Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sharaf, Mohamed"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Heat transfer analysis of reactive boundary layer flow over a wedge in a nanofluid using Buongiorno’s model
    (AIP Advances, 2024-10) Jan, Saeed Ullah; Ali, Aatif; Sharaf, Mohamed; Asamoah, Joshua Kiddy K.; 0000-0002-7066-246X
    heat transfer of nanofluids. This study investigates the effects of three different chemical reactions—Arrhenius, bimolecular, and sensitized reactions—using Buongiorno’s model. Through similarity transformations, the system of partial differential equations (PDEs) is converted into ordinary differential equations, which are then solved by combining the shooting method with the Runge–Kutta–Fehlberg numerical technique. The findings show that the skin friction coefficient is greatly increased by raising the pressure gradient and stretching/contracting wedge parameters. On the other hand, as the thermophoresis parameter, Brownian motion parameter, activation energy, and Lewis number increase, the Nusselt number decreases, signifying a decrease in the efficiency of heat transfer. A higher Sherwood number, on the other hand, indicates increased mass transfer and is brought about by increases in the Lewis number, thermophoresis parameter, activation energy, and Falkner–Skan power-law parameter. These findings provide important information for maximizing heat and mass transfer in nanofluid systems. Key values for the skin friction coefficient, local Nusselt number, and the Sherwood number are given in tabular form, and the results are graphically represented.

Kwame Nkrumah University of Science and Technology copyright © 2002-2025