Estimating malaria transmission risk through surveillance of human–vector interactions in northern Ghana
dc.contributor.author | Yihdego, Yemane | |
dc.contributor.author | Coleman, Sylvester | |
dc.contributor.author | Gyamfi, Frank | |
dc.contributor.author | Kolyada, Lena | |
dc.contributor.author | Tongren, Jon Eric | |
dc.contributor.author | Zigrumgabe, Sixte | |
dc.contributor.author | Dery, Dominc B. | |
dc.contributor.author | Badu, Kingsley | |
dc.contributor.author | Obiri-Danso, Kwasi | |
dc.contributor.author | Boakye, Daniel | |
dc.contributor.author | , Szumlas, Daniel | |
dc.contributor.author | Armstead, Jennifer S. | |
dc.contributor.author | Dadzie, Daniel K. | |
dc.contributor.orcid | 0000-0002-0964-0894 | |
dc.contributor.orcid | 0000-0002-7886-5528 | |
dc.date.accessioned | 2024-05-08T10:15:08Z | |
dc.date.available | 2024-05-08T10:15:08Z | |
dc.date.issued | 2023 | |
dc.description | This article is published in Parasites & Vectors (2023) 16:205 ;https://doi.org/10.1186/s13071-023-05793-2 | |
dc.description.abstract | Background Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are afected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector–human interactions in north‑ ern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. Methods Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identifed to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. Results Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = −0.33, P=0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P=0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined efect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = −4.07, P<0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). Conclusion Indoor residual spraying signifcantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission. | |
dc.description.sponsorship | KNUST | |
dc.identifier.citation | Parasites & Vectors (2023) 16:205; https://doi.org/10.1186/s13071-023-05793-2 | |
dc.identifier.uri | https://doi.org/10.1186/s13071-023-05793-2 | |
dc.identifier.uri | https://ir.knust.edu.gh/handle/123456789/15703 | |
dc.language.iso | en | |
dc.publisher | Parasites & Vectors | |
dc.title | Estimating malaria transmission risk through surveillance of human–vector interactions in northern Ghana | |
dc.type | Article |