Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cobbah, Maxwell"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Network intrusion detection and countermeasure selection in virtual network (NIDCS)
    (October 2015) Cobbah, Maxwell
    Intrusion in a network or a system is a problem today as the trend of successful network attacks continue to rise. Intruders can explore vulnerabilities of a network system to gain access in order to deploy some virus or malware such as Denial of Service (DOS) attack. In this work, a frequency-based Intrusion Detection System (IDS) is proposed to detect DOS attack. The frequency data is extracted from the time-series data created by the traffic flow using Discrete Fourier Transform (DFT). An algorithm is developed for anomaly-based intrusion detection without any false alarm which further detect known and unknown attack signature in a network. The frequency of the traffic data of the virus or malware would be inconsistent with the frequency of the legitimate traffic data. A Centralized Traffic Analyzer Intrusion Detection System called CTA-IDS is introduced to further detect inside attackers in a network. The strategy is effective in detecting abnormal content in the traffic data during information passing from one node to another and also detects known attack signature and unknown attack. This approach is tested by running the artificial network intrusion data in simulated networks using the Network Simulator2 (NS2) software.

Kwame Nkrumah University of Science and Technology copyright © 2002-2025