Browsing by Author "Agyemang Charles....et al"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemSubgroups of adult‑onset diabetes: a data‑driven cluster analysis in aGhanaian population(Springer Nature, 2023) Danquah Ina; Mank Isabel; Owusu-Dabo Ellis; Hampe S. Christiane; Agyemang Charles....et al; 0000-0003-4232-4292Adult-onset diabetes mellitus (here: aDM) is not a uniform disease entity. In European populations, five diabetes subgroups have been identified by cluster analysis using simple clinical variables; these may elucidate diabetes aetiology and disease prognosis. We aimed at reproducing these subgroups among Ghanaians with aDM, and establishing their importance for diabetic complications in different health system contexts. We used data of 541 Ghanaians with aDM (age: 25–70 years; male sex: 44%) from the multi-center, cross-sectional Research on Obesity and Diabetes among African Migrants (RODAM) Study. Adult-onset DM was defined as fasting plasma glucose (FPG) ≥ 7.0 mmol/L, documented use of glucose-lowering medication or self-reported diabetes, and age of onset ≥ 18 years. We derived subgroups by cluster analysis using (i) a previously published set of variables: age at diabetes onset, HbA1c, body mass index, HOMA-beta, HOMA-IR, positivity of glutamic acid decarboxylase autoantibodies (GAD65Ab), and (ii) Ghana-specific variables: age at onset, waist circumference, FPG, and fasting insulin. For each subgroup, we calculated the clinical, treatment-related and morphometric characteristics, and the proportions of objectively measured and self-reported diabetic complications. We reproduced the five subgroups: cluster 1 (obesity-related, 73%) and cluster 5 (insulin-resistant, 5%) with no dominant diabetic complication patterns; cluster 2 (age-related, 10%) characterized by the highest proportions of coronary artery disease (CAD, 18%) and stroke (13%); cluster 3 (autoimmune-related, 5%) showing the highest proportions of kidney dysfunction (40%) and peripheral artery disease (PAD, 14%); and cluster 4 (insulin-deficient, 7%) characterized by the highest proportion of retinopathy (14%). The second approach yielded four subgroups: obesity- and age-related (68%) characterized by the highest proportion of CAD (9%); body fat-related and insulin-resistant (18%) showing the highest proportions of PAD (6%) and stroke (5%); malnutrition-related (8%) exhibiting the lowest mean waist circumference and the highest proportion of retinopathy (20%); and ketosis-prone (6%) with the highest proportion of kidney dysfunction (30%) and urinary ketones (6%). With the same set of clinical variables, the previously published aDM subgroups can largely be reproduced by cluster analysis in this Ghanaian population. This method may generate in-depth understanding of the aetiology and prognosis of aDM, particularly when choosing variables that are clinically relevant for the target population.
- ItemValidation of prevalent diabetes risk scores based on non-invasively measured predictors in Ghanaian migrant and non-migrant populations – The RODAM study(ELSEVIER, 2023) Osei-Yeboah James; Kengne Andre-Pascal; Schulze B. Matthias; Owusu-Dabo Ellis; Bahendeka Silver; Agyemang Charles....et alBackground: Non-invasive diabetes risk models are a cost-effective tool in large-scale population screening to identify those who need confirmation tests, especially in resource-limited settings. Aims: This study aimed to evaluate the ability of six non-invasive risk models (Cambridge, FINDRISC, Kuwaiti, Omani, Rotterdam, and SUNSET model) to identify screen-detected diabetes (defined by HbA1c) among Gha naian migrants and non-migrants. Study design: A multicentered cross-sectional study. Methods: This analysis included 4843 Ghanaian migrants and non-migrants from the Research on Obesity and Diabetes among African Migrants (RODAM) Study. Model performance was assessed using the area under the receiver operating characteristic curves (AUC), Hosmer-Lemeshow statistics, and calibration plots. Results: All six models had acceptable discrimination (0.70 ≤ AUC <0.80) for screen-detected diabetes in the overall/combined population. Model performance did not significantly differ except for the Cambridge model, which outperformed Rotterdam and Omani models. Calibration was poor, with a consistent trend toward risk overestimation for screen-detected diabetes, but this was substantially attenuated by recalibration through adjustment of the original model intercept. Conclusion: Though acceptable discrimination was observed, the original models were poorly calibrated among populations of African ancestry. Recalibration of these models among populations of African ancestry is needed before use.