Design, fabrication, testing and evaluation of two aeroponic systems as alternative production methods for seed yams in Ghana.

Loading...
Thumbnail Image
Date
2017-01-23
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Yam is one of the most important dietary sources of energy for households in West-Africa. Yam stores relatively longer than most root crops and this attribute have gained it recognition as a food security crop in Ghana. More effort has been put into its research and production as has been seen by numerous government interventions over the years. However, inadequate access and high cost of seed yams have prevented farmers from intensive sustainable production. New technologies to increase and make available quality seed yams to farmers can boost yam production, increase food security and improve farmers’ livelihoods. In this regard, two aeroponic systems were developed and evaluated. The two systems; power-dependent (pressurised) and power-independent (gravity-fed) were evaluated using a split-split plot design at the CSIR-Crops Research Institute. The evaluations were carried out to assess the technical and agronomic performance of the systems. The aeroponic units were the main plots, the nutrient concentrations the sub-plot, and the yam varieties the sub-sub plot. Data collected on performance of the various treatments were subjected to analysis of variance and judged significant at p<0.05. Technical evaluation of the two aeroponic systems gave Christensen’s Coefficient for water distribution uniformity values were 97.52 % and 94.49 % for the power-dependent and power-independent systems respectively. Agronomic performance showed significant differences in number of mini-tubers harvested and weight of mini-tubers under the different aeroponic systems. Field evaluation of harvested mini-tubers also showed significant differences in final yields under the various nutrient concentrations. Economic analysis of the two systems showed a benefit-cost ratio in favour of the power-independent system. Various recommendations were made after a repeat of the experiment. The power-independent system would be disseminated to smallholder farmers for seed propagation.
Description
A thesis submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, in partial fulfillment of the requirement for the award of PhD Soil and Water Engineering, 2016.
Keywords
Citation