Mathematical Modeling of the Epidemiology of Varicella
Loading...
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this thesis a modified SIR mathematical model on the spread of Varicella
(Chickenpox) in Ghana was developed.
Here the population is divided into three compartments: the susceptibles, the infectives,
and the recovered. The resulting system of non-linear differential equations was analysed,
thus in respect of the stability of the equilibrium points. The model focuses on the spread
of the disease at the initial stages of the infection when the infected persons are absent
and when they are present taking into consideration birth rate and natural death rate. The
study is based on the assumption that the population of Ghana is constant, and the natural
death rate was assumed to be equal to the birth rate. We then determine how the various
compartments react to increasing proportion of persons at the initial stages of their
infection.
We perform sensitivity analysis on the already estimated model parameters to determine
their effect on the reproductive number and at what values of the reproductive number are
the disease free and endemic equilibra stable.
Description
A thesis submitted to the Board of Postgraduate Studies, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfilment of the requirements for the award of the Degree of Master of Philosophy