are invested on the financial marketplace and generate 

(add value) the portfolio of assets of the company. 

1.5.2 Value of an Option 

In dealing with pricing of options, the compensation for surrendering of an option is 

expressed as: Lt = f(At,t); (function time and the underlying asset). Finding surrender 

value is my primary aim in this study. 

The values of call and put options given by maximum(At − V,0), and maximum(V − 

At,0) for 0 ≤ t ≤ T, respectively .This is what (value) the insured receives when he or 

she happens to surrender before the maturity date. This option is assumed to be an 

American put option, since it can be exercised at any time of the contract period. 

1.5.3 Why Investors Will Consider Option Trading 

Among some of the reasons an investor will consider option trade include; 

a. Options trading help investors with the avoidance of market restrictions and save 

cost of transactions than trading in stocks 

b. There are institutional rules for option and stocks, but stimulating of option trading 

may depend on the differences of these rules. 

c. How an option should be priced is based on a systematic theory and logic. 

d. A speculator will prefer to gamble in option transactions than stock because the 

price involvement volatility of an option is more than stocks (Jarrow and Turnbull, 

1996), (Chance, 1991), (Kolb, 1999) and (Davis, 2005). 
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1.6 Problem Statement 

Life insurance contracts and pension plans are complex financial securities that come 

in many variations. In literature, contracts which offer a guaranteed return equipped 

with the right to terminate the contract prior to maturity, do not take into account 

the risk and controversy component of people with the risk of having multi-morbidity 

condition at some point in time. The solution to the stochastic differential equation 

that incorporates individual risk of being multimorbid cannot be solved explicitly. 

Existing numerical methods may not be suitable for the modified model, hence the 

need to modify Black-Scholes formula using Hopscotch and Crank-Nicolson numerical 

methods. 

1.7 Objective 

i. To modify the Black-Scholes model by incorporating the risk of being 

multimorbid (S) into the model. 

ii. To investigate suitability of a numerical method approach of solving the modified 

model 

iii. To compare and select an efficient numerical method (Hopscotch and 

CrankNicolson ). 

1.8 Methodology 

All agents are assumed to operate in continuous time frictionless economy with a 

perfect financial market, so that tax effects, transaction cost, divisibility, liquidity, and 

short-sales constraints and other imperfections can be ignored. As regards the specific 

contract, I also ignored the effects of expense charges, lapses and mortality. Since 

path-dependence prohibits the derivation of closedform valuation formulas Ali 

(2013), the problem can be reduced to allow for the development and 
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implementation of the Crank-Nicolson and Hopscotch methods for fast and accurate 

numerical valuation of life insurance contracts for persons with the risk of having 

multimorbidity condition at any point whiles still in the life insurance contract. 

1.9 Justification 

The study is one of the life insurance products-the so-called participation policy 

embedded with surrender option. This study considers Crank-Nicolson, Hopscotch 

method and a modified Black-Scholes formula to evaluate surrender value of people 

with the probability of having multi morbidity condition. Hence, the introduction of 

the survival rate (S) into the Black-Scholes. 

1.10 Thesis Organization 

This thesis is organised into five main chapters. Chapter 1 presents introduction of the 

thesis. This consists of background of study, research problem statement, objectives 

of the study, methodology, thesis justification and organisation. Chapter 2 is literature 

review, which looks at briefly works done by other researchers on the topic. Chapter 

3 is formulation of the mathematical model. Chapter 4 deals with analysis of data 

collected, formulation of model instances, algorithms, computational procedures, 

results and discussion. Chapter 5 looks at summary, conclusions and recommendation 

of the results. 

CHAPTER 2 

LITERATURE REVIEW 
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2.1 Introduction 

The chapter looks into the review of related works on insurance, insurance liabilities, 

surrender options and other related models from other writers who have contributed 

meaningfully and added knowledge in this area of study. 

2.2 Definition and meaning of Insurance 

Despite the diverse definitions of the term insurance by different writers and 

researchers, they seem to address the same issue in many different ways. Insurance 

could mean a promise of compensation for any potential future uncertain event that 

cause losses. Insurance, helps people with financial protection against uncertain 

losses by reimbursing losses with insurance company during crisis. Per an individual’s 

preference, one can choose from the wide range of insurance options insurance 

companies offer their clients. 

A lot of insurance companies sell different comprehensive coverage which come with 

affordable premiums. The regular and fixed insurance payments (premiums) are 

made based on calculations to the total insurance value (amount). Mainly insurance 

is used as an effective tool of risk management as quantified risk of different volumes 

can be insured. Mphasis (2009), explain insurance in terms of law and economics. The 

writer explained insurance as the way of managing risk, where primarily, it is to 

address the issue of hedging against the risk of a loss (contingent loss). Insurance can 

therefore be explained as the transfer of equitable risk of losses, from one party to 

the other or one organisation to the other in exchange for fixed regular payments, or 

said to be a guaranteed small loss to guard against (prevent) a large but catastrophic 

loss and that could be devastating. 

FCAC (2011), gave the definition of insurance as a way of reducing one’s potential 

financial loss, it help cover any cost of unforeseen and unexpected events such as 

property damages (example; fire, flood), theft, illness and flood. Also, insurance 
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provides financial payments to one’s loved ones upon their death. Pal, K., Bolda, B. 

and Garg, M. (2007), defined insurance as a co-operate mechanism to spread the loss 

caused by a particular risk over a number of persons who are exposed to it and who 

agree to ensure themselves against that risk. 

According to Dorfman (2008), from a financial point of view defined insurance as a 

financial arrangement that redistributes the cost of unexpected losses. This is done 

by taking premiums from the insured; from different policy holders. In case of event 

of losses), the insurance company pays the insured of a promised amount in exchange 

for the premium they have been receiving. 

Orice (2006), who had come across various definitions of insurance and found out 

that, while most definitions differed because they were developed for specific 

purposes or had changed over time, the definitions shared common key elements; 

risk transfer and risk spreading. The writer explained that definitions of insurance are 

developed for various purposes such as different fields of study, categories of 

insurance, and state or federal statutes. While risk transfer and risk spreading are 

most important elements, these definitions often include other elements, or 

parameters, found in definitions. These include; 

• indemnification, which is the payment for the loss that might be incurred 

• ability of a company to make reasonable calculations (estimates) of future losses; 

• ability to quantify losses in monetary amounts; and 

• the chance of adverse but random occurrence of events outside the control 

of the insured. 

2.2.1 Insurance In Ghana 

The coming of insurance to Ghana cannot be discussed without mentioning of the 

British merchants activities in the 19th century. Ghana was among the countries 

where merchants sent their goods from, and by law had to insure these goods before 
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sending them to the United Kingdom. This explains why insurance companies had to 

send their agents to represent them in Ghana where their trading activities were 

taking place. Thus, transactions of insurance activities were monitored and carried by 

agents of foreign insurance companies in Ghana, and among the agents were 

insurance policy sellers and intermediaries. Local insurance companies began to 

emerge towards independence, Gold Coast insurance Company was among the first 

insurance companies in Ghana and was founded in 1955. In 1958 and 1957, other 

companies like Cooperative and General Insurance companies respectively, were 

established. Later, Government of the Gold Coast bought these two companies and 

merged them, which was named State Insurance Company in 1962. Between 1962 

and 1970 period, significant improvements were seen in the insurance industry in 

Ghana because rule, regulations and laws were introduced to protect the insured and 

guard the insurance industry. This development gave way for more policies like 

aviation insurance, marine insurance and accident insurance among others, 

introduced into the insurance market apart from life insurance. Most of these 

regulations and laws favoured and protected the local insurance companies and that 

created an opportunity for more insurance companies to spring up Afriyie (2006). 

2.2.2 Economic Importance of Insurance 

Roles of insurance institutions, its links to other sectors and contribution to the 

growth of the Ghanaian economy is worth discussing. Though, there are numerous 

works done on relationships between growth of economies and capital markets and 

economic growth and banks lending; these were casual relationships done. Much 

attention has not been given to the insurance sector in this regard. However, some 

researchers have attempted to fill this gap as far as the relationship between 

insurance and the economy are concerned. 

Insurance is not different from banks in the capital markets, which are to satisfy and 

serve the financial needs of private individuals or house holds as far as financial 
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intermediation is of great importance. Insurance service availability is very essential 

when it comes to the stability of an economy and acceptance of aggravated risk by 

business participants. Insurance companies after taking claims, form reserve funds 

with the pooled premiums and invest in other portfolios to make interest. Among the 

important roles insurance companies play include enhancement of internal cash flows 

at the assured, placement of large amounts of assets on the capital market and 

probably, its contribution to economic growth Peter and Haiss (2006). The authors 

reviewed empirical evidence, theory and identified channels of influence in other to 

fill this gap. They used use annual insurance data from twenty nine (29) European 

countries from 1992 to 2004 period by applying a cross-country panel data analysis. 

Their findings explained why life insurance has weak growth-supporting role with 

similarities to that of banks and stocks. 

Beenstock, M., Dickison, G. and Khajuria, S. (1988) used data from 1970 -1981 for 12 

countries in a cross-section and pooled time series analysis. Property liability 

insurance (PLI) premiums were regressed on income, gross national product (GNP) 

and interest rate development. The author observed a correlation between premium, 

GNP and interest rate; marginal propensity to insure is high in the long run and it rises 

with per capita income. Also Beenstock et al. (1988) explained that neither economic 

cycles nor cyclical income variations can affect insurance consumption. Among the 

first to conduct studies on casual relationship between insurance industry growth and 

economic growth were Ward and Zurbruegg (2000). The authors looked into casual 

relationship between the growth of insurance industry and economic growth, 

examined short and long dynamic relationships between economic growth measured 

by annual real GDP and insurance industry, and finally measured by total real 

premiums for nine countries(OECD countries) for the 1961-1996 period. As additional 

explanatory variables the authors used changes in government budget surplus, 

private savings rates, the general population size, general government level of current 

expenditure, and old age and youth dependency ratios. Which were measured as 
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proportion of the total population under 16 and over 65 years of age, based on 

bivariate VAR methodology to test for Granger causality. Among the authors findings 

is that, the causal relationship between economic growth and insurance market 

development are not the same every where but are different depending on the 

country. Just as Outreville (1996) and Enz (2000) also concluded that elasticity of the 

demand for insurance varies itself with the level of income; it becomes less sensitive 

to income growth in more developed economies. Even though, Ward and Zurbruegg 

(2000) could not find the exact causes in their attempt to fill this gap, rather suspected 

that possible causes could be the following: country-specific nature of cultural, 

regulatory and legal environment, the improvement in financial intermediation and 

the moral hazard effect of insurance operating in various countries. 

Another work carried out in China by Zou and Adams (2006), gives insight into the 

property insurance market of China from 1997 to 1999 period. Market regulation and 

Chinese market specialities make this work more appropriate in providing evidence 

for the socio-political decision model of Hofstede (1995), and the law-and-finance 

view of La Porta (1998). Their conclusions showed that companies that are highly 

leveraged with intensive production consume property insurance, and companies 

that are owned partly by the state or possible tax-loss carry-forward reduces demand. 

An increase in foreign or managerial ownership as well as improved growth options 

facilitate demand, while the company size centres inversely. 

Contribution by Davies and Hu (2004), added to knowledge is very special with 

respect to the regressions direction and the variable set up in their contribution to 

knowledge. The authors conducted a test of causality using data from 1960 to 2003, 

spanning 43 years and over, for 20 East and Middle East European (EME) countries as 

well as 18 OECD countries. In this test output per worker (OW) was used as the 

dependent variable while pension fund asset (PFA) and capital stock per worker (CS) 

was used on the explanatory side. Results of their work showed that ordinary least 

square(OLS) regression gives evidence that CS and PFA has positively and significantly 
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impact on OW. In the long run, findings in the dynamic heterogeneity models’ support 

the OLS outputs. In the tests findings the CS and PFA suggested a co-integrated with 

OW. Another finding showed that the PFA development impacted strongly on the OW 

in East and Middle East European countries than in the OECD countries and the shock 

response stays positive but decreases in the long run. 

The works of Esho, N., Kirievsky, A., Ward, D. and Zurbruegg, R. focussed on the legal 

framework in addition to the GDP - Property Causality Insurance Consumption (PCI) 

link. The authors based causality study on data from different (44 countries) between 

1984 to 1998 and includes OLS and fixed-effects estimations and GMM estimation on 

panel date based. It was also observed that no matter the type of methodology 

employed, a positive correlation exists between real GDP, the strength of the 

country’s property rights and insurance consumption. Demand of insurance and loss 

probability are significantly connected, but its connection to risk aversion is quite 

weak. The authors observed that when GMM estimators were used in the 

investigation, price was negatively impacted. Although the data employed in the 

study showed great variations between the developments of countries with different 

origin in terms of legal PCI price, per capita, GDP amongst others, there was no 

evidence that legal origin was a significant indicator for PCI consumption. Contrary to 

other sectors, the property rights importance simply suggested that insurance 

demand were facilitated by legal environments. 

2.2.3 Valuation of Life Insurance Contracts Embedding Right to Early 

Exercise (Surrender Option) 

Variable annuities provide guarantees for unsatisfied customers to have their monies 

refunded and market guarantees on invested principal Blessing and Jun (2002). The 

authors pointed out that these guarantees had embedded in them unpredictable 

maturity put options with strike prices. These annuities; where people pay lump-sum 

can be exercised any time before maturity (surrendered). When the option (lapse 
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option) is rationally surrendered before maturity, it is said to be an American-styled 

put option; exercised when the strike price is lower than the market value of an 

underlying asset. Options that are embedded with surrender options have stochastic 

maturity and that the holder of the option can at any time exercise this lapse. 

Embedded put options have stochastic maturity and that the policyholder can 

exercise the lapse. Early exercised option, increases the contract value and exposes 

the insurance company to loss of fees. In the authors work, they analysed specific VAP 

by focusing on mainly the lapse option, when put options are out-of-the-money, 

rational investors will prefer to lapse the contract. Investors will consider a lapse as 

rational if: i)it is immediately followed by a re-establishment of a contract with a 

better guarantee ii) the difference between surrender charges and contract policy 

value is more than the present value of DOB. The author used the famous Black-

Scholes pricing option formula which has become the standard valuation technique 

for traded capital market instruments, to value the GMDBs and the option to lapse in 

an actual variable annuity contract and take into account the surrender charges 

schedule, mortality risk, and lapse option using the 1994 VA GMDB mortality data. 

Also, they did value guaranteed minimum death benefit (GMDB)options in Polaris II 

variable annuities. The authors’ findings gave writers of annuity some kind of realistic 

indications on the costs of GMBs in their products. Their results also showed that 

significantly increment of the GMDB option value due to the lapse option. Carole and 

Christian (2008), considered equity-linked life insurance contracts that give their 

holder the possibility of individuals to surrender their policy before maturity. Authors 

of this study used least-square Monte Carlo approach of Longstaff and Schwarts 

coupled with quasi-Monte Carlo sampling and a control variate in order to construct 

efficient estimators for the value of such contracts. In the work of Carole and Christian 

(2008), also showed how to incorporate the mortality risk into pricing risk algorithms 

without explicitly simulation it. In this paper their focus was on the surrender option, 

that provides right to the policyholder to opt out of the contract before it matures. 
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This is a financial approach which aimed at obtaining a "market value" of the 

surrender option in a similar way to what has been done in related works of Andreatta 

and Corradin (2003) and Bacinello (2003). Carole and Christian (2008), findings 

include, with a relatively small number of simulations, they got quite precise 

approximation of the surrender benefit with their methodology. Also, their findings 

showed how to include mortality risk using constant probabilities that are fixed for 

everyone. Brennan and Schwarts (1976), are among the first to propose financial 

approach based on option theory. In Black and Scholes framework Grossen and Jones. 

(1997), give the optimal exercise barrier by using results from Myneni (1992). Another 

work done by Shen and Xu. (2005), also have dealt much into surrender options by 

way of suing partial differential equations. Albizzati and Geman (1994), proposed a 

model to address the no arbitrage approach to value even the surrender option which 

has been criticised since these options are not not traded mostly Carole and Christian 

(2008). The contribution of Conall and Stephen (2013), to mathematical and 

computational finance, is to extend the application of STS accelerated technology to 

the two-factor problem of pricing European and American put options under the 

Heston model which 

states; dxt = rxtdt + √ytxtdzt, 

√ 
dyt = α(β − yt) − λγ ytdwt, 

ρdt = dztdwt. 

Where xt and yt are asset price and variance at time t respectively, r is the riskfree 

rate, α is the mean reversion of the variance, β is the long run mean of the variance, 

γ is the volatility of the variance, ρ is the correlation of the asset price and the 

variance, and λ is the market price of risk. 

The use of a contingent claims pricing theory is a common method in insurance 

contracts pricing, and is based on Black and Scholes (1973) work. The application of 

contingent claims theory in equity-linked life insurance pricing was pioneered by 
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Brennan and Schwarts (1976). Briys and De Varenne (2014) and others have studied 

participating life insurance contracts. 

Briys and De Varenne (1997), presented a contract that contained a pointto-point 

guarantee, meaning the payments and participation(optional) in the terminal surplus 

at maturity is guaranteed by the company . Market value of the contract in the model 

is a function of the guaranteed interest rate which influences the risk of shortfall at 

maturity. Briys and De Varenne therefore introduced a stochastic interest rates model. 

In a similar contract by Grossen and Joergensen (2002), without the use of stochastic 

interest rates, insolvency option of the insurer and impact made by regulatory 

intervention were considered in addition. Authors of this work; life insurance 

contracts, featured clique-style annual surplus participation said, in this type of 

option, either a fraction of the asset return or the guaranteed interest rate, whichever 

is greater is credited annually to the policy and it automatically becomes part of the 

guarantee. A bonus account that serves as a smoothing mechanism in asset returns 

participation is introduced. Grossen and Joergensen (2002), in their study breaks the 

contract down into a surrender option, a bonus part and a risk-free bond. 

Hansen and Miltersen (2002), carried out further studies on contracts embedded with 

surrender option. These determine contracts with interest rate guaranteed and 

varying yearly surplus participation schemes are priced fairly. Authors of this paper, 

proposed a contract pricing method that depends on finite difference scheme. Person 

and Miltersen (2003), introduced a participating life insurance contracts model 

practical in Denmark. Terminal bonus along with a smoothing surplus distribution 

mechanism like that of Grossen and Joergensen (2000), and interest rate guarantee is 

provided. In the authors’ proposed model, the holder of the policy is allowed to make 

annual fee payment to either the company or the insurer. Gazert and Kling (2007), 

introduced a method that increased insurance liability information because, it 

considered risk measurement and pricing. The authors examined fair valuation effects 

on the risk situation of the insurer, i.e., (the posibility and extend of a shortfall in 
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demand for fair contracts with equal market value). In identifying key risk drivers the 

results for different contract types are compared. This includes point-to-point and 

clique-style guarantees. Clique-style contracts or options with varying smoothing 

mechanisms, which are common in the UK, are studied by Haberman, S., Ballota, L. 

and Wang, N. In this contract type, the liabilities yearly earn either predetermined 

fraction or guaranteed interest rate whichever is greater. The same authors have 

another paper published in 2006 which looked at the effect of the default options on 

pricing fairly. Kling, A., Richer, A. and Rub, J. (2006), presented a framework for 

cliquestyle guarantee contracts, quite common in Germany. They were evaluated by 

considering the regulatory framework of the Germans. Some contract parameters 

interactions like decision of management regarding guaranteed interest rates and 

surplus participation rates were analysed. 

2.2.4 Comorbidity, Multimorbidity and Chronicity 

Comorbidity defined by Feinstein (1970), as the combination of additional disease 

beyond an index disorder. This definition implies that the main interest is on the index 

condition and possible effects of the other disorders, for instance, on its prognosis. In 

contrast, multimorbidity is defined as any co-existence of diseases in the same person 

indicating a shift of interest from a given index condition to individuals who suffer 

from multiple disorders Alessandra (2009). 

However, as the term multimorbidity addresses a wide range of health problems and 

conditions, the measurement of multimorbidity is particularly complicated. Given the 

complexity and heterogeneity of chronicity in the elderly, no single definition or 

operational criteria will serve all research and clinical purpose effectively. Consistently 

across studies, older persons are more likely to be affected by multimorbidity; in the 

Italian Longitudinal Study on Aging(ILSA), about 25 % of 65-69 years old subjects, and 

more than 50 % of persons aged 80-84 years were affected by 2 or more chronic 

conditions. The study showed the prevalence figures vary widely according to the 
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number of conditions evaluated and the age structure of the study populations. 

Thousands of persons turn 65 of age every day Alessandra (2009) and it is expected 

to continue to rise. Researches done in this area showed that the ‘compression of 

morbidity’ theory is based on the assumption that mortality at older age will reach a 

limit beyond which, there can be no further decline and that there is an ongoing 

increase in the age of disability onset. Under these conditions, there would be a 

compression of morbidity into a smaller number of years at the end of life. The 

‘expansion of morbidity’theory and the ‘age of delayed degenerative diseases’theory 

imply that the extension of life for persons with chronic and disabling conditions due 

to medical progress, without a reduction in the incidence of these conditions will lead 

to a deterioration in the health of the population Alessandra (2009). Hypothesis of 

Alessandra (2009), termed ‘dynamic equilibrium’ states that alongside the reduction 

in mortality there will also be a reduction in the rate of deterioration of the body’s 

vital organ systems. This could result in more diseases in the population, but the 

disease will be at a lower level of severity. Michel and Robin (2004), reviewed the 

main theories on population ageing, and concluded that future trend scenarios 

(expansion or compression of morbidity and disability depend on four factors:) 1) 

increase in the survival rates of sick persons; 2) control of the progression of chronic 

disease; 3) improvement of the health status and health behaviours of new cohorts 

of elderly people; and 4) emergence of very old frail populations. 

However, the contemporary phenomenon of population ageing falls outside the 

boundaries of theories and models, as the health status of older populations across 

the globe is experiencing a complex mixture of increased frailty accompanied by 

reductions in some measures of disability. 

A major effort to understand and predict the ‘effect of epidemiology’ change is the 

Global Burden of Diseases Study undertaken jointly by the WHO, Harvard University 

and the World Bank. The study was implemented to stimulate the inclusion of non-

fatal health outcomes when quantifying the burden of diseases in worldwide health 
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policy debates. In fact, the Global Burden of Disease Study showed that a chronic 

disorder was fourth leading worldwide cause of disease burden in 1990. The study 

also estimated that, by 2020, the burden attributed to non-communicable diseases 

would rise sharply, with ischemic heart diseases and depression at the top of the 

leading causes Christopher and Alan (1996). In response to the worldwide ageing 

phenomenon and related chronic diseases, many health care planners and 

governments have promoted further research regarding age-related pathologies. In 

fact, the cost of health care is highly related to the number of persons treated or 

monitored for various diseases. However, the majority of the studies have focused on 

specific illnesses. Dementia, for instance, has been investigated extensively enough 

to allow the estimation of worldwide occurrence. Several other studies have 

concentrated on a relatively small number of diseases, such as vascular diseases, 

diabetes, cancer, and chronic obstructive pulmonary diseases, rather than the whole 

range of chronic morbidity Christopher and Alan (1996). 

2.2.5 The Evaluation of different patterns of Comorbidity and 

Multimorbidity 

In spite of the increasing prevalence of multiple chronic conditions with ageing, 

knowledge concerning how disease co-occur in the same individual is still limited. We 

have incomplete knowledge concerning comorbidity and multimorbidity because, 

few studies have attempted to describe the overall pattern of disease with a given 

population and most of them have used different approaches to address this issue. 

One of the first problems in evaluating the combinations of clinical conditions is lack 

of consensus regarding the definition of multimorbidity. Guralnik (2006), defined 

multimorbidity as the presence of two or more health problems in the individual or 

person, whether coincidental or not, and comorbidity as the presence of additional 

conditions given an index disease. Another problem is the use of different methods 

to explore the co-occurrence of diseases Guralnik (2006), one possible basic method 
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is the conditional count. Conditional count, is the number of chronic diseases given 

that the patient has a particular index disease. This approach is useful when studying 

one particular condition for example arthritis, and its comorbid conditions. The 

results strongly depend on the number of conditions evaluated. Also, another 

approach, which has been extensively employed, is the use of indices including both 

the number and the severity of the individual conditions, such as the Charlson 

Comorbidity Index Charlson (1987), the Index of Co-existent Disease (ICED), and the 

Cumulative Illness Rating Scale. Major limitations of these indices are due to the fact 

that they usually do not cover the overall conditions affecting the population, and 

often require medical records or skilled researchers. The third method or approach is 

to assess the proportion of people who have pairs of comorbid diseases. Alessandra 

(2009), used this approach in the Women Health and Ageing Study and found that the 

most common comorbid pair was arthritis and visual impairments, with 44% of 

elderly participants reporting both condition. The same approach used in community-

resident individuals aged 55 years and older, and found that arthritis and high blood 

pressure were the most common comorbid pair (21.1%). This approach, as well as the 

estimation of the odds ratios, is useful in assessing the degree to which comorbid 

disease occurrence exceed a level of expected frequency due to chance Verbrugge, 

L., Lepkowski, L. M. and Imanaka, Y. (1989). Lastly, the cluster analysis is a descriptive 

technique that considers how variables tend to occur in conjunction with each other. 

With this method it is possible to go beyond simple comorbid pairs to obtain a general 

overall picture of how and which diseases are associated in a particular population 

and where particular diseases of interest appear in the pattern. John, M., Kerby, D. S. 

and Hennnessy, C. H. (2003), used cluster analysis to describe the distribution of 

diseases in a sample of old American Indians. They found that diseases aggregated in 

two major clusters; the cardiopulmonary and the sensory-motor one. Gabriel, A., 

Richard, T. and Mensah, A. (2014), also used this approach. Gabriel et al. (2014), 

investigated the imparts of multimorbidity patterns of gastrointestinal low back pain 
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and anxiety disorders (GLAD), cardio-metabolic and pain disorders (CMPD), and 

cardiopulmonary disorders (CPD) on the time to death among hospitalised patients 

and examined how the risk for mortality associated with the multimorbidity patterns 

moves with time. A total of 61 patients out 0f 154 hospitalized patients of least age 

50 years died. 52.5% were with CMPD. 32.7% with CPD and 14.8% with GLAD. From 

the log-logistic AFT model the time to death is accelerated for patients with CMPD 

compared to those with GLAD by an estimated factor of o.11 (95% CI: 0.26-0.66). 

Similarly, among patients with CPD the time to death is accelerated by a factor of 0.40 

(95% CI: 0.25-0.63) compared to individuals with GLAD. The authors found that the 

risk for mortality associated with CMPD and CPD were non-monotonic, in that, they 

increased over early duration of hospitalized peaking at 0.051 and 0.012 during the 

19th day and the 18th day of hospitalisation respectively, following a decreasing 

trend. For GLAD nonmonotonicity of the risk for mortality was less apparent. Also, the 

CMPD was found to the most life threatening multimorbidity pattern followed by CPD. 

2.2.6 Numerical Methods Approach 

The works of Russel and Collins (1962), applied the Monte Carlo technique to solve 

the problem of rate making with real problem in the transfer of coverage from one 

carrier to another by a policyholder who might be in a large deficit position with the 

original carrier in the field of insurance. According to the author, this position can be 

avoided if the policyholder is willing to pay an additional charge for a guarantee of an 

upper limit on the amount of deficit carried forward from previous year to the 

following years. It is important to know the following expectations; the expected 

value, the probability value and the variation of claims in excess of a given amount in 

order to determine the additional charge the policyholder to pay. The author, in his 

work addressed the problem of determining the frequency distribution of the annual 

claim cost of a given group of lives for a given year. the author used Monte Carlo 

method to address this problem. The following properties of the groups used to vary 
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over wide ranges: i) the size of each group, ii) the sex distribution of the groups, iii) 

the ages distribution of the groups, iv) the total amount of insurance, and v) the 

distribution of the insurance on individual lives. Bjarke et al. (2001), proposed a model 

for the valuation of traditional participating life insurance policies in their work. The 

claims explained to be made up of explicit interest rate guarantees and various 

embedded option elements, such as surrender and bonus options. With respect to 

the structure of these contracts, the theory of contingent claims pricing is a 

particularly wellsuited framework for the analysis of their valuations. During the 

contract period, the pay-off from the contracts are considered important and in 

particular depend on the history of returns on the insurance company’s asset. From 

literature, path dependence prohibits derivation of closed-form valuation formulas. 

The author demonstrated that the dimensionality of the problem can be reduced to 

allow for the development and implementation of a finite difference algorithm for 

fast and accurate numerical evaluation of the contracts. On mortality risk, the author 

also demonstrate how fundamental financial model can be extended to allow for 

mortality risk and they provide a wide range of numerical pricing results. Their work 

was concluded well by the use of finite difference approach to evaluate the life 

insurance liabilities. Finite different approaches included the implicit finite difference 

scheme, the explicit finite difference scheme and the Crank-Nicolson method. 

Findings of the authors revealed that, Crank-Nicolson method seemed more accurate 

than implicit finite difference scheme and explicit finite difference scheme because 

the error associated with the final solution with Crank-Nicolson method seemed 

smaller as compared to the other finite difference methods used. Li and Hong (2010), 

used the Hopscotch method and Crank-Nicolson method to solve European option 

prices. The authors analysed the pricing results from these two methods by 

comparing result generated from the Black-Scholes model. In their report, they 

started with an introduction of the numerical approximation of derivatives and 

applied them to solve the Black-Scholes PDE. Basically, they used explicit and implicit 
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schemes where by the mixture of these two schemes produce the Hopscotch and 

Crank-Nicolson method that will enhance the accuracy of the result they 

approximated. 

The author’s findings showed that, it will be easier to apply the explicit scheme to 

solve the Black-Scholes PDE by creating and applying these methods and schemes in 

MATLAB. The Hopscotch and Crank-Nicolson methods combined the benefits of fully 

explicit and implicit schemes. The methods ensure an accurate outcome, 

nonetheless, in comparing CPU time the Crank-Nicolson method was found to save 

computational time than the Hopscotch method. 

2.2.7 Path-Dependent Option 

The option that gives the right but not an obligation, to an individual or an entity to 

sell or buy an underlying stock at a predetermined price during a specified time period 

could be said to be a path dependent option, this price is usually not stable but based 

on the fluctuations in the underlying value during all or part of the contract term. The 

price of the underlying asset follows a path, which normally, is what a path-dependent 

option depends on for its pay-off. Simply, path dependence explains how an individual 

or entity would have to face a set of decisions, therefore any given circumstance is 

limited by the decisions an individual or entity has made in the past, even though past 

history of such circumstances may no longer be relevant. Actually, the pay-off of path- 

dependent option do not merely depend on the final price of the underlying assets, 

but also, the process that the price was arrived at is important. An example of the 

pathdepended option is the American-style contract, since the holder of the option 

can exercise the right at any time before expiration and thus ceasing to exist. There 

are many kinds of path-dependent options, the most popular types are barrier, Asian 

and lookback options. Others include Russian, Game or Israeli and Cumulative options 

Xia (2008). 
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According to Davis (2005), the concept of path dependence originated as an idea that 

a small initial advantage or a few minor random shocks along the way could alter the 

course of history. However, the scope of this idea has grown so wide that path 

dependence has dulled its value and is becoming a trendy way to say that history 

matters, path dependence no longer provides any analytic leverage. The concept of 

path-dependence, according to the author, seems almost metaphorical. Path 

dependence, according to the author simply means that the current and future states, 

actions or decisions depend on the path of previous states, actions or decisions. 

Ali (2013), described a dynamic process that produces outcomes at discrete time 

intervals indexed by the integers, t = 1,2,.... He denotes the outcome at time t as xt. In 

addition to the outcome, there are other information, opportunities, or events that 

may arise in a given period which he described as the environment at time t. This 

contains exogenous factors that influence outcomes. A history at time T, ht is the 

combination of all outcomes xt up through time (T −1) and all other factors, the yt, 

through time T. 

Financial derivatives derive their value from an underlying asset that is traded as 

financial security, whose price is modelled by some stochastic process. In general 

form, the option pay-off is path dependent since it depends on the entire future path 

to its current state traversed by the underlying security. Path-dependent options are 

defined using either discrete or continuous price sampling. Closed form solutions are 

often available for continuous sample, but in practice, most traded path-dependent 

options are discretely sampled. It is known that, the application of these closed form 

solutions leads to substantial pricing errors for discretely sampled options. 

2.3 SURVIVAL RATES 

Computing risk models often arise very often in several fields: biostatistics, reliability, 

finance, economics etc. They are relevant when two or more causes of failure act 

simultaneously, but the smallest failure and its type only are observed. In other words, 
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each failure time is potentially right censored by every other failure times. A key point 

to note is that, all these failures are dependent on a priority. Thus, these can be dealt 

with by the standard arguments of random censoring models Jean (1991). 

According to Stephen (2005),the length of a spell for a subject (person, firm, etc.) is a 

realisation of a continuous random variable T with a cumulative distribution function 

(cdf), F(t), and probability density function (pdf), f(t) - F(t) is also known in the survival 

analysis literature as the failure function. The survivor function is S(t) ≡ 1 − F(t); t is 

the elapsed time since entry to the state at time 

0. 

Failure function(CDF); 

Pr(T ≤ t) = F(t), which implies, for the survivor function: Pr(T > t) = 

1 − F(t) ≡ S(t). The PDF is the slope of the CDF (Failure) function: 

. 

Where ∆t is very small (infinitesimal) interval of time. The f(t)∆t is akin to the 

unconditional probability of having a spell of length exactly t, i.e. leaving state in tiny 

time interval of time [t, t + ∆t]. The survivor function S(t) and the Failure time function 

F(t) are each probabilities, and therefore inherit the properties of probabilities. 

In literature, survival rates have been estimated from annual surveys by tracking the 

abundance of one or more cohorts, as measured by catch per unit of sampling effort, 

from time to time (yearly). John and Todd (2007), work showed that data from several 

years can be analysed simultaneously to get a single estimate of survival under the 

assumption that survival is constant over the period analysed. This method requires 

that only a single cohort be identified and separated from the other age groups. The 

author applied 

 to a catch rate to obtain annual 

estimates of survival rate and then convert these to estimates of the instantaneous 

rates of total mortality (Z) according to the formula; Z = −loge(S) using a data from 

the 1963 and 1964. Arithmetic mean results were calculated from their formula 
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applied over the periods of stable mortality identified by Gedamke and Hoenig (2006), 

from their analysis of mean sizes. 

From the literature review, it observed that researchers have not addressed issues of 

surrender of policyholders who might to surrender their insurance policy (s) due to 

coexistence of chronic diseases in them. This has necessitated me to combine 

multimorbidity with insurance contract as a research topic hence, valuation of 

surrender option of policyholders likely to be multimorbid and wish to surrender for 

a value (surrender value). 

CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This chapter consist of the methodology used in the valuation of surrender value of 

the insured, who is likely (probability) of developing multimorbidity condition and has 

the right to surrender the contract before expiration (maturity) in a Life Insurance 

contract. Using the Crank-Nicolson and Hopscotch methods to solve the modified 

model, where a new parameter known as survival rate (S) is incorporated into the 

Black-Scholes model and S is simulated using the R-software and under Exponential 

and Weibull distributions. 

3.2 Probability Space 

The modern theory of probability stems from Kolmogorov (1956). Kolmogorov 

associate a random experiment with a probability space, which is a triplet, 

(Ω,f,P), consisting of the set of outcomes, Ω, a σ − field, f, with Boolean algebra 

properties, and a probability measure, P. 
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Definition 3.1 (Sample Space) 

When an experiment is performed, the set of all possible outcomes is called the 

sample space, denoted Ω. All subsets of the sample space Ω form a set denoted by 

2Ω. 

Definition 3.2 (Events and Probability) 

The set parts 2Ω satisfies the following properties: 

1. It contains the empty set 2Ω 

− 2. If it 

contains a set A, then it also contains its complement A= Ω/A 

3. It is closed with regard to unions, i.e...is a sequence of sets, A1uA2...also belongs to 

2Ω. 

Any subset f of 2Ω that satisfies the three properties is called a δ-field. The set 

belonging to f are called events. this way, the complement of an event, or the union f 

an event is also an event. We say that an event occurs if the outcome of an experiment 

is an element of that sub-set. The chance of occurrence of an event is measured by a 

probability function P:→ [0,1] which satisfies the following two properties: 

1. P(Ω)=1; 

2. For any mutually disjoint events A1,A2,...∈ f, 

P(A1uA2uA...) = P(A1) + (A2) + ... The triplet (Ω,f,P) is called a probability space. This 

is the main set up in which the probability theory works. 

3.3 Dynamics of Derivative Prices 

3.3.1 Stochastic Process 

A stochastic process on the probability space (Ω,f,P), is a family of random variables 

X parametrized by t ∈ T, where T⊂ B. If T is an interval we say that Xt is a stochastic 
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process in continuous time. If T=1,2,3..., we shall say that Xt is stochastic in discrete 

time. 

Consider that all the information accumulated until time t is contained by the σ-field 

Ft. This means that, Ft contains the information of which events have already occurred 

until time t, and which did not. Since the information is growing in time, we have: 

Fs ⊂ Ft ⊂ F 

For any s,t ∈ T with s ≤ t. The family Ft is called filtration. A stochastic process 

Xt is called adopted to filtration Ft if Xt is Ft-predictable, for any t ∈ T 

Definition 3.3 (Markov Process) 

A Markov process is a process for which everything that we know about its future is 

summarised by its current value. A continuous time stochastic process 

X = {Xt, t ≥ 0} is Markov process if 

Prob[Xt ≤ x|Xu,0 ≤ u ≤ s] = Prob[Xt ≤ x | Xs]fors < t 

3.3.2 Brownian Motion 

The observation made first by Botanist Robert Brown in 1827, that small pollen grains 

suspended in water have irregular and unpredictable state of motion, led to the 

definition of the Brownian Motion, which is formalised in the following; 

Definition 3.4 (Brownian motion) 

A Brownian motion is a stochastic process Bt, T ≥ 0 which satisfies; 

1. The process starts at the origin, Bo = 0 2. Bt has 

stationary, independent, increments. 
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3. The process Bt is continuous in t. 

4. The increments Bt −Bs are normally distributed with mean zero and variance |t − 

1|, Bt − Bs ∼ N (0,t − 1). 

The process Xt = x + Bt has all the properties of Brownian motion that starts at x. Since 

Bt − Bs is stationary, its distribution function depends only on the time interval t − s; 

i.e. is P(Bt − Bs < a) = P(Bt − B0 < a) = P(Bt < a) . 

It is worth noting that even if Bt is continuous, it is nowhere differentiable. From 

condition 4 we get that Bt is normally distributed with meanE [Bt] = 0 and var[Bt] = t. 

i.e. Bt ∼ N(0,t). 

This implies that the second moment is E [Bt2] = t. Let 0 < s < t, and since the 

increments are independent, we can write; 

E[BtBS] = E[(Bs − B0)(Bt − Bs) + Bs2] = E[Bs − Bo]E[Bt − Bs] + E[Bs2] = s. 

Consequently, Bs and Bt are not independent. 

A Brownian Motion Process Bt: Is said to a martingale based on this set of information 

Ft = δ(Bs ≤ t) 

Definition 3.5 A Weiner-process (Wt): 

Is a process adopted to filtration Ft such that ; 

1. The process starts at the origin, Wo = 0 

2. Wt is an Ft-martingale with E[Wt2] < ∞ for all t ≥ 0 and 

E[(Wt − Ws)2] = t − s, s < t; 

3. The process Wt is continuous in t. Since Wt is a martingale, it’s increments are 

unpredictable and hence E[Wt − Ws] = 0 ; in particular [Wt] = 0 and V ar[Wt] = t. 
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If Wt is a Weiner process with respect to the information set ft, then Yt = Wt2−t is a 

martingale. Hence,  . 

3.3.3 Brownian Motion With Drift 

The process Yt = µt + Wt, t ≥ 0 is called Brownian motion with drift. This process Yt 

tends to drift off at the a rate µ. It starts at Y0 = 0 and it is a Gaussian process with 

mean 

E[Yt] = µt + E[Wt] = µt 

and variance; 

V ar[Yt] = V ar[µt + Wt] = V ar[Wt] = t 

Martingales 

In simple terms a martingale is a stochastic process for which its current value is the 

optimal estimator of its final value. The features of a martingale rely on the 

application of its final value. Let (St) denotes observed FRV, where time is said to be 

non-discrete over an interval [0,T]. 0 = t0 < t1... < tk−1 < tk = T and   as 

periods T and filtration respectively.  is said to be adopted to 

  if at some time t the price process value (St) is included in the set of 

information It for t 6 0, where St is known when set of information about It is given 

Davis (2005). 

Definition 3.6 

The process Mt,t ≥ 0 is said to be a martingale regarding the set information It and 

probability Q, for all t > 0. 

a. EQ[| Mt |] < ∞. 
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b. When 0 ≤ l < t, we have EQ[Wt | Is] = Ms 

Martingale; (1)present value of conditional and expected value of the future by the 

process of martingale is known. (2) martingale is expected to drift but not upwards 

and hence this denotes a fair game. (3) probability measure and set of information 

what the definition of martingale is based on Davis (2005). 

Definition 3.7 Conditional Expectation 

Conditional expectation of a random Variable X, given Y = y, is defined to be the mean 

of the conditional of X given Y = y, denoted by E[X/Y = y]. As y varies, so too will E[X/Y 

= y] and we get the random variable E[X/Y ]. 

Definition 3.8 Martingale in Discrete time 

A discrete-time stochastic process Xo,X1,X2,... is said to be a martingale if; 

• E[|Xn|] < ∞ for all n. 

• E[Xn|X0,X1...,Xm] = Xm for all m < n. 

In words, the current Xm of a martingale is the estimator of its future value Xn. 

In this setting a martingale is a stochastic process such that; 

• E[|Xn|] < ∞ for all n 

• E[Xn/Fs] = Xs for all s < t 

3.4 Differential Equations 

Definition 3.9 Differential Equation: 

A differential equation is an equation involving the unknown function Y = f(t), 

together with its derivatives y0,y00,...,y(n). 

Mathematically a differential equation may be expressed implicitly as: 
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 F(t,y0,y00,...,y(n)) = 0 (3.1) 

Explicitly, the general form of a differential equation can be written as: 

 y(n) = f(t,y0,y00,...,y(n−1)) (3.2) 

Definition 3.1.0: Ordinary Differential Equations 

An ordinary differential equation (ODE) is an equation involving an known function of 

a single variable together with one or more of its derivatives. 

Definition 3.1.1: Order of Differential Equations 

A first order differential equation is of the form: 

 y0 = f(t,y) (3.3) 

and the equation is to be said to be in normal form. A differential equation of order n 

is of the form: 

 f(t,y,y0,y00,...y(n)) = 0 (3.4) 

and is also said to be in normal form A typical nth order linear equation is given by 

 y(n) + a1(t)y(n−1) + a2(t)y(n−2) + ... + a(n−1)(t)y0 + an(t)y = f(t) (3.5) 

Definition 3.1.2: Partial Differential Equation (PDE) 

A partial differential equation (PDE) is an equation that involves an unknown function 

(the dependent variable) and some of its partial derivatives with respect to two or 

more independent variables. Mathematically, PDE is of the form; 

  (3.6) 
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If F is a linear function of u and its derivatives, then the PDE is called linear. 

An nth-order PDE has the highest order derivatives of order n. A simple PDE is 

  (3.7) 

This relation implies that the function u(t,y) is independent of t. However the 

equation gives no information on the function’s dependence on the variable y. Hence 

the general solution of this equation is 

 u(t,y) = f(y) (3.8) 

where f is an arbitrary function of y. 

General linear second order PDE is of the form 

a(t,y)utt +2b(t,y)uty +c(t,y)uyy +d(t,y)ut +e(t,y)uy +g(t,y)u = f(t,y) (3.9) 

where (t,y) ∈ Ω is a domain in t - y coordinates. 

Definition 3.1.3: Stochastic Differential Equation (SDE) 

A stochastic differential equation (SDE) is a differential equation in which one or more 

of the terms is a stochastic process, resulting in a solution which is itself a stochastic 

process Davis (2005). In probability theory, a stochastic process or sometimes random 

process (widely used) is a collection of random variables; this is often used to 

represent evolution of some random value, or system over time. This is the 

probabilistic counter part to a deterministic process (or deterministic system). 

Stochastic Differential Equation is used to model randomness of the underlying asset 

in valuing insurance liabilities. For example, the asset price behaviour in an interval ∆t 

can be denoted by the SDE given; 
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 ∆St = α(At,t)∆t + σ(At,t)∆wt, for t ∈ [0,∞) (3.10) 

3.4.1 Finite Difference Equation 

Let a region Ω in the Xt-plain be covered by a rigid (xn,tj). If all the derivatives in the 

PDE are replaced by difference quotients, the result is the finite difference equation. 

i.e., L[u] = f(x,t) in Ω is the PDE is equal to 

 D[Unj] = fnj(xn,tj) in Ω (3.11) 

The amount by which the solution to [U] = f fails to satisfy the difference equation is 

called the local truncation error. It can be represented by 

 Tij = D[Unj] − fnj (3.12) 

The difference Equation 

D[unj] = fnj 

is said to be consistent with PDE L[U] = f is 

 lim Tnj = 0 (3.13) 
h,t→0 

If Unj is the exact solution to D[unj] = fnj and unj is the solution of L[U] = f(PDE) evaluated 

at (xn,tj), the destigmatization error is defined as Unj − unj. 

The difference method is said to be convergent if 

 lim | Unj − unj |= 0,(xn,t) in Ω. (3.14) 
h,t→0 
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3.4.2 Finite Difference Approximation 

Finite difference method seeks to give solution to partial difference equation by a 

system of algebraic equations. It proceeds by replacing the derivatives in the equation 

by finite differences. They serve as ways of obtaining numerical solutions to partial 

differential equations. Types of difference methods are classified according to how we 

approximate the partial derivative with respect to time. 

In formulating finite difference method involves the following steps: 

• Partial difference equation 

• Area of space-time on which the partial difference equation is based must be 

met. 

• Initial boundary conditions to be satisfied. 

3.4.3 Types of Solving PDE’s 

The common types of finite difference method for solving PDE’s are explicit method, 

implicit method, and Crank-Nicolson which are types of difference equation. 

Depending on how we approximate the PDE with respect to time, we have: 

1. Explicit finite difference scheme, when we use the forward difference formula 

2. Implicit finite scheme, when we use the backwards difference formula 

3. Crank-Nicolson finite difference scheme, when we use the centred difference 

formula.That is finding the average of Explicit and implicit schemes. 

Another way of solving PDE Numerically is the Hopscotch method. 

4. Hopscotch, is a method which involves the combination of the explicit and implicit 

schemes. 

These methods differs in terms of stability, accuracy and execution speed. 
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3.4.4 Finite Difference formula of Ordinary Differential Equations 

(ODE) 

There are three commonly used finite difference formulas to approximate first order 

derivative of a function f(x). They are forward finite difference, backward finite 

difference and central finite difference. 

In this work, the central difference method and Hopscotch method would be used. 

Let’s consider Taylor’s series expansion of a function f(x) in the neighbourhood 

of x = xi 

  (3.15) 

where ∆x = xi+1 − xi solving equation 3.15 for fi, we have 

  (3.16) 

Using the mean value theorem, equation 3.16 becomes 

  (3.17) 

where , the order ∆x, indicates the error is proportional to to 

the step length (∆x)and also a second derivative of f. Hence 

  (3.18) 

This equation (3.17) is called the Forward Difference Formula. Also, 

  (3.19) 

This is given by 

  (3.20) 

with the error term . Equation 3.20 is called Backward 
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Difference Formula. 

Finally, subtracting equations 3.19 from 3.15, we get the central difference formula. 

Given by 

  (3.21) 

with the error  

 

Figure 3.1: Two dimensional grid 

3.4.5 Finite Difference Approximation for Partial 

Differential Equations(PDE) 

Partial derivatives denotes the local variation of a function with respect to a particular 

independent variable while all other independent variables are held constant, finite 

difference approximation of ordinary derivatives can be adapted for the partial 

derivatives. If there are two independent variables, we use the notation (i,j) to 

designate the pivot point, and if there are three independent variables, (i,j,k) are used 

where i,j and k are the counters in the x, y and z directions. Since in many financial 
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and engineering problems, the function f depends on two or more independent 

variables, hence the need for finite-difference approximation of partial derivatives. 

Figure 3.1 above is a two-dimensional finite-difference grid. If we consider the 

function f(x,y), then the finite-difference approximation for the partial derivative 

can be found by fixing the value of y at yi and treating 

f(x,yi) as a one-variable function. The forward, backward and central difference 



 

 

of  can be express as: 

 

  (3.22) 

  (3.23) 

  (3.24) 

Central-Difference Approximation of Second Partial Derivatives 

The central-difference approximation of second partial derivatives at (xi,yj) can be 

derived as 

  (3.25) 

  (3.26) 

and 

(3.27) 

Error of finite-difference approximation of partial derivatives To find the 

error associated with finite-difference approximation of partial derivatives, we use 

Taylor series expansion of f(x,y) around the point (xi,yj). 

That is, 
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Truncating equation 3.28 after the nth order, we have the error 

  (3.30) 

and truncating equation 3.30 after the nth order gives the error 

  (3.31) 

3.4.6 Finite difference approximation for two dimensional 

PDEs 

Let’s consider a two-dimensional PDE 

  (3.32) 

such that a ≤ x ≤ b and c ≤ y ≤ d. If we let U(a,y) = Ua, U(b,y) = Ub, 

U(x,c) = Uc and U(x,d) = Ud, where Ua, Ub, Uc and Ud are the boundary 

conditions at y and x respectively. Note that, ∆x is not necessarily equal to ∆y, but for this 

case we let ∆x = ∆y = h. Let’s consider the grid below: 

At the generic points 

  (3.33) 

Using the central difference scheme we have 

  (3.34) 
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Figure 3.2: Simplified two dimensional grid 

and have 

  (3.35) 

Adding equations 3.34 and 3.35, we have 

  (3.36) 

⇒ Ui−1,j + Ui+1,j − 4Ui,j + Ui,j−1 + Ui,j+1 = h2gi,j 

At P1: i = 1, j=1 

⇒ U0,1 + U2,1 − 4U1,1 + U1,0 + U1,2 = h2g1,1 but U0,1 

= Ua, and U1,0 = Uc 

⇒ −4U1,1 + U2,1 + U1,2 = h2g1,1 − Ua − Uc 

(3.37) 

⇒ −4P1 + P2 + P4 = h2g1,1 − Ua − Uc 

At P2 : i = 2,j = 1 

(3.38) 

P1 − 4P2 + P3 + P5 = h2g2,1 − Uc (3.39) 

Using the computational model blow, 

Writing the above systems in matrix, we obtain 
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 −4 1 0 1 0 0 0 0 P1  b1  

 

      

      

  1 −4 1 0 1 0 0 0 0 P2  b2  

      

      

      

  0 1 −4 0 0 1 9 0 0 P3  b3  

      

      

      

  1 0 0 −4 1 0 1 0 0 P4  b4  

      

      

  0 1 0 1 −4 1 0 1 0 P5  = b5  

      

      

      

  0 0 1 0 1 −4 0 0 1 P6  b6  

      

      

      

  0 0 0 1 0 0 −4 1 0 P7  b7  

      

      

  0 0 0 0 1 0 1 −4 1 P8  b8  

 

      

      

      
 0 0 0 0 0 1 0 1 −4 P9 b9 

where b1 = h2g1,1−Ua −Ub,b2 = h2g2,1−Uc,b3 = h2g2,1−Uc,b4 = h2g3,1−Ub,b4 = 

h2g1,2−Ua,b5 = h2g2,2,b6 = h2g3,2−Ua−Ub,b7 = h2g1,3−Ua−U−d,b8 = h2g2,3−Ud 

and b9 = h2g3,3 − Ub − Ud        
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0 (3.40) 

Also B1 = b1 : b3,B2 = b4 : b6,B3 = b7 : b9,X1 = P1 : P3,X2 = P4 : P6 and 

X3P7 : P9, we obtain the matrix 

 

A 

 

 
 I 
 
 

 

 

O 

I 

A 

I 

    

O X1  B1  

 

    

    

I X2  = B2  

    

        

A X3 B3 

(3.41) 

which is simplified in the form HX = B When systems are expressed in the form HX = B, 

we have several solution techniques in solving it. 

3.4.7 Solution Techniques 

There exist different types of solution techniques. Notable among them are the LU 

and QR decomposition, Gauss-Jordan Elimination, Gaussian Elimination and iterative 

methods. The iterative methods include Gauss-Seidel Jacobi and relation methods 

(Successive Under Relaxation and Successive Over RelaxationSOR). 

Iterative Methods 

As stated earlier, the common iterative techniques for solving linear systems are Gauss-Seidel, 

Jacobi and SOR method. The basic idea is solve the ith 
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a11x1 + a12x2 + a13x3 + a14x4 = b1 (3.42) 

a21x1 + a22x2 + a23x3 + a24x4 = b2 
(3.43) 

a31x1 + a32x2 + a33x3 + a34x4 = b3 (3.44) 

a41x1 + a42x2 + a43x3 + a44x4 = b4 

Solving for x1,x2,x3,x4 in equations 3.42 to 3.45, we have 

(3.45) 

  (3.46) 

  (3.47) 

  (3.48) 

  (3.49) 

Iterative methods are stopped at certain conditions. Below are two possibilities: 

1. Iterations are stopped when the norm of the change in the solution vector x from iteration 

to the next is sufficiently small or 

2. When the norm of the residual vector, k Ax−b k, is below a specified tolerance. 

3.4.8 Stability, Consistency and Convergence of PDE’s 

We have a finite difference Scheme produced, when the partial derivatives in the 

partial differential equation governing a phenomenon are replaced by a finite 

difference approximation. A partial difference equation is an equation that involves 

both a function and its partial derivatives. 
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Consistency 

A finite difference scheme operator is consistent if the operator reduces to the original 

differential equation as the small increments in the independent variables fades out 

i.e. (∆s,∆t −→ 0). For us to get a specific solution to a partial differential equation, 

additional conditions must be imposed on the solution function. Typically, these 

conditions occur in the form of boundary values that are prescribed on all/part of the 

perimeter of the region in which the solution is sought. The nature of the boundary 

and boundary values are usually the determining factors in setting up an appropriate 

numerical scheme for obtaining the approximate solution. 

Stability 

Stability in this case means the error that is caused as a result of small perturbation in the 

numerical solution remains bound. 

Convergence 

Converge in this work could mean that, the finite -difference solution approaches the 

true solution as the partial differential equation as the increments ∆x, ∆t go to zero. 

The basic idea of converges and stability analysis for a linear PDE consist in writing the 

solution to the equation as a complete Furrier Series and analysing a generic 

component of the solution. For stability in PDE, we need to get a boundary condition 

and initial condition. 

3.4.9 Stability: for a PDE with a bounded solution, 

The difference method D[Unj] = fnj is said to be stable if the Enj is the error coming 

from the computations of the difference equation as one progresses.i.e. If for some 

constant M and some positive integer Y | Enj |< M,(j,Y ]. 
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Lax Equivalence theorem: Given a well-posed initial boundary value problem and a 

finite difference problem consistent with it, stability is both necessary and sufficient 

for convergence. 

Von-Newman Stability Criterion: 

A difference method for an initial boundary value problem with a bounded solution is Von-

Newman stable if extended solution to D[Unj] = 0. If the form 

Unj = ξjekn∆x has the property | ξ |≤ 1. 

Theorem: For two level difference methods, Von-Newman stability is both necessary and 

sufficient for stability. 

Consider an initial-boundary value problem with N nodes in the x-direction and define 

a column vector f errors at level j En = (E1j,E2j,...Enj)T for two level difference methods, 

the errors at levels j and j+1 are related by Ej+1 = CEj, where c = n × n matrix. 

Let p(c), the spectral radius of c, denote the maximum of the magnitudes of the eiganvalues of 

c. 

Matrix Stability Criterion: 

A two-level difference method for an initial boundary value problem with a boundary solution is 

matrix stable if p(c) ≤ 1 

Matrix stability criterion is a necessary condition for for stability of two level-level method. 

Theorem: let C be a symmetric or similar to a symmetric matrix, where by all 

eigenvalues of C are C. Then matrix stability is necessary and sufficient for stability. 

3.4.10 Stock Price and Contract Dynamic Model 

If we let At denotes market value of the insurer’s asset portfolio, Lt denotes the 

policyholder’s account balance and Bt = At − Lt is the bonus reserve at time t. This 

basically describes a simplified form of the liability and asset situation in relation to a 

given contract but not necessarily a company’s balance sheet. It is assumed that the 
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insurance companies operates in a frictionless complete and arbitrage-free financial 

market over a time interval [0,T], where time T corresponds to the expiration date of 

the insurance contract. As the insurance contract expires at time T, the insurance 

company closes and its assets are liquidated and distributed to stakeholders Chunli 

and Jing (2014). Since charges are disregarded, the insured’s account balance at time 

zero, Lo equals the single up-front premium P; Lo = P. If the contract is lapsed at time 

vo ∈ 1,...,T, the insured (policyholder) receives the current account balance Lvo. Also, 

the insured may surrender his/her policy at any time during the contract and is 

entitled to a surrender value and share holders are assumed to be paid dividends 

during the anniversaries as compensations for the adopted risk. According Bjarke et 

al. (2001), stocks and bonds are are liquid assets insurance companies largely invest 

in making the observation of market prices easy. For this reason, asset(A) is traded. 

L(t) is the policy account balance, which can be considered to be the funds set aside 

to cover the insurance contract liability of a distributed reserve. B(t) is the buffer, 

which protect the policy reserve from unfavourable fluctuations in the asset base. The 

dynamic asset side is modelled when considering the policy interest rate. 

3.4.11 Asset Dynamic Models 

Under this section the geometric Brownian motion with deterministic interest rate 

and a geometric Brownian motion with stochastic interest rate Metescu et al. (2013), 

where classical Black-Scholes set up is used. The asset process evolves according to 

stochastic differential equation under the risk-free measure Q. 

 dAt = rAtdt + σAAtdWt,Ao = P(1 + xo) (3.50) 

where r is the constant short rate, σA is the volatility of the asset process A and W is the 

standard Brownian motion under Q(martingale). 

Asset prices move randomly because of the efficient market hypothesis. The hypothesis give two 

basic and important informations: 
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• In the present price is reflected fully the past history and holds no further information. 

• An asset new information is responded immediately to by the markets. 

The arrival of new information about asset prices as time goes on can be said to be asset 

price modelling. Anticipated prices of assets follows the Markov process based on the 

above assumptions by Wilmott, P., Howison, S. and Dewyne, J. 

(1995). 

3.5 Black-Scholes set up for the Valuation model 

Black and Scholes in 1973, tried their best to formulate PDE’s that governs contingent 

claims behaviour. They also, solved the partial differential equation, which today has 

brought changes in the general picture of how to price derivatives as financial 

instruments. 

Lets consider the concept of arbitrage and Hedging, which allow the establishment of 

relationship between prices and hence determine these prices when using the Black-

Scholes set up to the valuation model. 

3.5.1 Hedging 

Hedging is defined as risk trading carried out in financial markets. Businesses do not 

want market-wide risk considerations which they can not control and to interfere with 

their economic activities. Any market parameter who sells derivatives on his own 

account will say that hedging is key to pricing. If a contract is not hedged, one can sell 

it at any price, even the right one, and still lose money. The price of the contract must 

be the cost of the hedge, plus margin, and the profit/loss of the deal will depend 

crucially on the hedge being effective. Hence hedging, is said to be a financial strategy 

used to reduce the risk of investing in financial markets. This suggest that as one is in 

business, hedging is an important aspect to consider when one really wants to make 

a business success. Delta hedging is one very important hedging strategy. The delta, 
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∆, of the option is defined as the change of the option price with respect to the change 

in the price of the underlying asset. In other words, it is the first derivative of the 

option price with respect to the stock price: 

 

3.5.2 Arbitrage 

The basic concept that underlays the theory of financial pricing and hedging is 

arbitrage. Also, described as a way of offsetting potential loss or gains incurred by a 

companion investment. Finance theory has assumed that investments that give 

guarantee returns are based on risk-free- existence with no default Ali (2013) cited 

Wilmott et al. (1995). The returns made on the highest risk-free portfolio (assets) is 

the same return from a bank if same amount were put in the bank. Taking the 

advantage of a price difference between two or more markets: striking a combination 

of matching deals that capitalize upon the imbalance, the profit margin being the 

difference between the market prices. In theory, an arbitrage is a transaction that 

involves no negative cash flow at any probabilistic or temporal state and a positive 

cash flow in at least one state: in simple terms, it is the possibility of a risk-free profit 

at zero cost (Ali,2013). 

3.5.3 The Black-Scholes Analysis 

When developing a model for the price of an asset, it will be important to do the 

modelling for the price of an asset itself. Theory of Economics and data show that, 

returns made on assets consists of two parts; First, values of the asset increases with 

time at the drift rate (r). Secondly, values of an asset as time changes depends on a 

lot of influential factors. These changes are expressed by a random variable X with 

unique properties. A price change of a risk-less asset as time goes is: 

 ∆A = Ar∆t (3.51) 

but no stock is risk-less. Risk is modelled by the stochastic term X with properties: 



 

54 

√ 

a. ∆X = φ ∆t, φ ∼ N(0,1) 

b. The value of ∆X in the time interval (∆t) does not depend on ∆X. 

For any time steps. 

  (3.52) 

  (3.53) 

Hence, it could be possible to model an asset behaviour as:  

∆A = rA∆t + σA∆X, (3.54) 

AS ∆t → 0. 

 dA = rAdt + σAdX (3.55) 

Equation (3.55) is the asset price model and we make returns with each asset price 

variability, which is defined as the variability over (divided) by the original value. 

Considering a small subsequent time interval dt, during which A changes to A + dA as 

shown, the return on the asset  is modelled. 

If σ = 0 

 

  (3.56) 

 

 At = A0er(T−t) (3.57) 

Where A0 is the value of the asset at time t=0, thus σ = 0, the asset is totally deterministic and 

the future price of the asset can be predicted with certainty. 

From equation (3.55), the Asset A follows an Itoˆ process according to Wilmott et al. 

(1995). 
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Black-Scholes analysis assumes that the prices of asset behave as just demonstrated and the 

following are the assumptions it follows: 

1. Asset price follows log normal random walk. i.e. the stock price can go up or down 

with the same probability. Also, the stock price in time t + 1 is independent from the 

price in time t. 

2. Risk-free interest rate r and the asset volatility σ are known functions of time over 

the life of the option/contract. 

3. There is no transaction cost associated with hedging a portfolio. 

4. Underlying asset has no dividends during the life of the option/contract. 

5. There are no arbitrage possibilities. 

6. The Black-Scholes model assumes European style options which can only be 

exercised on the expiration date. American style options can be exercised at any time 

during the life of the option. Thus, making American style option the more valuable 

due to their greater flexibility.i.e. trading of the underlying asset can take place 

continuously. 

7. Short selling is permitted and the assets are divisible: The Black-Scholes model 

assumes that markets are perfectly liquid and it is possible to purchase or sell any 

amount of assets or options or their fractions at any given time(liquidity). 

Insurers are actually selling a naked put option to the buyer of the insurance. 

Therefore, the method of finding the value of put options can be applied in the 

valuation of the life insurance contract. 

Consider a constant V(A, t), where V is not necessary a call or put but the value of the whole 

portfolio of different contract. Computations from stochastic calculus (Ito,sˆ process) . Since 

the portfolio is a function of the value of the underlying asset A and time t; both expected 

drift and volatility can change over time. A n-dimensional Itoˆ process, is a process that can 

be represented by 
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  (3.58) 

In which a and b are functions of the value of the underlying asset (A) and time 

(t). 

Where W is an m-dimensional standard Brownian motion and a and b are n- 

dimensional (n × m)-dimensional Ft-adapted process respectively. 

Xt = X0 + att + btWt 

 dXt = atdt + btWt where X0 = 0 (3.59) 

where the n-dimensional stochastic differential equation has the form 

 dXt = a(Xt,t)dt + b(Xt,t)dWt (3.60) 

We can represent the above equation as 

where (Xs,S) is the function of the stock price and time.Hence suppose x follows a 

general Itoˆ process 

dx = a(x,t)dt + b(x,t)dz 

Tailor’s expansion of solving diffusion process f(xt) is given by 

(3.61) 

  (3.62) 

all terms beyond the second order is zero. Dividing by 

dt and let dt → 0 gives 

 
since 

 

. 

the second term on the right hand side must vanish given the chain rule 
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but when we replace the second term by a non-differentiable Brownian motion 

(Bt2). Hence, the Taylor’s theorem to the second-order is 

df(Bt) = f0(Bt)∂Bt + f00(Bt)(∂Bt)2 

taking limit ∂t → 0 effectively involves replacing ∂ by d ignoring the second order and 

higher order terms. However with Brownian motion, it turns out that the second-

order term (dBt2) cannot be ignored and it must be changed to dt. 

 

 

Next we want to substitute in for ∂xt in terms of ∂t and ∂Bt. Let’s introduce one final 

complication,that is the form of Itoˆ’s lemma that we will consider is for functions not 

just for a diffusion process but also function that explicitly depend on time. In other 

words, function of the form f(t,xt). Using the chain rule: 

 

now using chain rule for f(t,xt) then 

 
Consider a contract of V (A,t), where V is not necessarily a call or a put but the value 

of the whole portfolio of different contracts. We use Ito,sˆ lemma, that states that if x 

follows a general Itoˆ process 

 dx = a(x,t)dt + b(x,t)dz (3.63) 

and f = f(x,t) then 

  (3.64) 

Applying Ito,sˆ lemma to the value of the whole portfolio V (A,t), we have 
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  (3.65) 

This expression is difficult to solve due to the presence of dz (the stochastic term). 

The main idea behind Black-Scholes model is for us to create a portfolio which consist 

of shares of assets and derivatives that is instantaneously risk-less and thus, the noisy 

part eliminated in equation (3.63). Portfolio at any time consist of one long position 

in the derivative and a short position of exactly  shares of the underlying assets. 

The portfolio value is calculated by 

  (3.66) 

The instantaneous change of the portfolio Π is given as: 

  (3.67) 

putting equations (3.59),(3.65), and (3.66) together, we have 

 

 

  (3.68) 

The instantaneously change in the risk-less portfolio is independent of the stochastic 

term dZ as in equation (3.68). To maintain a portfolios risk-less property, then at every 

point in time t must be balanced.  cannot be maintained for different values of t. 

The return on the amount Π invested in risk-less assets would see growth of rΠ dt in 

time dt considering the concept of arbitrage, supply and demand with assumptions 

that there are no transaction cost. Since it is a risk-free portfolio, the assumption that 

there are no arbitrage opportunities shows that it must attract exactly the risk-free 

rate. That is 
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Π = rΠt 

 ⇒ dΠ = rΠdt. (3.69) 

we have: 

 

By simplifying gives the the Black-Scholes partial differential equation(PDE) 

  (3.70) 

In analysing contract/options on a path-dependent quantity, such as the the average 

asset price, Black-Scholes approach become inadequate. This is because there are 

many realisations of the asset prices random walk leading to the current value, any 

two of these give a different value for the path-dependent Wilmott et al. (1995). This 

led to the introduction of the variable S in addition, A and t which will measure the 

relevant path-dependent quantity. since we use continuously sampled quantities for 

the pay off of average strike option, our average will depend on a time integral. 

To look at the time integrals of the random walk, consider European option/contract with pay-

off depending on A and on 

  (3.71) 

Note: f is said to be function in terms of A and t. The pay-off at expiring for average strike call 

is 

  (3.72) 

We have f(A,t) = A. Let 

  (3.73) 
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We treat P, A and t as independent variables since the history of the asset price is 

independent of the current price. Note that, P varies depending on the variation of 

the random walk. The pay-off depends on both P and A, the value of an exotic path-

dependent contract is written as V(A,P,t). This means that, the value of the option 

depends on the current asset price A, the time t and history of the asset P. The 

changes in P due to small changes in t and A is given by the stochastic differential 

equation 

  (3.74) 

After simplifying equation (3.74); the order of dt, we have 

  (3.75) 

where dp = f(A,t)dt. 

The above equation (3.75) is a Stochastic Differential Equation (SDE) of P without 

random the random component. Depending on A,t and P, to value a contract, we 

apply Itoˆ0s assumption to V(A,P,t) and this gives 

  (3.76) 

Since dp introduces no new source of risk, it is anticipated that the option can be hedge 

using the underlying asset only. Considering arbitrage leads to 

  (3.77) 

Note that, the path-dependent quantity P is updated discretely and is therefore 

constant between sampling dates. The PDE for the option value between sampling 

dates becomes just the basic Black-Scholes equation with P treated as a parameter. 

So in valuing the path-dependent option with discrete sampling, we start from the 
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expiry date, when the option value is known (i.e. equal to the payoff) and work 

backwards. 

Hence we have: 

  (3.78) 

3.5.4 Definition 3.1.6 Portfolio 

A portfolio is a position in the market that consists in long and short positions in one 

or more stocks and other securities. The value of a portfolio could be denoted 

algebraically as a linear combination of stock prices and other securities’ values: 

. 

The market participant holds aj units of stock Sj and bk units in derivatives Fk. The 

coefficients are positive for long positions and negative for short positions. For 

instance, a portfolio given by 2F -3S means that we buy 2 securities and sell 3 units of 

stock (a position with 2 securities long and 3 stocks short). 

Definition 3.1.7 Risk-less portfolios 

A portfolio P is called risk−less if the increments dP are completely predictable. In this 

case the increments’ value dP should equal the interest earned in the time interval dt 

on the portfolio P. This can be written as 

dP = rPdt 

Where r denotes the risk-free rate and for the seek of simplicity the rate r is usually assumes 

as a constant. 
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3.6 Dividend Paying Asset 

Equation (3.78) known as the Black-Scholes equation, is said not earn dividends as its 

assumption as far as the contract is valid. 

Let Φ be a known constant continuous divided yield. This means the policyholder 

receives dividend (ΦA∆t) in the range of the time interval ∆t. After the dividend, the 

share value is lowered making the expected rate return r be (r − Φ). So the geometric 

Brownian motion model in equation (3.59) becomes. 

dA = (r − Φ)Adt + σAdX 

and the Black-Scholes equation becomes: 

(3.79) 

  (3.80) 

From above equation 3.80, it is considered that at constant rate dividends are paid 

continuously Hull (2003). 

3.7 Survival Rates and The Black-Scholes Model 

The prevalence of long term diseases that co-exist simultaneously in the same 

individual over time commonly known as multimorbidity has increased globally, partly 

due to noticeable improvements in health systems and ageing populations. This 

phenomenon is gradually becoming a clinical representation of the elderly 

population. 

For this reason, most studies are largely configured to the prevalence and impact of 

multimorbidity. The prevalence of multimorbidity has often been investigated in few 

countries, particularly Australia, Sweden and Canada. A systematic review of various 

studies on the prevalence of multimorbidity in different countries published between 

1980 and September 2010 revealed that, the prevalence of multimorbidity varies 

from 3.5% to 98.5% in primary care and 13.1% to 71.8% in general population. In 

Australia, the overall prevalence of multimorbidity was estimated as 37.1%. 29.0% 0f 

patients who attended a general practice and 25.5% of the general population. 

Moreover, the overall prevalence of multimorbidity in Dutch population was 
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estimated as 13% and among those older than 55 years the prevalence was estimated 

as 37% Gabriel et al. (2014). 

Multimorbidity increases the rate of mortality and a variety of adverse health 

outcomes. The state of a person with multimorbidity over over time depends on the 

efficacy of medication given and estimated survivorship may be nonmonotonic. 

Parametric survival distributions that allow for non-monotonic hazards can be utilised 

under the assumption that risk changes over time. Although there is a growing body 

of knowledge regarding multimorbidity, only few studies have analysed non random 

chronic disease clusters, often referred to as multimorbidity patterns or clusters 

Gabriel et al. (2014). 

To model and analyse the probability of a policyholder having the chance of 

developing the multimorbidity condition, the exponential distribution is employed for 

the data to be fitted. Exponential distribution model is used because it accommodates 

the non-monotonicity of a hazard function and does not depend on the "memory". 

The survival survival rate of a policyholder is obtained from the relationship between 

a survival function and a hazard function. 

3.8 Parametric Survival distribution 

There are some distributions that have been used frequently in the literature of 

survival analysis, such as the Log-Logistic, Log-Normal, Gamma, Weibull and 

Exponential distributions. 

To model and analyse the probability of a policyholder developing multimorbidity 

condition, the exponential and Weibull distributions are employed for the data to be 

fitted. Weibull distribution model is used because it accommodates the non-

monotonicity of a hazard function and does not depend on the "memory" of the 

policyholder’s condition. The survival rate of a policyholder is obtained from the 

relationship between a survival function and a hazard function 
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3.8.1 Exponential Distribution 

The simplest distribution for survival time is the Exponential distribution, with density 

function as 

p(ti/λi) = λiexp(−λiti). 

Exponential distribution is said to be probability distribution that describes the time 

between events in a Poisson process (a process in which events occur continuously 

and independently at a constant average rate) with a function exp(n, rate = 1) in R.The 

exponential distribution has a unique property of "lack of memory", because of its 

constant hazard rate λ. The probability to failure within a particular time interval 

depends only on the length, not on the location of this interval. In real-world 

application, the assumption of a constant rate is rarely satisfied. 

3.8.2 Log-logistic AFT Model 

The log-logistic model is a parametric model which accommodates the acceleration 

failure time (AFT) assumption. The log-linear form of the AFT model is given by this 

equation; 

log(Ti) = Xiβ + σ ∈i 

Where log(Ti) is the log of failure time. β is the vector of model parameters 

corresponding to the covariate vector , Xi,∈ is a random error term, and σ is a scale 

parameter. If the errors in the model are assumed to follow a logistic distribution, 

then the resulting model is the log-logistic. The log-logistic model has a survival 

function S(t) of the form; 

 

and the corresponding hazard function h(t) is given by 
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Where the shape parameter γ > 0 and . The log-logistic distribution allows for 

non-monotonic hazards, i.e. those that can increase initially and then decrease. 

Specifically, if γ > 1, the hazard increases with duration to a maximum point and then 

decreases over time. On the other hand, if γ ≤ 1 the hazard decrease with time or 

duration. 

After incorporating the survival rate (S) into the Black-Scholes model, then we have: 

 

3.9 Continuous Dividends 

To construct a models in which dividends could be paid continuously might sound 

unreasonable for a single stock, but will not be unreasonable for options index funds. 

Let’s consider you purchased some number of shares in a company 700 funds, it is 

expected that you continue to receive dividends at many different times in a year. 

Suppose at constant rate r the asset pays dividend (dividend yield), that is during time 

dt, rAdt dividends are received. Considering the well known stochastic model, we 

have: dA = rAdt + σAdX − rAdt = (r − S)Adt + σAbX. Proceeding in the same fashion 

as in the derivation of the Black-Scholes PDE, lets treat r − s in place of r − φ as in 

equation 3.78 and we have 

  (3.81) 

Assumptions of the model are: 

• The survival rate S is lies between 0 and 1 

• The survival rate is the median survival rate for all rates as time changes or whiles the 

contract still active. 

Note: For this model (continuous dividend paying paying asset), replace r with r - φ 
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3.9.1 Numerical Methods 

A closed form solutions does not exist for American and Asian options, the only way 

market participant will be able to obtain a price is by using an appropriate numerical 

method. Some of these numerical methods are MonteCarlos Simulation, Binomial 

tree methods, finite difference method and Riskneutral valuation methods. 

In this paper, we will compare the Crank-Nicolson and Hopscotch methods as the explicit method 

is conditionally stable in the valuation of life insurance contract embedded with surrender 

option. 

3.10 Finite Difference Approximation for BlackScholes DE 

By way of approximating the DE over the integrating area by systems of equations; 

obtaining numerical solutions to the Black-Scholes partial differential equation is 

finite difference methods. The explicit method, the implicit method the Crank-

Nicolson method and the Hopscotch method are the well known methods for finding 

solution to the Black-Scholes Partial differential equations. 

In formulating a PDE problem, three components are considered, these are: 

1. The PDE. 

2. Space-time in which the PDE is desired to be satisfied. 

3. Initial conditions and boundary(auxiliary) to be satisfied. 

The finite difference methods differ in stability, accuracy and execution speed 

though they seem related. This work will consider the Crank-Nicolson method and 

the Hopscotch method of solving the Black-Scholes partial differential equation. 

Discretization of Black-Scholes Equation 

Finite difference method requires the discretization of the pricing of the partial 

differential equation and the boundary conditions using a forward difference, a 

backward differential or central difference approximation. The Black-Scholes 
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PDE in terms of dividend paying asset and the surrender rate is written as: 

 

 

Figure 3.3: The mesh points for the finite difference approximation in a 

simplified form is written as: 

  (3.82) 

Note: For continuous dividend paying asset and the surrender value, replace r with r − 

S 

The equation is discretized with time (t), and with respect to the price of the 

underlying asset(A). The (A,t) plane is divided into a grid form using approximate 

infinitesimal steps (∆A) and ∆t by small fixed finite steps. An array of N+1 equally 

spaced grid points t0,t1,...,tN is used to discretize the time ti+1 − ti = ∆tand∆t = T/N. Also, 

since asset price cannot be negative and it is assumed that, Amax = 2A0. We also have 

M+1 equally spaced mesh points A0toAM and this used to discretize price of the asset 

derivative with Aj+1 − Aj = ∆j and 

. We are able to compute the solution at discrete points with a total grid 

points of (M+1)(N+1). Using the grid coordinates (i,j), based on a rectangular region 

on (A,t) plane with sides (0,Smax) and (0,T) we have the (i,j) points on the grid 
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corresponds to time i∆t for i = 0 to N and the asset price j∆A for j=0 to M. As shown 

in Figure 3.3 below where 

Representing (A,t) in the grid by Vi,j, their respective expansions of V (A+∆A,t) and V (A − ∆A,t) 

in Taylor series are: 

  (3.83) 

  (3.84) 

Changing the derivatives to difference equation, then equation (3.88) gives the forward 

difference equation: 

 

  (3.85) 

and equation 3.78 gives the backward difference equation: 

 

  (3.86) 

Subtracting equation (3.84) from equation (3.83) gives the central difference: 

 

  (3.87) 

To estimate the second order partial derivatives, we use the central approximation. By adding 

equations (3.83) and (3.84), we get 

 

  (3.88) 

Expanding V (A,t + ∆t) in Taylor series, we obtain: 
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  (3.89) 

Boundary and Initial Conditions 

The solution to Black-Scholes PDE can either have uncountable of solutions or no 

solution because of boundary or initial conditions. Hence, the need to state the 

boundary and initial conditions for a contract like the European style contract, whose 

value (payoff) is given by maximum(K − AT ,0). When an asset is lost it value, a put is 

worth its strike price K. This is 

 Vi,0 = K (3.90) 

for i = 0,1,...,N The value of the contract approaches zero (0) as the price of the asset 

increases. Hence Amax = AM and this means 

 Vi,M = 0 (3.91) 

fori = 0,1,...,N 

Since the value of the contract is known at time T, we can find the initial condition 

 VN,j = maximum(K − j∆A,0) (3.92) 

forj = 0,1,...,M 

The initial condition results in the value of the contract V at the end of the period of 

the condition and not the beginning, implying a backward move from maturity to time 

zero. The American style is also handled almost the same way, 

 VN,j = maximum(j∆A − K,0) (3.93) 
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forj = 0,1,...,M 

3.10.1 Approaches of Finite Difference Scheme 

We will consider four approaches of the finite difference: Implicit finite difference 

method, explicit finite difference method, Crank-Nicolson method and Hopscotch 

method. Let’s consider the European contract stated in equation (3.87), suppose that 

T is the maturity of the asset and Amax is the maximum asset price. Let M∆A = Amax 

and N∆T = TVI,J denotes the asset value at (i∆t,j∆t). 

Explicit Finite Difference Method 

We can have an expression giving the subsequent value next value Vi,j explicitly in 

terms of Vi+1,j−1 and Vi+1,j+1. since we know the value of the contract at maturity time. 

We therefore discretize Black-Scholes partial differential equation (PDE) in equation 

(3.86) by denoting the forward difference for time and central difference for the asset 

price discretization. We have; 

 

Now making Vi,j the subject, we obtain 

 for i = 0,1,...,N and j = 1,2,...,M 

(3.95) 

Where the weights αj,βj andγj are given by 

  (3.96) 
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Since the finite difference for the discretization of the time is accurate to 0(∆t) and that 

of the central difference of the asset discretisation is 0(∆t,∆t2). 

The weights, which happens to be the risk-free probabilities of the (3) assets 

prices A−∆A,A and A+∆A at t+∆t adds up to one (1) and  

is the discounted factor. But we can get negative probabilities unless further 

restrictions are imposed on ∆t and ∆A. This gives results which would not converge 

to the solution of PDE and this shows the explicit method is unstable unless those 

restrictions are imposed on ∆t and ∆A. The conditions to have non negative 

probabilities is σ2j2∆t < 1 and r < σ2j Hull (2003). This system is 

represented in the matrix form as    
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α1 
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Vi,0 − α0 

   

   

   

  Vi,1  

 

   

  ...  

=     

   

   

   Vi,M−1  

   

   

   

Vi,M − CM (3.97) 

These series of equations can be put in the form; AVi+1,j = Vi,j for j = 0toM and the error 

ones (terms) are ignored since the boundary conditions cater for them. 

The vectors of the stock prices Vi+1,j is known at time T from the initial condition we 

solve for Vi,j by working backward using the matrix above; made up of the probabilities 

αj,βj and γj which are known probabilities and the backward iteration leads to the 

contract value obtained at time-zero. 



 

 

Stability of Finite Difference Scheme 

In the asset price and time discretization are two fundamental sources of truncation 

error. A numerical scheme is characterized by consistency, stability and convergence. 

These fundamental factors are linked by Lax Equivalence theorem which states; that 

for a given a posed linear initial value problem and a consistent finite difference 

scheme, stability is the important and sufficient condition for the convergence (Smith, 

1985). The eigenvalues λi of n × n matrix 
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is given by  for i= 1,2,...,N where x, y and z may be real 

or complex number. The system is stable if | λi |≤ 1 (Smith, 1985). 

3.10.2 Stability of the Explicit Finite Difference Scheme 

Analysing the stability of Explicit Difference Method, we can use the matrix (A), which is 

symmetric. When λi is the ith eiganvalue of the matrix (A), we get; 

k A k2= ρ(A) = maximum | λi | 

Then eigenvalues λi are produced by 

  (3.98) 



 

73 

Substituting α,βandγ into equation (3.100). 

Note, the the identity; 

 

 

 

 

 

 

We expand  using binomial expansion; where  

We obtain 

 Ignoring other terms;  

Note  

The scheme is stable when 

 

As  

Now we make 1 − 2σ2j2∆t stable; by solving 

0 ≤ σ2j2∆t ≤ 1 

Hence 0 ≤ σ2j2∆t ≤ 1. 
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Therefore the scheme stability, convergence and consistency for 0 ≤ σ2j2∆t ≤ 1. 

Therefore, the explicit finite difference method is conditionally stable. 

The Implicit Finite Difference Method 

let’s substitute equations 3.91, 3.92 and 3.33 into equation (3.86) and express Vi+1,j 

implicitly in terms of the unknowns Vi,j−1,Vi,j and Vi,j+1. That is, we discretize Black-

Scholes PDE in equation 3.86 using FD for time and central difference for the asset 

price. We have 

 

making Vi+1,j the subject in equation 3.99 

  (3.100) 

for i = 0,1,...,N and j = 1,2,...,M - 1. 

Similarly to the explicit method, the implicit method is accurate to 0(∆t,∆A2). The weights 

x, y and z are given by 

  (3.101) 

The system of equations in tridiagonal matrix form is    

   

 Vi+1,0 − x0 y0 z0 0 ... 0 

   0 0 

  

Vi,0 
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 x1 y1 z1 ... 0 0 0 

     Vi+1,M − zM 0 0 0 ... xM yM Vi,M 

The system is written as AVi,j = Vi+1,j for j = 0,1,...,M. The matrix A has yj = 1 + σ2j2∆t is 

positive in its diagonal form. A matrix produced can be nonsingular if the diagonal 

elements product are also producing non-zero results. We can solve by working out 

for the inverse of the matrix A, A−1. Applying the boundary conditions with (3.104) 

changes the element yo,ym = 1 and z0,xM = 0 in the matrix A. 

Implicit Finite Difference Method Stability 

The eigenvalue is produced by 

 (3.103) Substituting for 

x, y and z in (3.107) and simplifying, then we obtain 

 

we then have 

  (3.104) 
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The change from cos to sin is based on the truncation of the binomial expansion. This 

scheme stability is achieved when 

 

this implies that 

  (3.105) 

As ∆t −→ 0,N −→ ∞ and . 

Therefore the scheme is unconditionally stable, convergence and consistent. 

3.10.3 The Crank Nicolson Method 

This method is defined as the hybrid between the implicit finite difference method 

and explicit finite difference method. When we apply the Crank-Nicolson idea to the 

Black-Scholes model (finding average of Implicit and Explicit schemes), we figure out 

the following grid equation: 

 

+ 

 

 (3.106) From above, re-arranging will give 

 jVi,j−1 + βjVi,j + γjVi,j+1 = xjVi+1,j−1 + yjVi+1,j + zjVi+1,j+1 (3.107) 

for i = 0,1,...,N and j = 1,2,...,M-1. 

Where our parameters in equation (3.07); αj,βj,γj,xj,yj and zj are given by 
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  (3.108) 

Equation (3.108) system of equations could be expressed as , 

resulting in triadiagonals and this will give    
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(3.109) 
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Vi,M Solution to System 

The are elements of vectors Vi+1 known at time T. We can show the system in equation 

(3.109) as Vi = C−1DVi+1. We obtain the value of V as the value of the life insurance 

contract by iterating many times from time T to time zero. The diagonal entries of the 

matrix C is  and its positive with non-zero diagonal elements. 

Hence, the matrix is non-singular as the diagonal entries are non-zero. 

3.10.4 Accuracy of Crank-Nicolson Method 

The Crank-Nicolson method with the accuracy 0(∆t2,∆A2), making it more accurate 

than the explicit and implicit method. From equating the central and symmetric 

central differences and expand Vi+1,j by Tailor series at  we have: 

 (3.110) 

Expanding  gives 

  (3.111) 

Adding equations (3.110 and 3.111) and finding the average, we have 

 (3.112) This implies that 



 

79 

 

From above equation (3.113), the right-hand side of the equation represents the difference 

central at i and i + 1. Diving by ∆A2 we obtain 

 

This is the symmetric CDA (3.114). The subscript j is arbitrary and we deduce the central 

DA as: 

 

Dividing by 2∆A, we get 

  (3.116) 

 

Figure 3.4: Partial Difference in grid form when solved 

and this is referred to as the first order central difference approximation. Subtracting 

equation (3.115) from (3.114), we obtain the approximation of at , that 

is: 
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  (3.117) 

Therefore, the Black-Scholes formula centred at  has a FDA as 

Kerman (2002), re-arranging equation (3.122) we get equation of the form 

(3.111)which is the exact Crank-Nicolson scheme. the scheme has a leading order 

0(∆t2,∆A2). 

Hopscotch Method 

After solving the PDE, we then create mesh (or grid) as in figure 3.4 above. If we 

combine the forward- and backwards difference and place the nodes as in the figure 

3.5 above. 

Calculations of explicit and implicit are done as we move from one node to 

 

Figure 3.5: Combined and Backward difference placed in the nodes 
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the other but we alternate these calculations as we move from node to node. Making 

sure that at each time, we first of all do the calculations at the ’explicit nodes’ in the 

usual way. We then do calculations at the ’implicit nodes’ without solving a set of 

simultaneous equations because the values at the adjacent nodes would have been 

calculated. Furthermore, mixing the nodes in this way, we get almost the same same 

accuracy as in the Crank-Nicolson scheme. That is: the Hopscotch method, as well as 

the Crank-Nicolson method, can avoid the numerical instability. 

Hopscotch method can be used in finding solutions to parabolic and EPDEs in two or 

more state variables Zhao (2006). Financial applications regarding the utility of 

Hopscotch has not been realised yet. The idea is to divide the mesh points in the two-

dimensional x-y mesh (ih, jh) as follows: 

i + j odd i 

+ j even 

The Hopscotch consists of two ’sweeps’. In the first sweep (and subsequent 

oddnumbered sweeps) the mesh points i + j is odd, are calculated based on current 

values (time level n) at the neighbouring points. This is defined as: 

  (3.119) 

For the second sweep at the same time n+1 the same calculation is based at the next 

node(even). This second sweep is fully implicit, the scheme is: 

  (3.120) 

In the second and subsequent even-numbered time steps, the roles of the implicit(I) and 

explicit (E) are interchanged. 

Lets consider the grid form of the Hopscotch Scheme in two steps: a) An 

Explicit Scheme 

  (3.121) 
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For even values of (i,j) i.e. either both be even or odd, this leads to the difference scheme; 

  (3.122) 

for i = 0,1,2,..., N and j = 1,2,...,M. b) An 

Implicit Scheme 

 

for odd values of (i,j) i.e. either both be even or odd, this leads to the difference scheme; 

  (3.124) 

for i = 0,1,2,...,N and j = 1,2,...,M-1. 

CHAPTER 4 

ANALYSIS 

ANALYSIS AND RESULTS 

4.1 Introduction 

In this chapter, we look at application of the modified Black-Scholes partial differential 

equation, Crank-Nicolson and Hopscotch difference schemes in the valuation of life 

insurance contract. This chapter compares and contrasts the convergence of the 

modified model and Black- Scholes based on the assumptions of the models used in 

this work. 

4.2 Matlab Implementation 

The matrices that are obtained by using the Crank-Nicolson and Hopscotch finite 

difference schemes are generally large tridiagonal matrices and requires more 

computational time. For this reason, R-studio and Matlab were used to enable me 
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find the solutions to the systems. See Appendix I for R-studio codes and, and appendix 

I and II for Matlab codes for Crank-Nicolson and Hopscotch method respectively. R-

studio codes were implemented for the survival function and Matlab codes was also 

implemented for Crank-Nicolson and Hopscotch method. 

See appendix III and IV for Matlab codes. 

4.3 Stability of Crank-Nicolson Method and 

Hopscotch 

The table below shows the eigenvalues of the matrix of the scheme as N → ∞. 

Table 4.1: The eigenvalues of the Crank-Nicolson method as N → ∞ 

N = 100 N = 500 N = 1000 N = 2000 N = 4000 

j λj j λ  j λ  j λ j λ 

93 1.0572 493 1.0119 993 1.0060 1993 1.0030 3993 1.0015 

94 1.0398 494 1.0088 994 1.0044 1994 1.0022 3994 1.0011 

95 1.0284 495 1.0062 995 1.0016 1995 1.0016 3995 1.0008 

96 1.0189 496 1.0040 996 1.0020 1996 1.0010 3996 1.0005 

97 1.0111 497 1.0023 997 1.0012 1997 1.0006 3997 1.0003 

98 1.0055 498 1.0011 998 1.0006 1998 1.0003 3998 1.0001 

99 1.0020 499 1.0004 999 1.0002 1999 1.0001 3999 1.0000 

Source:Ali (2013) 

The table 4.1 indicates that N → ∞, the eigenvalues approaches one (1) showing the 

stability of the Crank-Nicolson’s method. Also the this method is with an accuracy of 

0(∆t2,∆A2) and that also indicates how accurate the results is to the actual value. 

Note: The stability of Hopscotch is done in the same manner. 

4.4 Comparing the convergence of the CrankNicolson and 

Hopscotch methods 

The data from a company used are as follows: Asset price, A= 50, strike price, K = 52, 

risk-free interest rate, r = 0.05, surrender period t = 2 years, maturity period, T= 30 
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years, and σ = 0.02231. The surrender value of the life insurance contract is 5.4650 

with the value at maturity being 8.220 for non-dividend paying asset (see table 4.2). 

In the tables, the values in the bracket are the difference between the actual values and 

values obtained from the various numerical methods. 

4.5 Simulation of survival(S) using R-studio package 

under exponential distribution. 

The rate of being multimorbid is obtained from simulation of the survival rate with 

sample size of 60. The simulation is done 10,000 times with the help of the R software 

from which the values of lower and upper confidence intervals were obtained. The 

lower and upper values for maximum, minimum, mean and median were gotten, from 

which a random value was picked to be fixed into the Black-Scholes model. See tables 

(4.5 and 4.6). The last last values of both lower and confidence intervals are picked 

and the following were calculated from it; 

For Exponential Distribution 

Random values were picked between 0.234057 and 0.04544183 for minimum survival 

rate, 0.6914513 and 0.4209266 for maximum survival rate, 0.4539849 and 0.2148305 

for mean survival rate, and finally 0.4574076 and 0.2158757 for median survival rate. 

For Weibull Distribution 

Random values were picked between 0.3387227 and 0.5783236 for minimum survival 

rate, 0.8723033 and 0.9792022 for maximum survival rate, 0.5981787 and 0.8293827 

for mean survival rate, and finally 0.5931416 and 0.83586830 for median survival 

rate. 

Note: where survival rate is defined as the rate of developing multimorbidity condition or 

being multimorbid. 

Table 4.2: Comparison of the two methods in the valuation of surrender option with no 

survival rate (S). Surrender value at t =2 years. Expected value = 5.4650 



 

85 

No. of steps Crank-Nicolson Hopscotch 

30 5.4204(.0446) 5.4387(.0302) 

90 5.4465(.0185) 5.4483(.0167) 

150 5.4503(.0147) 5.4512(.0138) 

270 5.4541(.0109) 5.4534(.0116) 

330 5.4546(.0104) 5.4545(.0105) 

450 5.4552(.0098) 5.4549(.0101) 

570 5.4556(.0094) 5.4550(.0100) 

630 5.4557(.0093) 5.4552(.0098) 

720 5.4559(.0091) 5.4543(.0107) 

780 5.4559(.0091) 5.4543(.0107) 

810 5.4560(.0090) 5.4554(.0096) 

870 5.4560(.0090) 5.4554(.0096) 

Table 4.3: Comparison of the two methods in the valuation of surrender option with 

minimum rate (S) = 0.04 of being multimorbid. Where S is the minimum of the 

simulated survival rate of the upper and lower confidence intervals (under 

exponential distribution) Surrender value at t =2 years. 

No. of steps Crank-Nicolson Hopscotch 

30 6.9215 7.7545 

90 6.9305 7.7762 

150 6.9317 7.7807 

270 6.9335 7.7838 

330 6.9337 7.7845 

450 6.9337 7.7853 

570 6.9339 7.7858 

630 6.9339 7.7860 

720 6.9340 7.7862 

780 6.9340 7.7863 

810 6.9340 7.7863 

870 6.9340 7.7864 

Table 4.4: Comparison of the two methods in the valuation of surrender option with 

maximum rate (S) = 0.5 of being multimorbid. Where S is the maximum of the 

simulated survival rate of the upper and lower confidence intervals (under 

exponential distribution). Surrender value at t =2 years. 
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No. of steps Crank-Nicolson Hopscotch 

30 77.9123 80.9370 

90 77.9100 80.8274 

150 77.9098 80.8247 

270 77.9097 80.8274 

330 77.9097 80.8289 

450 77.9097 80.8290 

570 77.9097 80.8294 

630 77.9097 80.8296 

720 77.9097 80.8302 

780 77.9097 80.8304 

810 77.9097 80.8303 

870 77.9097 80.8305 

Table 4.5: Comparison of the two methods in the valuation of surrender option with 

mean rate (S) = 0.3 of being multimorbid. Where S is the mean of the simulated 

survival rate of the upper and lower confidence intervals(under exponential 

distribution). Surrender value at t =2 years. 

No. of steps Crank-Nicolson Hopscotch 

30 36.0721 38.3565 

90 36.0962 38.4275 

150 36.0981 38.4394 

270 36.0992 38.4470 

330 36.0994 38.4488 

450 36.0994 38.4501 

570 36.0995 38.4510 

630 36.0995 38.4514 

720 36.0995 38.4520 

780 36.0995 38.4522 

810 36.0995 38.4522 

870 36.0995 38.4525 

Table 4.6: Comparison of the two methods in the valuation of surrender option with 

minimum rate (S) = 0.3 of being multimorbid. Where S is the minimum of the 

simulated survival rate of the upper and lower confidence intervals (under Weibull 

distribution) Surrender value at t =2 years. 

No. of steps Crank-Nicolson Hopscotch 

No. of steps Crank-Nicolson Hopscotch 
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30 36.0721 38.3565 

90 36.0962 38.4275 

150 36.0981 38.4394 

270 36.0992 38.4470 

330 36.0994 38.4488 

450 36.0994 38.4501 

570 36.0995 38.4510 

630 36.0995 38.4514 

720 36.0995 38.4520 

780 36.0995 38.4522 

810 36.0995 38.4522 

870 36.0995 38.4525 

Table 4.7: Comparison of the two methods in the valuation of surrender option with 

minimum rate (S) = 0.8 of being multimorbid. Where S is the minimum of the 

simulated survival rate of the upper and lower confidence intervals (under Weibull 

distribution) Surrender value at t =2 years. 

No. of steps Crank-Nicolson Hopscotch 

No. of steps Crank-Nicolson Hopscotch 

30 182.9764 184.1583 

90 183.0559 183.6542 

150 183.0507 183.6136 

270 183.0487 183.6037 

330 183.0484 183.6049 

450 183.0482 183.6026 

570 183.0480 183.6019 

630 183.0480 183.6017 

720 183.0480 183.6018 

780 183.0480 183.6021 

810 183.0480 183.6018 

870 183.0479 183.6021 
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Figure 4.1: Chart on Crank-Nicolson Method for valuation Surrender Option 

Table 4.8: Comparison of the two methods in the valuation of surrender option with 

minimum rate (S) = 0.6 of being multimorbid. Where S is the minimum of the 

simulated survival rate of the upper and lower confidence intervals (under Weibull 

distribution) Surrender value at t =2 years. 

No. of steps Crank-Nicolson Hopscotch 

No. of steps Crank-Nicolson Hopscotch 

30 106.2292 109.1596 

90 106.2197 108.9223 

150 106.2184 108.9084 

270 106.2179 108.9072 

330 106.2178 108.9083 

450 106.2177 108.9077 

570 106.2177 108.9078 

630 106.2177 108.9083 

720 106.2177 108.9083 

780 106.2177 108.9085 

810 106.2177 108.9084 

870 106.2177 108.9086 
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Figure 4.2: Chart on Hopscotch Method for the valuation of Surrender Option 

 

Figure 4.3: Chart on Crank-Nicolson Method for the valuation of Surrender Option with Rate 
of being multimorbid at S = 0.04 

 

Figure 4.4: Chart on Crank-Nicolson Method for the valuation of Surrender Option with Rate 
of being multimorbid at S = 0.5 

 

Figure 4.5: Chart on Crank-Nicolson Method for the valuation of Surrender 

Option with Rate of being multimorbid at S = 0.3 

 

Figure 4.6: Chart on Hopscotch Method for the valuation of Surrender Option with Rate of 
being multimorbid at S = 0.04 
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Figure 4.7: Chart on Hopscotch Method for the valuation of Surrender Option with Rate of 
being multimorbid at S = 0.5 

 

Figure 4.8: Chart on Hopscotch Method for the valuation of Surrender Option with Rate of 
being multimorbid at S = 0.3 

 

Figure 4.9: Chart on Crank-Nicolson Method for the valuation of Surrender Option with Rate 
of being multimorbid at S = 0.8 

 

Figure 4.10: Chart on Crank-Nicolson Method for the valuation of Surrender 

Option with Rate of being multimorbid at S = 0.6 

 

Figure 4.11: Chart on Hopscotch Method for the valuation of Surrender Option with Rate 
of being multimorbid at S = 0.8 
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Figure 4.12: Chart on Hopscotch Method for the valuation of Surrender Option with Rate 
of being multimorbid at S = 0.6 

CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Introduction 

The chapter looks at the survey of the results obtained from the analysis, the conclusions 

drawn and some recommendations in relation to the methods used. 

5.2 Summary of Results 

From the analysis of this work, it was realised that, asset price discretization and time 

discretization are two fundamental sources of error. Checking for consistency, stability 

and convergence which are the fundamental factors that characterized a numerical 

scheme, Lax Equivalence theorem was used. 

The study used the eigenvalue to check how stable the two finite difference methods 

would be. The results showed that the Crank-Nicolson and Hopscotch methods were 

unconditionally stable (see Table 4.1). 

The results from the tables showed that values of Crank-Nicolson were closer to the 

expected values than that of Hopscotch values. Hence, making CrankNicolson method 

better than Hopscotch method as far as faster convergence to the expected value is 

concerned (see Table 4.2). 
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The simulated survival rates that were deducted from the rate of returns also showed 

that, the higher the rate of developing the co-morbidity condition (the higher the S 

value)the greater the payoff value to the insured. 

The Hopscotch method gave higher values than the Crank-Nicolson method when the survival 

rates were incorporated into the Black-Scholes model. Hence, making the insured receive 

more payment with the Hopscotch method than the CrankNicolson method. On the part of 

the insurance company, can lose more money when Hopscotch method is used to determine 

the surrender value (see Tables; 4.3,4.5, 4.6, 4.7 and 4.8). The Crank-Nicolson method was 

found to give more accurate and consistent results for life insurance contract containing 

surrender options in Ghana than the Black-Scholes partial differential equation. In the case of 

the modified model, the hopscotch method gave a little higher values than that of Crank-

Nicolson making it converge faster. 

5.3 Conclusion 

The Crank-Nicolson method converges faster than the Hopscotch method when these 

schemes are used in solving the Black-Scholes partial differential equation. That is 

Crank-Nicolson method gives more accurate results than the Hopscotch method. 

Initially, the values of Hopscotch were higher than the Crank-Nicolson method. As the 

step sizes were increased, (mesh sizes) for both methods, Crank-nicolson started 

converging faster than the Hopscotch method. 

When the survival rates (S) were deducted from the rate of returns in the Black-

Scholes model, the Hopscotch method gave higher payoffs (values) than the Crank-

Nicolson method. This means, an insurance company could lose more money when 

Hopscotch method is used to determine the surrender value (payoff); this method 

favours the insured than the Crank-Nicolson method. 
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5.4 Recommendation 

In finding the value of the American styled life insurance contracts, the CrankNicolson 

method gives more accurate results than the Hopscotch method. In the case where 

the modified model is going to be used, then the Hopscotch method converges faster 

and gives more accurate results than the Crank-Nicolson. 

5.5 Further Studies 

Further work could look at adding a parameter to my modified model as a penalty 

parameter, which penalises the policyholder for early termination of the contract. 

Also, further studies could look at how dividends could be paid at different surrender 

dates for multimorbidity patterns.  
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Appendix A: Matlab Code for Crank-Nicolson Method 

function[P]=CrankNicolsonFDBS(S,K,r,sigma,T,N,M,dividend_yield) 

% If no dividend payment was made, enter zero for the dividend_yield 

% S is the asset price 

% K is the strike price 

% T is the maturity period 

% N is the number of iterations in the time direction 

% M is the number of iterations in the asset direction 

% sigma is the volatility 

lambda=dividend_yield ; dt=T/N 

; ds=2*S/M ; A=zeros(M+1,M+1) 

; f=max(K-(0:M)*ds,0)’ ; for 

m=1:M-1 

A(m+1,m)=((r-lambda)*m*dt-sigma.^2*m.^2*dt)/4 ; 

A(m+1,m+1)=1+0.5*(r-lambda)*dt+0.5*sigma.^2*m.^2*dt ; 

A(m+1,m+2)=(-(r-lambda)*m*dt-sigma.^2*m.^2*dt)/4 ; end 

A(1,1)=1 ; 

A(M+1,M+1)=1 ; 

A ; 

for m=1:M-1 

B(m+1,m)=(-(r-lambda)*m*dt+sigma.^2*m.^2*dt)/4 ; 

B(m+1,m+1)=1-0.5*(r-lambda)*dt-0.5*sigma.^2*m.^2*dt ; 

B(m+1,m+2)=((r-lambda)*m*dt+sigma.^2*m.^2*dt)/4 ; 

end 

B(1,1)=1 ; 

B(M+1,M+1)=1 ; 

B ; 

for i=N:-1:1 f=A^(-1)*(B*f) ; 

f=max(f,(K-(0:M)*ds)’) ; end 

f ; 
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P=f(round((M+1)/2)) ; 

APPENDIX B: Matlab Code for Crank-Nicolson Method 

With dividend 

function price = HopPut(S0,K,r,T,sigma,Smax,dS,dt) 

M=round(Smax/dS); dS=Smax/M; 

N=round(T/dt); dt=T/N; 

matval=zeros(M+1,N+1); 

vetS=linspace(0,Smax,M+1)’; 

veti=0:M; vetj=0:N; 

%set up boundary conditions matval(:,N+1) = 

max(K-vetS,0); matval(1,:) = K*exp(-r*dt*(N-vetj)); 

matval(M+1,:) = 0; 

for j=N:-1:1 

for i=2:M if mod(j+i,2)==1 %Use E a=0.5*dt*(sigma^2*veti-

r).*veti; b=1-dt*(sigma^2*veti.^2+r); 

c=0.5*dt*(sigma^2*veti+r).*veti; 

matval(i,j)=a(i)*matval(i-1,j+1)+b(i)... 

*matval(i,j+1)+c(i)*matval(i+1,j+1); end end 

for i=2:M if mod(j+i,2)==0 %Use I 

x=0.5*(r*dt*veti-sigma^2*dt*(veti.^2)); y=1+sigma^2*dt*(veti.^2)+r*dt; 

z=-0.5*(r*dt*veti+sigma^2*dt*(veti.^2)); 

matval(i,j)=(1/y(i))*matval(i,j+1)-(z(i)/y(i))... 

*matval(i+1,j)-(x(i)/y(i))*matval(i-1,j); end end end 

price=interp1(vetS,matval(:,1),S0); 
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Appendix C: Method Matlab Code for Hopscotch With 

dividend 

\subsection*{Appendix C: Matlab Code for Hopscotch Method with dividend} 

\begin{verbatim} 

%function price = HopPut(S0,K,r,T,sigma,Smax,Dividend,dS,dt) dS=Smax/M; 

dt=T/N; matval=zeros(M+1,N+1); vetS=linspace(0,Smax,M+1)’; veti=0:M; 

vetj=0:N; 

%set up boundary conditions matval(:,N+1) = 

max(K-vetS,0); matval(1,:) = K*exp(-(r-s)*dt*(N-

vetj)); matval(M+1,:) = 0; 

for j=N:-1:1 for i=2:M if mod(j+i,2)==1 %Use E 

a=0.5*dt*(sigma^2*veti-(r - S)).*veti; b=1-

dt*(sigma^2*veti.^2+(r - S)); c=0.5*dt*(sigma^2*veti+(r - 

S)).*veti; matval(i,j)=a(i)*matval(i-1,j+1)+b(i)*... 

matval(i,j+1)+c(i)*matval(i+1,j+1); end end 

for i=2:M if mod(j+i,2)==0 %Use I 

x=0.5*(r -S)*dt*veti-sigma^2*dt*(veti.^2); y=1+sigma^2*dt*(veti.^2)+(r -

S)*dt; z=-0.5*((r - S)*dt*veti+sigma^2*dt*(veti.^2)); 

matval(i,j)=(1/y(i))*matval(i,j+1)-(z(i)/y(i))*... 

matval(i+1,j)-(x(i)/y(i))*matval(i-1,j); end end end 

price=interp1(vetS,matval(:,1),S0) 

Appendix D: R Codes for the Simulation for Survival Rate 

y<-function(n) 

{ r<-matrix(0,nrow=n, ncol=2) for(i in 1:n){ lifetimes<-

rexp(60,rate=1/15) censtimes<-15+5*runif(60) ztimes<-
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pmin(lifetimes,censtimes) status<-

as.numeric(censtimes>lifetimes) m<-

summary(survfit(Surv(lifetimes,status)~1)) st<-

length(m$lower) g<-m$lower[t] h<-m$upper[t] d<-

cbind(g,h) r[i,]<-d max(y(10000)[,1]) max(y(10000)[,2]) 

min(y(10000)[,1]) min(y(10000)[,2]) mean(y(10000)[,1]) 

mean(y(10000)[,2]) 

median(y(10000)[,1]) 

median(y(10000)[,2]) } r 

} 


