Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abdallah, Ibrahim"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicting bod levels of wastewater with neural network time series
    (2014) Abdallah, Ibrahim
    The quality of treated wastewater has always been an important issue, but it becomes even more critical as human populations increase. An accurate well-timed measurement of quality variables is essential to the successful monitoring and controlling of wastewater treatment systems. Unfortunately, current ability to monitor and control effluent quality from a wastewater treatment process is primitive. Control is difficult because wastewater treatment consists of complex multivariate processes with nonlinear relationships and time varying dynamics. Because the measurements of these variables are difficult and often involve large time delays, there is a critical need for forecasting models that are effective in predicting wastewater effluent quality. In this paper, predictive models based on artificial neural networks are presented. Water quality measurements and process data from an urban wastewater treatment plant were used to develop models to predict biochemical oxygen demand (BOD). The results provide evidence that nonlinear neural network time series models achieve accurate forecast of wastewater effluent quality.

Kwame Nkrumah University of Science and Technology copyright © 2002-2025