Drying and adhesive properties of novel surface coatings derived from peanut skin extract and cashew nutshell liquid

Abstract
Purpose – This study aims to synthesize pigment and resin from agro-wastes and use them in the formulation of eco-friendly surface coatings. Design/methodology/approach – The pigments and resin were synthesized through a chemical modification of agro-wastes. The pigments were characterized by infrared spectroscopy (FTIR) and were screened for their antimicrobial activities. The physicochemical characteristics of the cashew nutshell liquid (CNSL)-modified resin were evaluated. These precursors and other natural additives were used to formulate surface coatings, and their drying and adhesive properties were evaluated using international testing methods. Findings – It was observed that the curing of the CNSL-modified resin depended on time and temperature. The pigments exhibited antimicrobial activity against E. coli and S. aureus and had high melting points, affirming their stability. The chemically modified precursors successfully yielded surface coatings with acceptable drying times and adhesion to the base substrate. Practical implications – The use of agro-wastes as the main components of the surface coatings implies waste valorization, a reduction in production costs and the creation of job opportunities for sustainable development. To increase the chemical, physical, corrosion resistance and antimicrobial qualities of paint compositions, chemically modified peanut skin extracts and CNSL can be used as pigments and resins, respectively. This could be a green approach to achieving the targets of Sustainable development goals 11 and 12. Originality/value – The paper outlines a prospective approach to use unwanted waste (peanut skin, cashew nutshells) and other natural additives as industrial raw materials. These novel surface coating precursors are cost-effective, readily available, eco-friendly and could replace conventional precursors
Description
Pigment & Resin Technology published this article in 2022.
Keywords
Citation
Pigment & Resin Technology 52/5 (2023) 641–652
Collections