Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Otupiri, Robert Nawiekang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Novel Designs Of Highly Sensitive Multi Channel Surface Plasmon Resonance Biosensers Using Photonic Crystal Fibers
    (OCTOBER, 2014) Otupiri, Robert Nawiekang
    Containing deadly viral out breaks such as Ebola requires the use of portable miniaturized highly sensitive devices the need to carry out in situ laboratory exercises. Verification of such viruses carried by a patient would normally require taking a sample all the way to the nearest well equipped laboratory with highly skilled personnel for testing. The whole process takes up so much time and resources increasing the risk of the virus spreading. Similarly, increasing access to improved diagnostic health care for patients remotely located can be realized in a far shorter span of time at less cost with the use of such bio sensors which do not require advanced knowledge and skill to operate. This thesis explores the use of photonic crystal fibres in the context of opto fluidics refractive index sensing based on surface plasmon resonance for portable, label-free, biosensors. Noise signals that make it difficult to detect the changes of interest eliminated using self-referencing scheme to reject environmental influences such as temperature and humidity. The relevant characteristics of two photonic crystal fibre architectures are explored numerically with one being an improvement of the other. In addition, the first design being a novel highly birefringent photonic crystal fibre introduced the concept of multi analyte sensing while the second photonic crystal model demonstrated multi analyte sensing with a metal oxide over layer enabling it to operate in both dual analyte sensing and self-referencing modes with greatly improved sensitivity, of both operational modes. Biosensor architectures for the two fundamental modes ( and ) have been elucidated using a finite element method (FEM) with perfectly matching areas (PML). Results show high sensing capabilities as compared to traditional fibre optic biosensors with structural architectures enabling realisation of compact and portable devices.

Kwame Nkrumah University of Science and Technology copyright © 2002-2025