A blockchain-based certificateless public key signature scheme for vehicle-to-infrastructure communication in VANETs

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Journal of Systems Architecture
Vehicular Ad Hoc Networks (VANETs) have been developing based on the state-of-art in wireless network communication technologies to improve traffic on roads. However, there are some threats to security and privacy due to the open wireless environment in VANETs and the high speed of vehicles. The uthentication of messages related to traffic which are exchanged with the vehicles and the Road-Side Unit (RSU) is considered one of the most VANETs necessary security requirements. In this context, several schemes have been designed to secure the traffic-related messages in VANETs. However, these schemes suffer from high computational costs in signatures’ verification. To minimize the computational cost of signature generation and verification, we propose an efficient Certificateless Public Key Signature (CL-PKS) scheme using bilinear pairing to provide conditional privacy-preserving authentication for Vehicle-To-Infrastructure (V2I) communication in VANETs. The CL-PKS scheme supports batch signature verification and aggregate signature verification functions to speed up verification process. In addition to this, we include blockchain to our CL-PKS scheme to implement revocation transparency of pseudo-identities efficiently before verifying the signatures. Furthermore, this scheme provides security proof and protection against different types of attacks. The proposed scheme incurs lower computational cost as compared to that incurred by existing schemes.
This is an article published in Journal of Systems Architecture,Vol. 99, 2019; https://doi.org/10.1016/j.sysarc.2019.101636
Journal of Systems Architecture,Vol. 99, 2019; https://doi.org/10.1016/j.sysarc.2019.101636